On the Localization Properties of Quantum Field Theories with Infinite Spin

Christian Köhler

Universität Wien

2015-05-29

- 1 Introduction
- 2 Compact Localization
- 3 No-Go Theorem
- 4 Limit of Representations
- 5 Summary & Outlook

- Introduction
 - Infinite Spin Representations
 - Modular Localization
 - String-Localized Fields

- 5 Summary & Outlook

Minkowski space & Poincaré group

- Minkowski space $\mathbb{M} := (\mathbb{R}^4, \eta), \ \eta = \operatorname{diag}(1, -1, -1, -1)$
- lightcone coordinates $x_+ := x^0 \pm x^3$, $x := x^1 + ix^2$
- matrix form of $x, p \in \mathbb{M}$ ($\sigma_0 := 1, \sigma_i$: Pauli matrices)

$$\underline{x} := \begin{pmatrix} x_{+} & \overline{x} \\ x & x_{-} \end{pmatrix} = \sigma_{\mu} x^{\mu}, \ \widetilde{p} := \begin{pmatrix} p_{-} & -\overline{p} \\ -p & p_{+} \end{pmatrix} \Rightarrow px = \frac{1}{2} \operatorname{Tr} \widetilde{p} \underline{x}$$

- Poincaré group (unit component) $\mathcal{P}_{\perp}^{\uparrow} = SO(1,3) \ltimes \mathbb{M}$
- covering group $\mathcal{P}^c = \mathrm{SU}(2) \ltimes \mathbb{M} \stackrel{\wedge}{\to} \mathcal{P}^{\uparrow}$

$$(\Lambda(A)x) := AxA^{\dagger}, (p\Lambda(A)) = A^{\dagger}\widetilde{p}A$$

 \blacksquare irreducible representations on one-particle Hilbert space $\mathcal{H}_1 \rightarrow$

Minkowski space & Poincaré group

- Minkowski space $\mathbb{M} := (\mathbb{R}^4, \eta), \ \eta = \operatorname{diag}(1, -1, -1, -1)$
- lightcone coordinates $x_+ := x^0 \pm x^3$, $x := x^1 + ix^2$
- matrix form of $x, p \in \mathbb{M}$ ($\sigma_0 := 1, \sigma_i$: Pauli matrices)

$$\widetilde{x} := \begin{pmatrix} x_{+} & \overline{x} \\ x & x_{-} \end{pmatrix} = \sigma_{\mu} x^{\mu}, \ \widetilde{p} := \begin{pmatrix} p_{-} & -\overline{p} \\ -p & p_{+} \end{pmatrix} \Rightarrow px = \frac{1}{2} \operatorname{Tr} \widetilde{p} \widetilde{x}$$

- Poincaré group (unit component) $\mathcal{P}_{\perp}^{\uparrow} = \mathrm{SO}(1,3) \ltimes \mathbb{M}$
- covering group $\mathcal{P}^c = \mathrm{SU}(2) \ltimes \mathbb{M} \stackrel{\wedge}{\to} \mathcal{P}^{\uparrow}$

$$(\Lambda(A)x) := AxA^{\dagger}, (p\Lambda(A))^{\widetilde{}} = A^{\dagger}\widetilde{p}A$$

 \blacksquare irreducible representations on one-particle Hilbert space $\mathcal{H}_1 \rightarrow$

Minkowski space & Poincaré group

- Minkowski space $\mathbb{M} := (\mathbb{R}^4, \eta), \ \eta = \operatorname{diag}(1, -1, -1, -1)$
- lightcone coordinates $x_+ := x^0 \pm x^3$, $x := x^1 + ix^2$
- matrix form of $x, p \in \mathbb{M}$ ($\sigma_0 := 1, \sigma_i$: Pauli matrices)

$$\widetilde{x} := \begin{pmatrix} x_{+} & \overline{x} \\ x & x_{-} \end{pmatrix} = \sigma_{\mu} x^{\mu}, \ \widetilde{p} := \begin{pmatrix} p_{-} & -\overline{p} \\ -p & p_{+} \end{pmatrix} \Rightarrow px = \frac{1}{2} \operatorname{Tr} \widetilde{p} \widetilde{x}$$

- Poincaré group (unit component) $\mathcal{P}_+^{\uparrow} = \mathrm{SO}(1,3) \ltimes \mathbb{M}$
- covering group $\mathcal{P}^c = SU(2) \ltimes \mathbb{M} \stackrel{\Lambda}{\to} \mathcal{P}^{\uparrow}_{\perp}$

$$(\Lambda(A)x) := AxA^{\dagger}, (p\Lambda(A)) = A^{\dagger}\widetilde{p}A$$

 \blacksquare irreducible representations on one-particle Hilbert space $\mathcal{H}_1 \rightarrow$

Minkowski space & Poincaré group

- Minkowski space $\mathbb{M} := (\mathbb{R}^4, \eta), \ \eta = \operatorname{diag}(1, -1, -1, -1)$
- lightcone coordinates $x_+ := x^0 \pm x^3$. $x := x^1 + ix^2$
- matrix form of $x, p \in \mathbb{M}$ ($\sigma_0 := 1, \sigma_i$: Pauli matrices)

$$\widetilde{x} := \begin{pmatrix} x_{+} & \overline{x} \\ x & x_{-} \end{pmatrix} = \sigma_{\mu} x^{\mu}, \ \widetilde{p} := \begin{pmatrix} p_{-} & -\overline{p} \\ -p & p_{+} \end{pmatrix} \Rightarrow px = \frac{1}{2} \operatorname{Tr} \widetilde{p} \widetilde{x}$$

- Poincaré group (unit component) $\mathcal{P}_+^{\uparrow} = \mathrm{SO}(1,3) \ltimes \mathbb{M}$
- covering group $\mathcal{P}^c = SU(2) \ltimes \mathbb{M} \stackrel{\Lambda}{\to} \mathcal{P}^{\uparrow}_{\perp}$

$$(\Lambda(A)x) := AxA^{\dagger}, (p\Lambda(A)) = A^{\dagger}pA$$

lacktriangleright irreducible representations on one-particle Hilbert space $\mathcal{H}_1
ightarrow$

Irreducible representations: Translation operators

- $U(a) = e^{iPa}$, momentum operator P
- representation property $U(A)U(a)U(A)^{\dagger} = U(\Lambda(A)a)$

$$\Rightarrow U(A)PU(A)^{\dagger} = p\Lambda(A) \Rightarrow \operatorname{sp} P$$
 is Lorentz-invariant

- Casimir operator $P^2 = m^2 \mathbf{1}$ (Schur's Lemma)
- positive energy representations: $(P^0 > 0)$

$$\blacksquare$$
 $m > 0$: upper mass-shell

$$H_m^+ = \{ \rho \in \mathbb{M} : \rho^2 = m^2, \rho^0 > 0 \}$$

Irreducible representations: Translation operators

- $U(a) = e^{iPa}$, momentum operator P
- representation property $U(A)U(a)U(A)^{\dagger} = U(\Lambda(A)a)$

$$\Rightarrow U(A)PU(A)^{\dagger} = p\Lambda(A) \Rightarrow \operatorname{sp} P$$
 is Lorentz-invariant

- Casimir operator $P^2 = m^2 \mathbf{1}$ (Schur's Lemma)
- positive energy representations: $(P^0 > 0)$

Irreducible representations: Translation operators

- $U(a) = e^{iPa}$, momentum operator P
- representation property $U(A)U(a)U(A)^{\dagger} = U(\Lambda(A)a)$

$$\Rightarrow U(A)PU(A)^{\dagger} = p\Lambda(A) \Rightarrow \operatorname{sp} P$$
 is Lorentz-invariant

- Casimir operator $P^2 = m^2 \mathbf{1}$ (Schur's Lemma)
- positive energy representations: $(P^0 > 0)$

$$\blacksquare$$
 $m > 0$: upper mass-shell

$$H_m^+ = \{ p \in \mathbb{M} : p^2 = m^2, p^0 > 0 \}$$

m = 0: boundary of the forward light cone

$$\partial V^+ = \{ p \in \mathbb{M} : p_+ p_- = p^2, p^0 > 0 \}$$

Irreducible representations: Translation operators

- $U(a) = e^{iPa}$, momentum operator P
- representation property $U(A)U(a)U(A)^{\dagger} = U(\Lambda(A)a)$

$$\Rightarrow U(A)PU(A)^{\dagger} = p\Lambda(A) \Rightarrow \operatorname{sp} P$$
 is Lorentz-invariant

- Casimir operator $P^2 = m^2 \mathbf{1}$ (Schur's Lemma)
- positive energy representations: $(P^0 > 0)$
 - m>0: upper mass-shell $H_m^+=\{p\in\mathbb{M}:\,p^2=m^2,p^0>0\}$
 - *m* = 0: boundary of the forward light cone

$$\partial V^+ = \{ p \in \mathbb{M} : p_+ p_- = p^2, p^0 > 0 \}$$

Irreducible representations: Little group construction

- choose reference momentum $q \in \operatorname{sp} P$
- little group $G_q := \operatorname{stab} q = \{R \in \operatorname{SL}(2,\mathbb{C}) : q\Lambda(R) = q\}$
- \blacksquare representation D on Hilbert space \mathcal{H}_a
- $\mathbf{m} > 0$: massive representations
 - $q_m := (m, 0) \in H_m^+ \text{ (rest frame)}$
 - \blacksquare stab $q_m = SU(2)$
- $\mathbf{m} = 0$: massless representations
 - $q_0 := (\frac{1}{2}, \frac{1}{2}\vec{e}_3) \in \partial V^+$
 - stab $q_0 = \widetilde{E(2)} \stackrel{\lambda}{\to} E(2)$ (covering of 2d Euclidean group)

$$[\varphi, a] = \begin{pmatrix} e^{i\varphi} \\ a & e^{-i\varphi} \end{pmatrix}$$

Irreducible representations: Little group construction

- choose reference momentum $q \in \operatorname{sp} P$
- little group $G_q := \operatorname{stab} q = \{R \in \operatorname{SL}(2,\mathbb{C}) : q\Lambda(R) = q\}$
- \blacksquare representation D on Hilbert space \mathcal{H}_a
- $\mathbf{m} > 0$: massive representations
 - $q_m := (m, \vec{0}) \in H_m^+ \text{ (rest frame)}$
 - \blacksquare stab $q_m = SU(2)$
 - *D*: spin *s* representation, $\mathcal{H}_{a_m} = \mathbb{C}^{2s+1}$
- $\mathbf{m} = 0$: massless representations
 - $q_0 := (\frac{1}{2}, \frac{1}{2}\vec{e}_3) \in \partial V^+$
 - stab $q_0 = \widetilde{E(2)} \stackrel{\lambda}{\to} E(2)$ (covering of 2d Euclidean group)

Irreducible representations: Little group construction

- choose reference momentum $q \in \operatorname{sp} P$
- little group $G_q := \operatorname{stab} q = \{R \in \operatorname{SL}(2,\mathbb{C}) : q\Lambda(R) = q\}$
- lacksquare representation D on Hilbert space \mathcal{H}_q
- $\mathbf{m} > 0$: massive representations
 - $q_m := (m, \vec{0}) \in H_m^+ \text{ (rest frame)}$
 - \blacksquare stab $q_m = SU(2)$
 - D: spin s representation, $\mathcal{H}_{q_m} = \mathbb{C}^{2s+1}$
- $\mathbf{m} = 0$: massless representations
 - $q_0 := \left(\frac{1}{2}, \frac{1}{2}\vec{e}_3\right) \in \partial V^+$
 - stab $q_0 = \widetilde{E(2)} \stackrel{\lambda}{\to} E(2)$ (covering of 2d Euclidean group)

Irreducible representations: Little group construction

- choose reference momentum $q \in \operatorname{sp} P$
- little group $G_q := \operatorname{stab} q = \{R \in \operatorname{SL}(2,\mathbb{C}) : q\Lambda(R) = q\}$
- \blacksquare representation D on Hilbert space \mathcal{H}_a
- $\mathbf{m} > 0$: massive representations
 - $q_m := (m, \vec{0}) \in H_m^+ \text{ (rest frame)}$
 - \blacksquare stab $q_m = SU(2)$

Compact Localization

- D: spin s representation, $\mathcal{H}_{a_m} = \mathbb{C}^{2s+1}$
- $\mathbf{m} = 0$: massless representations
 - $q_0 := (\frac{1}{2}, \frac{1}{2}\vec{e}_3) \in \partial V^+$

$$\widetilde{E(2)} = \left\{ [\varphi, a] \in \operatorname{SL}(2, \mathbb{C}) : \varphi \in \mathbb{R}, a \in \mathbb{R}^2 \right\}$$
$$[\varphi, a] = \begin{pmatrix} e^{i\varphi} \\ a & e^{-i\varphi} \end{pmatrix}$$

 $D[([\varphi, a])v](k) = e^{-ik \cdot \overline{a}}v(k\lambda(\varphi)) \ \forall v \in \mathcal{H}_{a_0} := L^2(\kappa S^1)$

Irreducible representations: Little group construction

- choose reference momentum $q \in \operatorname{sp} P$
- little group $G_q := \operatorname{stab} q = \{R \in \operatorname{SL}(2,\mathbb{C}) : q\Lambda(R) = q\}$
- \blacksquare representation D on Hilbert space \mathcal{H}_a
- $\mathbf{m} > 0$: massive representations
 - $q_m := (m, \vec{0}) \in H_m^+ \text{ (rest frame)}$
 - \blacksquare stab $q_m = SU(2)$

Compact Localization

- D: spin s representation, $\mathcal{H}_{a_m} = \mathbb{C}^{2s+1}$
- $\mathbf{m} = 0$: massless representations

$$q_0 := (\frac{1}{2}, \frac{1}{2}\vec{e}_3) \in \partial V^+$$

$$\begin{split} \widetilde{E(2)} &= \left\{ [\varphi, a] \in \mathrm{SL}(2, \mathbb{C}) : \ \varphi \in \mathbb{R}, a \in \mathbb{R}^2 \right\} \\ [\varphi, a] &= \begin{pmatrix} \mathrm{e}^{\mathrm{i}\varphi} \\ a & \mathrm{e}^{-\mathrm{i}\varphi} \end{pmatrix} \end{split}$$

$$D[([\varphi, a])v](k) = e^{-ik \cdot \overline{a}}v(k\lambda(\varphi)) \ \forall \ v \in \mathcal{H}_{q_0} := L^2(\kappa S^1)$$

Irreducible representations: Little group construction

- choose reference momentum $q \in \operatorname{sp} P$
- little group $G_q := \operatorname{stab} q = \{R \in \operatorname{SL}(2,\mathbb{C}) : q\Lambda(R) = q\}$
- representation D on Hilbert space \mathcal{H}_q
- $\mathbf{m} > 0$: massive representations
 - $q_m := (m, \vec{0}) \in H_m^+ \text{ (rest frame)}$
 - \blacksquare stab $q_m = SU(2)$

Compact Localization

- D: spin s representation, $\mathcal{H}_{a_m} = \mathbb{C}^{2s+1}$
- $\mathbf{m} = 0$: massless representations
 - $q_0 := (\frac{1}{2}, \frac{1}{2}\vec{e}_3) \in \partial V^+$
 - stab $q_0 = \widetilde{E(2)} \stackrel{\lambda}{\to} E(2)$ (covering of 2d Euclidean group)

$$\widetilde{E(2)} = \left\{ [\varphi, a] \in \mathrm{SL}(2, \mathbb{C}) : \varphi \in \mathbb{R}, a \in \mathbb{R}^2 \right\} \\
[\varphi, a] = \begin{pmatrix} \mathrm{e}^{\mathrm{i}\varphi} \\ a & \mathrm{e}^{-\mathrm{i}\varphi} \end{pmatrix}$$

 $D[([\varphi, a])v](k) = e^{-ik \cdot \overline{a}}v(k\lambda(\varphi)) \ \forall \ v \in \mathcal{H}_{a_0} := L^2(\kappa S^1)$

Irreducible representations: One-particle space

■ Wigner boost B_p with $q\Lambda(B_p) = p$:

$$B_{p} := \begin{cases} \sqrt{\frac{\widetilde{p}}{m}} & m > 0\\ \frac{1}{\sqrt{p_{-}}} \begin{pmatrix} p_{-} & \overline{p}\\ & 1 \end{pmatrix} & m = 0 \end{cases}$$

■ Wigner rotation $R(A, p) = B_p A B_{p\Lambda(A)}^{-1} \in \operatorname{stab} q$

representation of $\mathrm{SL}(2,\mathbb{C})$ on $\mathcal{H}_1:=L^2(\operatorname{sp} P)\otimes\mathcal{H}_q$

$$[U_1(A,a)\psi](p) = e^{ipa}D(R(A,p))\psi(p\Lambda(A))$$

Irreducible representations: One-particle space

■ Wigner boost B_p with $q\Lambda(B_p) = p$:

$$B_{p} := \begin{cases} \sqrt{\frac{\widetilde{p}}{m}} & m > 0\\ \frac{1}{\sqrt{p_{-}}} \begin{pmatrix} p_{-} & \overline{p}\\ & 1 \end{pmatrix} & m = 0 \end{cases}$$

■ Wigner rotation $R(A, p) = B_p A B_{p\Lambda(A)}^{-1} \in \operatorname{stab} q$

$$[U_1(A,a)\psi](p) = e^{ipa}D(R(A,p))\psi(p\Lambda(A))$$

Irreducible representations: One-particle space

■ Wigner boost B_p with $q\Lambda(B_p) = p$:

$$B_{p} := \begin{cases} \sqrt{\frac{\tilde{p}}{m}} & m > 0\\ \frac{1}{\sqrt{p_{-}}} \begin{pmatrix} p_{-} & \overline{p}\\ & 1 \end{pmatrix} & m = 0 \end{cases}$$

■ Wigner rotation $R(A, p) = B_p A B_{p\Lambda(A)}^{-1} \in \operatorname{stab} q$

representation of $\mathrm{SL}(2,\mathbb{C})$ on $\mathcal{H}_1:=L^2(\operatorname{sp} P)\otimes\mathcal{H}_{\sigma}$

$$[U_1(A,a)\psi](p) = e^{ipa}D(R(A,p))\psi(p\Lambda(A))$$

Tomita operator for wedges

- Standard wedge $W_0 := \{x \in \mathbb{M} : \pm x_+ > 0\}$
- $lack \Delta^{\mathrm{i}t} := U_1(\mathrm{e}^{-\pi\sigma_3 t})$ subgroup of boosts preserving W_0
- reflection $(R_{W_0}x)_+ = -x_+$, $J := U(R_{W_0})$ complex conjugation
- Tomita operator $S_{W_0} := J\Delta^{\frac{1}{2}}$

$$\mathcal{K}_1(W_0) := \{ \psi \in \mathrm{dom}\Delta^{\frac{1}{2}} : S_{W_0}\psi = \psi \}$$

extension to arbitrary wedges by covariance:

$$\mathcal{K}_1(W) := U_1(A, a)\mathcal{K}_1(W_0)$$
 for $W = \Lambda(A)W_0 + x$

Tomita operator for wedges

- Standard wedge $W_0 := \{x \in \mathbb{M} : \pm x_+ > 0\}$
- $lackrel{\Delta}^{it} := U_1(e^{-\pi\sigma_3 t})$ subgroup of boosts preserving W_0
- reflection $(R_{W_0}x)_+ = -x_+$, $J := U(R_{W_0})$ complex conjugation
- Tomita operator $S_{W_0} := J\Delta^{\frac{1}{2}}$ (domain restricted by required analytic continuation)

real subspace for the standard wedge

$$\mathcal{K}_1(W_0) := \{ \psi \in \mathrm{dom}\Delta^{\frac{1}{2}} : S_{W_0}\psi = \psi \}$$

extension to arbitrary wedges by covariance:

$$\mathcal{K}_1(W) := U_1(A, a)\mathcal{K}_1(W_0)$$
 for $W = \Lambda(A)W_0 + x$

Tomita operator for wedges

- Standard wedge $W_0 := \{x \in \mathbb{M} : \pm x_+ > 0\}$
- $lackrel{\Delta}^{it} := U_1(e^{-\pi\sigma_3 t})$ subgroup of boosts preserving W_0
- reflection $(R_{W_0}x)_+ = -x_+$, $J := U(R_{W_0})$ complex conjugation
- Tomita operator $S_{W_0} := J\Delta^{\frac{1}{2}}$ (domain restricted by required analytic continuation)

real subspace for the standard wedge

$$\mathcal{K}_1(W_0) := \{ \psi \in \mathrm{dom}\Delta^{\frac{1}{2}} : S_{W_0}\psi = \psi \}$$

extension to arbitrary wedges by covariance:

$$\mathcal{K}_1(W) := U_1(A, a)\mathcal{K}_1(W_0)$$
 for $W = \Lambda(A)W_0 + x$

Modular Localization

Real subspaces for arbitrary regions

■ subspace for $\mathcal{O} \subset \mathbb{M}$

$$\mathcal{K}(\mathcal{O}) := \bigcap_{W \supset \mathcal{O} \text{ wedge}} \mathcal{K}(W)$$

real subspace $\mathcal{K} \subset \mathcal{H}_1$ is standard iff

- lacksquare $\mathcal{K} \cap i\mathcal{K} = 0$ (separating)
- $\mathbb{Z} + i\mathcal{K} = \mathcal{H}$ (cyclic)

Modular Localization

Real subspaces for arbitrary regions

■ subspace for $\mathcal{O} \subset \mathbb{M}$

$$\mathcal{K}(\mathcal{O}) := \bigcap_{W \supset \mathcal{O} \text{ wedge}} \mathcal{K}(W)$$

real subspace $\mathcal{K} \subset \mathcal{H}_1$ is standard iff

- lacksquare $\mathcal{K} \cap i\mathcal{K} = 0$ (separating)
- $\mathbb{Z} + i\mathcal{K} = \mathcal{H}$ (cyclic)

Real subspaces for arbitrary regions

lacksquare subspace for $\mathcal{O}\subset\mathbb{M}$

$$\mathcal{K}(\mathcal{O}) := \bigcap_{W \supset \mathcal{O} \text{ wedge}} \mathcal{K}(W)$$

real subspace $\mathcal{K} \subset \mathcal{H}_1$ is standard iff

- $\mathcal{K} \cap i\mathcal{K} = 0$ (separating)
- $\overline{\mathcal{K} + i\mathcal{K}} = \mathcal{H}$ (cyclic)

Real subspaces for arbitrary regions

■ subspace for $\mathcal{O} \subset \mathbb{M}$

$$\mathcal{K}(\mathcal{O}) := \bigcap_{W \supset \mathcal{O} \text{ wedge}} \mathcal{K}(W)$$

real subspace $\mathcal{K} \subset \mathcal{H}_1$ is standard iff

- lacksquare $\mathcal{K} \cap i\mathcal{K} = 0$ (separating)
- $\overline{\mathcal{K} + i\mathcal{K}} = \mathcal{H}$ (cyclic)

Real subspaces for arbitrary regions

 \blacksquare subspace for $\mathcal{O} \subset \mathbb{M}$

$$\mathcal{K}(\mathcal{O}) := \bigcap_{W \supset \mathcal{O} \text{ wedge}} \mathcal{K}(W)$$

real subspace $\mathcal{K} \subset \mathcal{H}_1$ is standard iff

- $\mathcal{K} \cap i\mathcal{K} = 0$ (separating)
- $\overline{\mathcal{K} + i\mathcal{K}} = \mathcal{H}$ (cyclic)

 \mathbb{R} $\mathcal{K}(C)$ is standard for $C \subset \mathbb{M}$ a spacelike cone

Real subspaces for arbitrary regions

■ subspace for $\mathcal{O} \subset \mathbb{M}$

$$\mathcal{K}(\mathcal{O}) := \bigcap_{W \supset \mathcal{O} \text{ wedge}} \mathcal{K}(W)$$

real subspace $\mathcal{K} \subset \mathcal{H}_1$ is standard iff

- $\mathcal{K} \cap i\mathcal{K} = 0$ (separating)
- $\overline{\mathcal{K} + i\mathcal{K}} = \mathcal{H}$ (cyclic)

Real subspaces for arbitrary regions

■ subspace for $\mathcal{O} \subset \mathbb{M}$

$$\mathcal{K}(\mathcal{O}) := \bigcap_{W \supset \mathcal{O} \text{ wedge}} \mathcal{K}(W)$$

real subspace $\mathcal{K} \subset \mathcal{H}_1$ is standard iff

- $\mathcal{K} \cap i\mathcal{K} = 0$ (separating)
- $\mathbf{E} = \mathcal{K} + i\mathcal{K} = \mathcal{H}$ (cyclic)

Definition

Let $H^{(c)} = \{e \in \mathbb{M}^{(c)} | e^2 = -1\}$ the manifold of spacelike directions.

$$u: H_m^+/\partial V^+ \times H \to \mathcal{H}_q$$

is called an intertwiner, if

- $D(R(A,p))u(p\Lambda(A),e) = u(p,\Lambda(A)e)$ (intertwiner eq)
- L^2_{loc} & pol. bounded in p, analytic for $e \in H^c$ with $\Im(e) \in V^+$

$$||u(p,e)||_{\mathcal{H}_q} \leq M(p)|\Im(e)|^{-N}$$
 with M pol., $N \in \mathbb{N}$

Definition

Let $H^{(c)}=\{e\in\mathbb{M}^{(c)}|e^2=-1\}$ the manifold of spacelike directions.

$$u: H_m^+/\partial V^+ \times H \to \mathcal{H}_q$$

is called an intertwiner, if

- $D(R(A, p))u(p\Lambda(A), e) = u(p, \Lambda(A)e)$ (intertwiner eq)
- L^2_{loc} & pol. bounded in p, analytic for $e \in H^c$ with $\Im(e) \in V^+$ and bounded by an inverse power at the boundary:

$$||u(p,e)||_{\mathcal{H}_q} \leq M(p)|\Im(e)|^{-N}$$
 with M pol., $N \in \mathbb{N}$

Two ways of constructing intertwiners

- 1 pullback representation on G_q -orbits [Mund, Schroer, Yngvason '06]
 - characterization using the intertwiner equation

Definition

Let $H^{(c)} = \{e \in \mathbb{M}^{(c)} | e^2 = -1\}$ the manifold of spacelike directions.

$$u: H_m^+/\partial V^+ \times H \to \mathcal{H}_q$$

is called an intertwiner, if

- $D(R(A, p))u(p\Lambda(A), e) = u(p, \Lambda(A)e)$ (intertwiner eq.)
- L_{loc}^2 & pol. bounded in p, analytic for $e \in H^c$ with $\Im(e) \in V^+$ and bounded by an inverse power at the boundary:

$$||u(p,e)||_{\mathcal{H}_q} \leq M(p)|\Im(e)|^{-N}$$
 with M pol., $N \in \mathbb{N}$

Definition

Let $H^{(c)} = \{e \in \mathbb{M}^{(c)} | e^2 = -1\}$ the manifold of spacelike directions.

$$u: H_m^+/\partial V^+ \times H \to \mathcal{H}_q$$

is called an intertwiner, if

- $D(R(A, p))u(p\Lambda(A), e) = u(p, \Lambda(A)e)$ (intertwiner eq.)
- L^2_{loc} & pol. bounded in p, analytic for $e \in H^c$ with $\Im(e) \in V^+$ and bounded by an inverse power at the boundary:

$$||u(p,e)||_{\mathcal{H}_q} \leq M(p)|\Im(e)|^{-N}$$
 with M pol., $N \in \mathbb{N}$

Two ways of constructing intertwiners:

- 1 pullback representation on G_a -orbits [Mund, Schroer, Yngvason '06]
- 2 characterization using the intertwiner equation

String-localized one-particle states

- conjugate intertwiner: $u_c(p,h) := Ju(-pR_{W_0},(R_{W_0})_*h)$
- u has distributional boundary value in e.
- Single particle vectors $\psi_{(c)}(f,h) \in \mathcal{H}_1$ are defined by

$$\psi_{(c)}(f,h)(p) = \widetilde{f}(p)u_{(c)}(p,h) \text{ for } f \in \mathcal{S}(\mathbb{M}), \mathcal{D}(H)$$

covariance under \mathcal{P}^c :

$$U((\Lambda(A),a))\psi_{(c)}(f,e)=\psi_{(c)}((\Lambda(A),a)_*f,\Lambda(A)_*e)$$

String-localized one-particle states

- conjugate intertwiner: $u_c(p,h) := Ju(-pR_{W_0},(R_{W_0})_*h)$
- u has distributional boundary value in e.
- Single particle vectors $\psi_{(c)}(f,h) \in \mathcal{H}_1$ are defined by

$$\psi_{(c)}(f,h)(p) = \widetilde{f}(p)u_{(c)}(p,h) \text{ for } f \in \mathcal{S}(\mathbb{M}), \mathcal{D}(H).$$

• covariance under \mathcal{P}^c :

$$U((\Lambda(A),a))\psi_{(c)}(f,e) = \psi_{(c)}((\Lambda(A),a)_*f,\Lambda(A)_*e)$$

String-localized one-particle states

- conjugate intertwiner: $u_c(p,h) := Ju(-pR_{W_0},(R_{W_0})_*h)$
- u has distributional boundary value in e.
- Single particle vectors $\psi_{(c)}(f,h) \in \mathcal{H}_1$ are defined by

$$\psi_{(c)}(f,h)(p) = \widetilde{f}(p)u_{(c)}(p,h) \text{ for } f \in \mathcal{S}(\mathbb{M}), \mathcal{D}(H).$$

covariance under \mathcal{P}^c :

$$U((\Lambda(A), a))\psi_{(c)}(f, e) = \psi_{(c)}((\Lambda(A), a)_*f, \Lambda(A)_*e)$$

One-particle vectors are localized in spacelike truncated cones

$$\psi(f, h) + \psi_c(\overline{f}, \overline{h}) \in \mathcal{K}_1(\operatorname{supp} f + \mathbb{R}^+ \operatorname{supp} h)$$

- Bosonic Fock space $\mathcal{H} := \bigoplus_{n=0}^{\infty} \operatorname{Sym}(\mathcal{H}_1^{\otimes n}), \ \mathcal{H}_0 = \mathbb{C}\Omega$

$$[a(\varphi), a^{\dagger}(\psi)] = \langle \varphi, \psi \rangle_{\mathcal{H}_1} \mathbf{1}, [a(\varphi), a(\psi)] = [a^{\dagger}(\varphi), a^{\dagger}(\psi)] = 0$$

One-particle vectors are localized in spacelike truncated cones

$$\psi(f, h) + \psi_c(\overline{f}, \overline{h}) \in \mathcal{K}_1(\operatorname{supp} f + \mathbb{R}^+ \operatorname{supp} h)$$

- Bosonic Fock space $\mathcal{H} := \bigoplus_{n=0}^{\infty} \operatorname{Sym}(\mathcal{H}_1^{\otimes n}), \ \mathcal{H}_0 = \mathbb{C}\Omega$
- CCR:

$$[\mathbf{a}(\varphi), \mathbf{a}^{\dagger}(\psi)] = \langle \varphi, \psi \rangle_{\mathcal{H}_1} \mathbf{1}, [\mathbf{a}(\varphi), \mathbf{a}(\psi)] = [\mathbf{a}^{\dagger}(\varphi), \mathbf{a}^{\dagger}(\psi)] = 0$$

0000000000

■ Field operators are defined by

$$\Phi(f,h) = \int \widetilde{\mathrm{d}p} \left(\widehat{f}(p) u(p,h) \circ a^{\dagger}(p) + \widehat{f}(-p) \overline{u_c(p,h)} \circ a(p) \right)$$

for $f \in \mathcal{S}(\mathbb{M})$, $h \in \mathcal{D}(H)$. (o: scalar product in \mathcal{H}_q)

■ cov. $U(A, a)\Phi(f, h)U^{\dagger}(A, a) = \Phi((\Lambda(A), a)_*f), \Lambda(A)_*h)$ and PCT $U(j_0)\Phi(f, h)U^{\dagger}(j_0) = \Phi((j_0)_*f, (j_0)_*h)^{\dagger}$ lead to

String-localization

$$[\Phi(f,h),\Phi(f',h')^{\dagger}]=0$$

if supp $f + \mathbb{R}^+$ supp hand supp $f' + \mathbb{R}^+$ supp h'are spacelike separated.

construction possible for all
 positive energy representation

Field operators are defined by

$$\Phi(f,h) = \int \widetilde{\mathrm{d}p} \left(\widehat{f}(p) u(p,h) \circ a^{\dagger}(p) + \widehat{f}(-p) \overline{u_c(p,h)} \circ a(p) \right)$$

for $f \in \mathcal{S}(\mathbb{M})$, $h \in \mathcal{D}(H)$. (o: scalar product in \mathcal{H}_q)

• cov. $U(A, a)\Phi(f, h)U^{\dagger}(A, a) = \Phi((\Lambda(A), a)_*f), \Lambda(A)_*h)$ and PCT $U(i_0)\Phi(f,h)U^{\dagger}(i_0) = \Phi((i_0)_*f,(i_0)_*h)^{\dagger}$ lead to

String-localization:

$$[\Phi(f,h),\Phi(f',h')^{\dagger}]=0$$

if supp $f + \mathbb{R}^+$ supp hand supp $f' + \mathbb{R}^+$ supp h'are spacelike separated.

construction possible for all

Field operators are defined by

$$\Phi(f,h) = \int \widetilde{\mathrm{d}p} \left(\widehat{f}(p) u(p,h) \circ a^{\dagger}(p) + \widehat{f}(-p) \overline{u_c(p,h)} \circ a(p) \right)$$

for $f \in \mathcal{S}(\mathbb{M})$, $h \in \mathcal{D}(H)$. (o: scalar product in \mathcal{H}_a)

• cov. $U(A, a)\Phi(f, h)U^{\dagger}(A, a) = \Phi((\Lambda(A), a)_*f), \Lambda(A)_*h)$ and PCT $U(i_0)\Phi(f,h)U^{\dagger}(i_0) = \Phi((i_0)_*f,(i_0)_*h)^{\dagger}$ lead to

String-localization:

$$[\Phi(f,h),\Phi(f',h')^{\dagger}]=0$$

if supp $f + \mathbb{R}^+$ supp h and supp $f' + \mathbb{R}^+$ supp h'are spacelike separated.

construction possible for all positive energy representations

- 1 Introduction
- **2** Compact Localization
 - Two-Particle States
 - Candidates for Two-Particle Observables
- 3 No-Go Theorem
- 4 Limit of Representations
- 5 Summary & Outlook

Limit of Representations

 Dependency on semi-infinite string-direction is intrinsic for infinite spin-case \rightarrow No-Go Thm. [Yngvason '70] [Longo, Morinelli, Rehren '15]

Let
$$F \in \mathcal{S}(\mathbb{R})$$
 and define $u_2: (\partial V^+)^{ imes 2} o \mathcal{H}_q^{\otimes 2}$ by

$$\begin{split} u_2(p,\tilde{p})(k,\tilde{k}) := \int \mathrm{d}^2z \, \mathrm{e}^{\mathrm{i}kz} \int \mathrm{d}^2\tilde{z} \, \mathrm{e}^{\mathrm{i}\tilde{k}\tilde{z}} F(A(p,\tilde{p},z,\tilde{z})), \\ \text{where } A(p,\tilde{p},z,\tilde{z}) := \xi(z) \Lambda(B_p B_{\tilde{p}}^{-1}) \xi(\tilde{z}) \end{split}$$

$$D(R(A, p)) \otimes D(R(A, \tilde{p})) u_2(p\Lambda(A), \tilde{p}\Lambda(A)) = u_2(p, \tilde{p}).$$

 Dependency on semi-infinite string-direction is intrinsic for infinite spin-case → No-Go Thm.
 [Yngvason '70] [Longo, Morinelli, Rehren '15]

Construction of two-particle intertwiners [MSY '06]

Let $F \in \mathcal{S}(\mathbb{R})$ and define $u_2: (\partial V^+)^{ imes 2} o \mathcal{H}_q^{\otimes 2}$ by

$$u_2(p, \tilde{p})(k, \tilde{k}) := \int \mathrm{d}^2 z \, \mathrm{e}^{\mathrm{i}kz} \int \mathrm{d}^2 \tilde{z} \, \mathrm{e}^{\mathrm{i}\tilde{k}\tilde{z}} F(A(p, \tilde{p}, z, \tilde{z})),$$

where $A(p, \tilde{p}, z, \tilde{z}) := \xi(z) \Lambda(B_p B_{\tilde{p}}^{-1}) \xi(\tilde{z})$

and ξ is a parametrization of stab q.

u₂ fulfils the two-particle intertwiner equation

$$D(R(A, p)) \otimes D(R(A, \tilde{p}))u_2(p\Lambda(A), \tilde{p}\Lambda(A)) = u_2(p, \tilde{p}).$$

Limit of Representations

Compact Localization

 Dependency on semi-infinite string-direction is intrinsic for infinite spin-case \rightarrow No-Go Thm. [Yngvason '70] [Longo, Morinelli, Rehren '15]

Construction of two-particle intertwiners [MSY '06]

Let $F \in \mathcal{S}(\mathbb{R})$ and define $u_2: (\partial V^+)^{\times 2} \to \mathcal{H}_a^{\otimes 2}$ by

$$u_2(p,\tilde{p})(k,\tilde{k}) := \int \mathrm{d}^2 z \, \mathrm{e}^{\mathrm{i}kz} \int \mathrm{d}^2 \tilde{z} \, \mathrm{e}^{\mathrm{i}\tilde{k}\tilde{z}} F(A(p,\tilde{p},z,\tilde{z})),$$
where $A(p,\tilde{p},z,\tilde{z}) := \xi(z) \Lambda(B_p B_{\tilde{p}}^{-1}) \xi(\tilde{z})$

and ξ is a parametrization of stab q.

u₂ fulfils the two-particle intertwiner equation

$$D(R(A, p)) \otimes D(R(A, \tilde{p}))u_2(p\Lambda(A), \tilde{p}\Lambda(A)) = u_2(p, \tilde{p}).$$

Localized two-particle wavefunctions (cf. MSY '06,)

Let $\mathcal{O} \subset \mathbb{M}$ compact and $g \in \mathcal{S}(\mathbb{M}^{\times 2})$ real-valued with $\operatorname{supp} g \subset \mathcal{O}^{\times 2}$. If $u_2 \in L^2_{loc} \otimes \mathcal{H}^{\otimes 2}$ is polynomially bounded, i.e.

$$||u_2(p,\tilde{p})||_{\mathcal{H}_q^{\otimes 2}} \leq M(p,\tilde{p})$$

with M a polynomial, then the function

$$\psi(p,k,\tilde{p},\tilde{k}) := \tilde{g}(p,\tilde{p})u_2(p,\tilde{p})(k,\tilde{k})$$

is modular localized in \mathcal{O} , which means

$$\psi \in \mathcal{K}_2(\mathcal{O})$$

with the two-particle subspace K_2 defined via second quantization of the operators S_W .

Proposed construction of two-particle observables [MSY '06]

Candidate observables are of the form

$$B(g) := \int \widetilde{\mathrm{d}p} \int \mathrm{d}
u(k) \int \widetilde{\mathrm{d}}\widetilde{p} \int \mathrm{d}
u(\widetilde{k}) \, \hat{g}(p,\widetilde{p}) u_2(p,\widetilde{p})(k,\widetilde{k})
onumber \ a^{\dagger}(p,k) a^{\dagger}(\widetilde{p},\widetilde{k}) + \dots$$

such that $B(g)\Omega \in \mathcal{H}_2$ is a two-particle wavefunction given by

$$(p, \tilde{p}, k, \tilde{k}) \mapsto \hat{g}(p, \tilde{p})u_2(p, \tilde{p})(k, \tilde{k}).$$

Locality in the vacuum expectation value

$$\langle \Omega, [B(g), B(\tilde{g})] \Omega \rangle = 0$$

Relative locality wrt. string-field $\Phi(f, h)$?

Proposed construction of two-particle observables [MSY '06]

Candidate observables are of the form

$$B(g) := \int \widetilde{\mathrm{d}p} \int \mathrm{d}
u(k) \int \widetilde{\mathrm{d}}\widetilde{p} \int \mathrm{d}
u(\widetilde{k}) \, \hat{g}(p,\widetilde{p}) u_2(p,\widetilde{p})(k,\widetilde{k})
onumber \ a^{\dagger}(p,k) a^{\dagger}(\widetilde{p},\widetilde{k}) + \dots$$

such that $B(g)\Omega \in \mathcal{H}_2$ is a two-particle wavefunction given by

$$(p, \tilde{p}, k, \tilde{k}) \mapsto \hat{g}(p, \tilde{p})u_2(p, \tilde{p})(k, \tilde{k}).$$

Locality in the vacuum expectation value

$$\langle \Omega, [B(g), B(\tilde{g})]\Omega \rangle = 0$$

if $(x - x')^2 < 0 \ \forall x \in \text{supp}g, x' \in \text{supp}\tilde{g}$.

Relative locality wrt. string-field $\Phi(f, h)$?

Proposed construction of two-particle observables [MSY '06]

Candidate observables are of the form

$$B(g) := \int \widetilde{\mathrm{d}} p \int \mathrm{d}
u(k) \int \widetilde{\mathrm{d}} \widetilde{p} \int \mathrm{d}
u(\widetilde{k}) \, \hat{g}(p, \widetilde{p}) u_2(p, \widetilde{p})(k, \widetilde{k})$$
 $a^{\dagger}(p, k) a^{\dagger}(\widetilde{p}, \widetilde{k}) + \dots$

such that $B(g)\Omega \in \mathcal{H}_2$ is a two-particle wavefunction given by

$$(p, \tilde{p}, k, \tilde{k}) \mapsto \hat{g}(p, \tilde{p})u_2(p, \tilde{p})(k, \tilde{k}).$$

■ Locality in the vacuum expectation value

$$\langle \Omega, [B(g), B(\tilde{g})]\Omega \rangle = 0$$

if
$$(x - x')^2 < 0 \ \forall x \in \text{supp}g, x' \in \text{supp}\tilde{g}$$
.

■ Relative locality wrt. string-field $\Phi(f, h)$?

- No-Go Theorem
 - Assumptions & Statement
 - Characterization of Intertwiners
 - Relative Commutator
 - Restriction of the Integrals
 - Analysis of Singularities

- Q: Existence of nontriv. operators with compact localization?
- →Negative result for the following class of operators on \mathcal{F} , motivated by the suggestions in [YMS '06], [Schroer '08].

Definition

An operator-valued distribution B on $\mathcal{S}(\mathbb{M}^{\times 2})$ of the form

$$B(g) = \int \widetilde{\mathrm{d}p} \int \widetilde{\mathrm{d}\tilde{p}} \int \mathrm{d}\nu(k) \int \mathrm{d}\nu(\tilde{k})$$

$$\hat{g}(p,\tilde{p})u_{2}(p,\tilde{p})(k,\tilde{k})a^{\dagger}(p,k)a^{\dagger}(\tilde{p},\tilde{k})$$

$$+\hat{g}(-p,-\tilde{p})u_{2c}(p,\tilde{p})(k,\tilde{k})a(p,k)a(\tilde{p},\tilde{k})$$

$$+\hat{g}(p,-\tilde{p})u_{0}(p,\tilde{p})(k,\tilde{k})a^{\dagger}(p,k)a(\tilde{p},\tilde{k})$$

$$+\hat{g}(-p,\tilde{p})u_{0c}(p,\tilde{p})(k,\tilde{k})a^{\dagger}(\tilde{p},\tilde{k})a(p,k)$$

with fixed coefficient functions u_2 , u_{2c} , u_0 , u_{0c} is called a *Two-particle observable* if... [cf. Streater, Wightman '64, chap. 3]

Domain and Continuity

- For all $g \in \mathcal{S}(\mathbb{M}^{\times 2})$, B(g) is defined on the domain \mathcal{D} of vectors which is spanned by products of the String fields $\Phi(f,h)$ applied to the vacuum Ω . By the Reeh-Schlieder Thm., \mathcal{D} is dense in the Fock space \mathcal{F} .
- For fixed vectors $\phi, \psi \in \mathcal{H}$, the assignment

$$g \in \mathcal{S}(\mathbb{M}^{\times 2}) \mapsto \langle \phi | B(g) | \psi \rangle \in \mathbb{C}$$

is a tempered distribution, i.e. $g \mapsto B(g)$ is an operator-valued distribution.

 $B(\overline{g}) = B(g)^{\dagger}$

Transformation Law

■ For $p, \tilde{p} \in \partial V^+$ and $A \in SL(2, \mathbb{C})$, the two-particle intertwiner equation holds almost everywhere in the sense of $\mathrm{d}\mathbf{p}\mathrm{d}\tilde{\mathbf{p}}\mathrm{d}\nu(\mathbf{k})\mathrm{d}\nu(\tilde{\mathbf{k}})$:

$$D(R(A, p)) \otimes D(R(A, \tilde{p}))u_2(p\Lambda(A), \tilde{p}\Lambda(A)) = u_2(p, \tilde{p}).$$

- u_2, u_{2c}, u_0, u_{0c} are locally square-integrable and polynomially bounded.
- Relative locality Let $f \in \mathcal{S}(\mathbb{M})$, $h \in \mathcal{D}(H)$ and $g \in \mathcal{S}(\mathbb{M}^{\times 2})$ such, that

$$(x + \lambda e - y_{1,2})^2 < 0 \ \forall \ x \in \operatorname{supp} f, e \in \operatorname{supp} h, \lambda \in \mathbb{R}^+,$$

 $(y_1, y_2) \in \operatorname{supp} g.$

Then the associated fields commute:

$$[\Phi(f,h),B(g)]=0$$

One-particle string-intertwiners

Lemma

Let $u_1(p,e)(k)$ a solution of the one-particle intertwinereq. Then there is a function F_1 , defined on the interior of the upper half-plane, such that:

11 The intertwiner u_1 is given by

$$u_1(p,e)(k) = e^{\mathrm{i}k \cdot \frac{\mathrm{e} - \frac{e_-}{p_-}\mathrm{p}}{2p \cdot e}} F_1(p \cdot e).$$

2 A choice of the function F_1 can be made in such a way that u_1 is polynomially bounded in p, analytic in e for $\Im(e) \in V^+$ and bounded by an inverse power at the boundary.

cf. uniqueness proof for string-localized fields [MSY '06, Lemma B 3 ii)]

- $A = B_p \in SL(2, \mathbb{C})$
- $R(B_p^{-1}, p) = 1$
- $u_1(q, \Lambda(B_p)e) = u_1(p, e)$
- $f := \Lambda(B_p)e$

cf. uniqueness proof for string-localized fields [MSY '06, Lemma B 3 ii)]

- $A = B_p \in SL(2, \mathbb{C})$
- $R(B_p^{-1},p)=\mathbf{1}$
- $u_1(q,\Lambda(B_p)e) = u_1(p,e)$
- $f := \Lambda(B_p)e$

cf. uniqueness proof for string-localized fields [MSY '06, Lemma B 3 ii)]

- $A = B_p \in SL(2, \mathbb{C})$
- $R(B_p^{-1}, p) = 1$
- $u_1(q,\Lambda(B_p)e) = u_1(p,e)$
- $f := \Lambda(B_p)e$

cf. uniqueness proof for string-localized fields [MSY '06, Lemma B 3 ii)]

- $A = [0, \bar{\mathsf{f}}/f_+] \in \mathsf{G}_q$
- $\blacksquare \Rightarrow R(A,q) = A$
- $\bullet e^{-\mathrm{i} k \cdot \frac{f}{f_+}} u_1(q, f) = u_1(q, f^+)$

cf. uniqueness proof for string-localized fields [MSY '06, Lemma B 3 ii)]

- $A = [0, \bar{\mathsf{f}}/f_+] \in \mathsf{G}_q$
- $\blacksquare \Rightarrow R(A,q) = A$
- $\bullet e^{-\mathrm{i} k \cdot \frac{f}{f_+}} u_1(q, f) = u_1(q, f^+)$

Characterization of Intertwiners

cf. uniqueness proof for string-localized fields [MSY '06, Lemma B 3 ii)]

- $A = [0, \bar{\mathsf{f}}/f_+] \in \mathsf{G}_q$
- $\blacksquare \Rightarrow R(A,q) = A$
- $\bullet e^{-\mathrm{i} k \cdot \frac{f}{f_+}} u_1(q, f) = u_1(q, f^+)$

cf. uniqueness proof for string-localized fields [MSY '06, Lemma B 3 ii)]

 $A = [\varphi, 0]$: q and f^+ invariant, $F_1(f_+/2) := u_1(q, f^+)(k)$

cf. uniqueness proof for string-localized fields [MSY '06, Lemma B 3 ii)]

Localization of QFTs with Infinite Spin

Step 3

 $A = [\varphi, 0]$: q and f^+ invariant, $F_1(f_+/2) := u_1(q, f^+)(k)$

2015-05-29

cf. uniqueness proof for string-localized fields [MSY '06, Lemma B 3 ii)]

 $A = [\varphi, 0]$: q and f^+ invariant, $F_1(f_+/2) := u_1(q, f^+)(k)$

Substitution of the intertwiner equations yields the first part

$$u_1(p,e)(k) = e^{ik \cdot \frac{e - \frac{e_-}{p_-}p}{2p \cdot e}} F_1(p \cdot e).$$

- $2p \cdot e$ in exponent produces essential singularities at the boundary $\Im(e) = 0$.
- At any singularity one can show $\left|k\cdot\left(\mathrm{e}-\frac{e_{-}}{p_{-}}\mathrm{p}\right)\right|\leq\kappa.$
- u_1 is therefore an intertwiner iff F_{1r} in

$$F_1(p \cdot e) = e^{-i\frac{\kappa}{2p \cdot e}} F_{1r}(p \cdot e)$$

is pol. bounded distributional boundary value of analytic function on H^+ .

• $F_{1r}(p \cdot e) := 1$ yields the candidate

$$u_1(p,e)(k) = e^{i\frac{k\cdot\left(e-\frac{e}{p-p}p\right)-\kappa}{2p\cdot e}}.$$

Two-particle scalar intertwiners

■ Similar result for the two-particle intertwiner u_2 :

Lemma

Let $u_2(p, \tilde{p})(k, \tilde{k})$ the function given in assumption 2, which is a solution of

$$D(R(A, p)) \otimes D(R(A, \tilde{p}))u_2(p\Lambda(A), \tilde{p}\Lambda(A)) = u_2(p, \tilde{p})$$

Then there is a L^2_{loc} -function F_2 : $\mathbb{R}^2 o \mathbb{C}$ such, that

$$u_{2}(p,\tilde{p})(k,\tilde{k}) = e^{-\mathrm{i}k \cdot \frac{1}{\bar{p} - \bar{p}\frac{p_{-}}{\bar{p}_{-}}} e^{-\mathrm{i}\tilde{k} \cdot \frac{1}{\bar{p} - \bar{p}\frac{\bar{p}_{-}}{\bar{p}_{-}}}}$$

$$F_{2}\left((k\tilde{k})^{-1} \left(p - \tilde{p}\frac{p_{-}}{\tilde{p}_{-}}\right) \left(\tilde{p} - p\frac{\tilde{p}_{-}}{p_{-}}\right)\right)$$

Extension of the characterization for u_2 to the coefficient functions u_{2c} , u_0 and u_{0c} :

Lemma

There are L_{loc}^2 -functions F_0 and F_{0c} , such that the following equations hold:

$$u_{2c}(p,\tilde{p})(k,\tilde{k}) = e^{+ik\cdot\frac{1}{\overline{p}-\overline{p}\frac{p_{-}}{\overline{p}_{-}}}} e^{+i\tilde{k}\cdot\frac{1}{\overline{p}-\overline{p}\frac{p_{-}}{\overline{p}_{-}}}} e^{+i\tilde{k}\cdot\frac{1}{\overline{p}-\overline{p}\frac{p_{-}}{\overline{p}_{-}}}} e^{-ik\cdot\frac{1}{\overline{p}-\overline{p}\frac{p_{-}}{\overline{p}_{-}}}} e^{+i\tilde{k}\cdot\frac{1}{\overline{p}-\overline{p}\frac{p_{-}}{\overline{p}_{-}}}} F_{0}(\ldots)$$

$$u_{0}(p,\tilde{p})(k,\tilde{k}) = e^{-ik\cdot\frac{1}{\overline{p}-\overline{p}\frac{p_{-}}{\overline{p}_{-}}}} e^{-i\tilde{k}\cdot\frac{1}{\overline{p}-\overline{p}\frac{p_{-}}{\overline{p}_{-}}}} F_{0c}(\ldots)$$

$$u_{0c}(p,\tilde{p})(k,\tilde{k}) = e^{+ik\cdot\frac{1}{\overline{p}-\overline{p}\frac{p_{-}}{\overline{p}_{-}}}} e^{-i\tilde{k}\cdot\frac{1}{\overline{p}-\overline{p}\frac{p_{-}}{\overline{p}_{-}}}} F_{0c}(\ldots)$$

Consider the function

$$\gamma(a) = \langle \phi, [B(g), \Phi(f_a, h)] \Omega \rangle$$
 , where $f_s := (\mathbf{1}, sn)_* f$

Proof strategy

- γ evaluates nontrivial matrix elements
- B tempered distribution⇒ pol. bounded
- rel. locality to $\Phi \Rightarrow$ half-sided support

- \blacksquare dist. FT of γ is \mathcal{S}' -BV of an analytic function
- incompatible with singularities in u_2, u_0, \dots

Consider the function

$$\gamma(a) = \langle \phi, [B(g), \Phi(f_a, h)] \Omega \rangle$$
, where $f_s := (1, sn)_* f$

Proof strategy:

- γ evaluates nontrivial matrix elements
- B tempered distribution ⇒ pol. bounded
- rel. locality to Φ ⇒ half-sided support

- **u** dist. FT of γ is S'-BV of an analytic function
- incompatible with singularities in $u_2, u_0, ...$

Consider the function

$$\gamma(a) = \langle \phi, [B(g), \Phi(f_a, h)] \Omega \rangle$$
, where $f_s := (1, sn)_* f$

Proof strategy:

- γ evaluates nontrivial matrix elements
- B tempered distribution ⇒ pol. bounded
- rel. locality to $\Phi \Rightarrow$ half-sided support

- dist. FT of γ is \mathcal{S}' -BV of an analytic function
- incompatible with singularities in u_2 , u_0 , ...

Lemma (regularity of γ)

The function γ has the following properties:

- **11 Support:** supp $\gamma \subseteq (-\infty, -b]$
- **2 Boundedness:** There are constants C, L > 0 and $N \in \mathbb{N}$, such that

$$|\gamma(a)| \leq C\left(\frac{1}{L}\chi_{[-L,0]-b}(a) + |a+b|^{N-1}\right) \ \forall a < -b.$$

3 Continuity: γ is a continuous function.

Lemma (holomorphic FT)

The holomorphic Fourier transform of a continuous polynomially bounded function $\gamma: \mathbb{R} \to \mathbb{C}$ with supp $\gamma \subseteq (-\infty, -b]$ for some b > 0, which is defined by

$$\hat{\gamma}(z) = \int \mathrm{d}a\,\mathrm{e}^{-\mathrm{i}za}\gamma(a)\;\forall\,z\in H^+,$$

where $H^+ := \{z \in \mathbb{C} : \Im(z) > 0\}$ is the upper half-plane, has the following properties:

- **1** Analyticity: $\hat{\gamma}$ is an analytic function on H^+ .

$$|\hat{\gamma}(z)| \le C \mathrm{e}^{-b\Im(z)} (1 + \Im(z)^{-N}) \ \forall z \in H^+$$

Lemma (holomorphic FT)

The holomorphic Fourier transform of a continuous polynomially bounded function $\gamma: \mathbb{R} \to \mathbb{C}$ with $\operatorname{supp} \gamma \subseteq (-\infty, -b]$ for some b>0, which is defined by

$$\hat{\gamma}(z) = \int \mathrm{d} a \, \mathrm{e}^{-\mathrm{i} z a} \gamma(a) \; \forall \, z \in H^+,$$

where $H^+:=\{z\in\mathbb{C}:\Im(z)>0\}$ is the upper half-plane, has the following properties:

- **1** Analyticity: $\hat{\gamma}$ is an analytic function on H^+ .
- **2** Boundedness: There are constants C > 0, $N \in \mathbb{N}$, such that

$$|\hat{\gamma}(z)| \le C \mathrm{e}^{-b\Im(z)} (1 + \Im(z)^{-N}) \ \forall \ z \in H^+$$

3 Distributional boundary value: ...

Lemma (holomorphic FT, part II)

3 Distributional boundary value: The sequence of distributions $\hat{\gamma}_t \in \mathcal{S}'(\mathbb{R})$, given by the restrictions of $\hat{\gamma}$ to horizontal lines of constant imaginary part t > 0,

$$\hat{\gamma}_t : \mathcal{S}(\mathbb{R}) \mapsto \mathbb{C}, \ arphi \mapsto \int \mathrm{d}s \, \gamma(s+\mathrm{i}t) arphi(s),$$

converges for $t \to 0$ to the distributional FT of γ ,

$$\hat{\gamma} \ : \ \mathcal{S}(\mathbb{R}) o \mathbb{C}, \ arphi \mapsto \int \mathrm{d} a \, \gamma(a) \hat{arphi}(a)$$
 with $\hat{arphi}(a) := \int \mathrm{d} s \, \mathrm{e}^{-\mathrm{i} s a} arphi(s)$ the FT on $\mathcal{S}(\mathbb{R})$,

in the sense of $\mathcal{S}'(\mathbb{R})$: $\lim_{t\to 0} \hat{\gamma}_t(\varphi) = \hat{\gamma}(\varphi) \ \forall \ \varphi \in \mathcal{S}(\mathbb{R})$

- \bullet $\gamma(a)$ can be stated in terms of functions of $p_- \in \mathbb{R}$
- $\Psi(p,k) := \hat{f}(p)\tilde{u}_1(p,h)(k)$ with

$$\widetilde{u}_1(p,h)(k) := \begin{cases} u_1(p,h)(k) & \text{for } p \in \partial V^+ \\ \overline{u_{1c}(-p,h)(k)} & \text{for } p \in \partial V^- \end{cases}$$

$$I(p, \tilde{p}, k, \tilde{k}) := e^{+ik \cdot \frac{1}{\bar{p} - \bar{p} \frac{p}{\bar{p} - \bar{p}}} e^{-i\tilde{k} \cdot \frac{1}{\bar{p} - \bar{p} \frac{p}{\bar{p} - \bar{p}}}} S(p, \tilde{p}, \psi) \text{ with}$$

$$S(p, \tilde{p}, \psi) := \Theta(p\tilde{p}) [\hat{g}(\tilde{p}, -p) F_0(2p\tilde{p}e^{i\psi}/\kappa^2) + \hat{g}(-p, \tilde{p}) F_{0c}(2p\tilde{p}e^{i\psi}/\kappa^2)] + \Theta(-p\tilde{p}) [\hat{g}(\tilde{p}, -p) F_2(2p\tilde{p}e^{i\psi}/\kappa^2) + \hat{g}(-p, \tilde{p}) F_2(2p\tilde{p}e^{i\psi}/\kappa^2)].$$

coordinate ψ is stable under $k, \tilde{k} \mapsto \lambda k, \lambda^{-1} \tilde{k}$ for $\lambda \in SO(2)$

Summary & Outlook

Relative Commutator

- ullet $\gamma(a)$ can be stated in terms of functions of $p_- \in \mathbb{R}$
- $\Psi(p,k) := \hat{f}(p)\tilde{u}_1(p,h)(k)$ with

$$\widetilde{u}_1(p,h)(k) := \begin{cases} u_1(p,h)(k) & \text{for } p \in \partial V^+ \\ \overline{u_{1c}(-p,h)(k)} & \text{for } p \in \partial V^- \end{cases}$$

$$I(p, \tilde{p}, k, \tilde{k}) := e^{+ik \cdot \frac{1}{\bar{p} - \bar{p}} \frac{1}{\bar{p} - \bar{p}}} e^{-i\bar{k} \cdot \frac{1}{\bar{p} - \bar{p}} \frac{1}{\bar{p} - \bar{p}}} S(p, \tilde{p}, \psi) \text{ with }$$

$$S(p, \tilde{p}, \psi) := \Theta(p\tilde{p}) [\hat{g}(\tilde{p}, -p) F_0(2p\tilde{p}e^{i\psi}/\kappa^2)$$

$$+ \hat{g}(-p, \tilde{p}) F_{0c}(2p\tilde{p}e^{i\psi}/\kappa^2)]$$

$$+\Theta(-p\tilde{p})[\hat{g}(\tilde{p},-p)F_2(2p\tilde{p}e^{i\psi}/\kappa^2)]$$

 $+\hat{g}(-p,\tilde{p})F_2(2p\tilde{p}e^{i\psi}/\kappa^2)],$

• coordinate ψ is stable under $k, \tilde{k} \mapsto \lambda k, \lambda^{-1} \tilde{k}$ for $\lambda \in SO(2)$

■ With abbreviation $q := (p, \tilde{p}, k, \tilde{k})$ (measure μ), one obtains

$$\gamma(a) = \int \frac{\mathrm{d}p_{-}}{p_{-}} \, \mathrm{e}^{\mathrm{i}p_{-}a/2} \int \mathrm{d}\mu(q) \overline{\phi(\tilde{p},\tilde{k})} \Psi(p,k) I(p,k,\tilde{p},\tilde{k})$$

- Singularities contained in I can be exposed: replacing ϕ and ψ by
 - $\phi_{\tilde{p}_0,\tilde{k}_0,\epsilon}(\tilde{p},\tilde{k}) := \frac{\chi_{B_\epsilon(\tilde{p}_0,\tilde{k}_0)}(\tilde{p},\tilde{k})}{\mu(B_\epsilon(\tilde{p}_0,\tilde{k}_0))}$

ightarrow valid choice for $\phi \in \mathcal{H}_1$

$$\Psi_{\mathsf{p}_0,k_0,\epsilon} := \hat{f}\left(p_-, \frac{|\mathsf{p}|^2}{p_-}\right) \delta_{\mathsf{p}_0,\epsilon}(\mathsf{p}) \delta_{k_0,\epsilon}(k)$$

- $\rightarrow \Psi$ is determined by $\Phi(f,h)$, limiting procedure necessary
- Resulting sequence of functions denoted by $(\gamma_{a_0,\epsilon})_{\epsilon>0}$

■ With abbreviation $q := (p, \tilde{p}, k, \tilde{k})$ (measure μ), one obtains

$$\gamma(\mathsf{a}) = \int \frac{\mathrm{d}p_{-}}{p_{-}} \, \mathrm{e}^{\mathrm{i}p_{-}\mathsf{a}/2} \int \mathrm{d}\mu(\mathsf{q}) \overline{\phi(\tilde{p},\tilde{k})} \Psi(p,k) I(p,k,\tilde{p},\tilde{k})$$

- Singularities contained in I can be exposed: replacing ϕ and ψ by
 - 1

$$\phi_{\tilde{p}_0,\tilde{k}_0,\epsilon}(\tilde{p},\tilde{k}) := \frac{\chi_{B_{\epsilon}(\tilde{p}_0,\tilde{k}_0)}(\tilde{p},k)}{\mu(B_{\epsilon}(\tilde{p}_0,\tilde{k}_0))}$$

ightarrow valid choice for $\phi \in \mathcal{H}_1$

2

$$\Psi_{\mathsf{p}_0,k_0,\epsilon} := \hat{f}\left(\mathsf{p}_-,\frac{|\mathsf{p}|^2}{\mathsf{p}_-}\right)\delta_{\mathsf{p}_0,\epsilon}(\mathsf{p})\delta_{k_0,\epsilon}(k)$$

- $\rightarrow \Psi$ is determined by $\Phi(f, h)$, limiting procedure necessary.
- Resulting sequence of functions denoted by $(\gamma_{q_0,\epsilon})_{\epsilon>0}$.

■ With abbreviation $q := (p, \tilde{p}, k, \tilde{k})$ (measure μ), one obtains

$$\gamma(\mathsf{a}) = \int \frac{\mathrm{d}p_{-}}{p_{-}} \, \mathrm{e}^{\mathrm{i}p_{-}\mathsf{a}/2} \int \mathrm{d}\mu(\mathsf{q}) \overline{\phi(\tilde{p},\tilde{k})} \Psi(p,k) I(p,k,\tilde{p},\tilde{k})$$

- Singularities contained in I can be exposed: replacing ϕ and ψ by
 - 1

$$\phi_{\tilde{p}_0,\tilde{k}_0,\epsilon}(\tilde{p},\tilde{k}) := \frac{\chi_{B_{\epsilon}(\tilde{p}_0,\tilde{k}_0)}(\tilde{p},k)}{\mu(B_{\epsilon}(\tilde{p}_0,\tilde{k}_0))}$$

ightarrow valid choice for $\phi \in \mathcal{H}_1$

2

$$\Psi_{\mathsf{p}_0,k_0,\epsilon} := \hat{f}\left(\mathsf{p}_-,\frac{|\mathsf{p}|^2}{\mathsf{p}_-}\right)\delta_{\mathsf{p}_0,\epsilon}(\mathsf{p})\delta_{k_0,\epsilon}(k)$$

- $\rightarrow \Psi$ is determined by $\Phi(f, h)$, limiting procedure necessary.
- Resulting sequence of functions denoted by $(\gamma_{q_0,\epsilon})_{\epsilon>0}$.

Restriction of the Integrals

Let $p_0 \in \mathbb{R}^2$, $k_0 \in \kappa S^1$ such, that $p_0 \not\parallel k_0$. For $\epsilon > 0$, consider the function

$$\Psi_{p_0,k_0,\epsilon}\,:\,\partial V\times\kappa S^1\to\mathbb{C}\,,\,(p,k)\mapsto\hat f\left(p_-,\frac{|p|^2}{p_-}\right)\delta_{p_0,\epsilon}(\mathbf{p})\delta_{k_0,\epsilon}(k).$$

$$\left(\left(f_{\epsilon,N}^{i},h_{\epsilon,N}^{i}\right)\in\mathcal{S}(\mathbb{M})\times\mathcal{D}(H),\ i=1,...,M_{\epsilon,N}\right)_{N\in\mathbb{N}}$$

$$\operatorname{supp} f_{\epsilon,N}^i \subset W, \operatorname{supp} h_{\epsilon,N}^i \subset W \cap H \ \forall \ i=1,...,M_{\epsilon,N}, N \in \mathbb{N},$$

$$\int \frac{\mathrm{d}p_{-}}{|p_{-}|} \mathrm{d}^{2} \mathrm{p} \int \mathrm{d}\nu(k) \left| \sum_{i=1}^{M_{\epsilon,N}} \hat{f}_{\epsilon,N}^{i}(p) \tilde{u}_{1}(p,h_{\epsilon,N}^{i})(k) - c(\mathrm{p},k) \Psi_{\mathrm{p}_{0},k_{0},\epsilon}(p,k) \right|^{2}$$
 converges to 0. The function c is has the property $c(\mathrm{p},k_{0}) = 1$.

Let $p_0 \in \mathbb{R}^2$, $k_0 \in \kappa S^1$ such, that $p_0 \not \mid k_0$. For $\epsilon > 0$, consider the function

$$\Psi_{\mathsf{p}_0,k_0,\epsilon}\,:\,\partial V imes\kappa S^1 o\mathbb{C}\,,\,(p,k)\mapsto \hat{f}\left(p_-,rac{|\mathsf{p}|^2}{p_-}
ight)\delta_{\mathsf{p}_0,\epsilon}(\mathsf{p})\delta_{k_0,\epsilon}(k).$$

There is a sequence of sets of finitely many functions

$$\left((f_{\epsilon,N}^i,h_{\epsilon,N}^i)\in\mathcal{S}(\mathbb{M})\times\mathcal{D}(H),\ i=1,...,M_{\epsilon,N}\right)_{N\in\mathbb{N}}$$

which conserve the support properties of $\Phi(f, h)$, i.e.

$$\operatorname{supp} f_{\epsilon,N}^i \subset W, \operatorname{supp} h_{\epsilon,N}^i \subset W \cap H \ \forall i = 1,...,M_{\epsilon,N}, N \in \mathbb{N},$$

which converge to $\Psi_{p_0,k_0,\epsilon}$ in the sense of L^2 up to a continuous function c(p, k):

$$\int \frac{\mathrm{d}p_{-}}{|p_{-}|} \mathrm{d}^{2}\mathrm{p} \int \mathrm{d}\nu(k) \left| \sum_{i=1}^{M_{\epsilon,N}} \hat{f}_{\epsilon,N}^{i}(p) \tilde{u}_{1}(p,h_{\epsilon,N}^{i})(k) - c(\mathsf{p},k) \Psi_{\mathsf{p}_{0},k_{0},\epsilon}(p,k) \right|^{2}$$
 converges to 0. The function c is has the property $c(\mathsf{p},k_{0}) = 1$.

LQP36

■ The analyticity of each $\hat{\gamma}_{q_0,\epsilon}$ is preserved in the limit $\epsilon \to 0$:

Lemma (compact convergence)

The set of sequences of functions

$$\hat{\gamma}_{q_0,\epsilon} \ : \ \mathcal{H}^+ o \mathbb{C}$$
, $z \mapsto \int \mathrm{d} a \, \mathrm{e}^{-\mathrm{i} z a} \gamma_{q_0,\epsilon}(a)$

has the following property: For $\mu\text{-almost}$ all q_0 \exists analytic function $\hat{\gamma}_{q_0}$ on H^+ such, that

$$\lim_{\epsilon \to 0} \hat{\gamma}_{q_0,\epsilon}(z) = \hat{\gamma}_{q_0}(z) \ \forall \ z \in H^+$$

in the sense of compact convergence.

Consider the difference $\hat{\gamma}(z) := \hat{\gamma}_{q_1}(z) - P(z, q_1, q_0) \hat{\gamma}_{q_0}(z)$, with $q_0 \mapsto q_1$ by $(k_0, \tilde{k}_0) \mapsto (\lambda k_0, \lambda^{-1} \tilde{k}_0)$, P relative phase

Lemma (Uniform convergence)

Let $(\gamma_{\epsilon})_{\epsilon>0}$ a sequence of analytic functions on H^+ with the following properties:

- $\begin{array}{|l|l|} \hline & \lim_{\epsilon \to 0} \gamma_\epsilon = \gamma \\ \hline & \text{exists in the sense of compact convergence,} \\ \hline & \text{with } \gamma \text{ an analytic function on } H^+. \\ \hline & \text{The sequence fulfils the uniform bound} \\ & |\gamma_\epsilon(z)| < C\Im(z)^{-1}\,\forall z \in H^+, \epsilon > 0 \text{ for some } C > 0. \\ \hline \end{array}$
- 2 For $\epsilon>0$, the (boundary-) $\lim_{t\searrow 0}\gamma_{\epsilon}(\cdot+\mathrm{i} t)=g_{\epsilon}$ exists and is given by a function $g_{\epsilon}\in L^1(\mathbb{R})$, where convergence is understood in the weak-* topology.
- **3** The corresponding sequence of boundary functions $(g_{\epsilon})_{\epsilon>0}$ fulfils $\lim_{\epsilon\to 0} g_{\epsilon} = 0$ in $L^1(\mathbb{R})$.

. . .

Introduction

Lemma (Uniform convergence, part II)

$$\gamma_{\epsilon}(\cdot + \mathrm{i} t) \xrightarrow{t \searrow 0, \; \mathsf{weak-*}} g_{\epsilon}$$
 $\epsilon \to 0 \Big| + \mathsf{uniform \; bound} \qquad \epsilon \to 0 \Big| L^1$
 $\gamma(\cdot + \mathrm{i} t) \xrightarrow{t \searrow 0, \; \mathsf{weak-*}} 0$

- Then $\gamma = 0$ on all of H^+ . (using [SW '64, Thm. 2-17])
- $\Rightarrow \hat{\gamma}_{q_1}$ has a singularity, which is a contradiction!

- 4 Limit of Representations
 - Reference Momenta & Little Groups
 - Little Group Representations
 - Construction of Intertwiners

Pauli-Lubanski spin-vector

$$S^{\mu}=rac{1}{2}\epsilon^{\mu
u\lambda\kappa}M_{
u\lambda}P_{\kappa}$$

 $M_{\nu\lambda}$: Lie-Algebra of generators of $\mathcal{L}_{\perp}^{\uparrow}$

- m > 0 interpretation: "angular momentum" in particle's rest
- $S^2 = S^{\mu}_{\mu}$ defines another Casimir operator.

Pauli-Lubanski spin-vector

$$S^{\mu} = \frac{1}{2} \epsilon^{\mu\nu\lambda\kappa} M_{\nu\lambda} P_{\kappa}$$

 $M_{\nu\lambda}$: Lie-Algebra of generators of \mathcal{L}_+^{\uparrow}

- m > 0 interpretation: "angular momentum" in particle's rest frame
- $S^2 = S^{\mu}_{\ \mu}$ defines another Casimir operator.

Reference Momenta & Little Groups

Comparison of the massive and massless case

Important distinction between massive and massless case:

- Construction of the previous objects is usually done separately for m > 0 and m = 0.
- Fundamentally different properties in the case $m = 0, \kappa > 0$
- How do these difficulties arise in the limit $\kappa = \text{const.}, m \to 0$?
- Idea: Comparison between massive and massless fields is simplified, if construction is unified.

Comparison of the massive and massless case

Important distinction between massive and massless case:

- Construction of the previous objects is usually done separately for m > 0 and m = 0.
- Fundamentally different properties in the case $m = 0, \kappa > 0$
- How do these difficulties arise in the limit $\kappa = \text{const.}$, $m \to 0$?
- Idea: Comparison between massive and massless fields is simplified, if construction is unified.

m-parametrized approach

■ Reference momentum q_m is given by

with q_{m-} independent of m.

Usual choice for q is (m, 0), switching between conventions amounts to the Lorentz transform:

$$B_m:=\left(egin{array}{cc} \sqrt{m} & & \\ & \sqrt{m}^{-1} \end{array}
ight)$$
 , since $q_m\Lambda(B_m)=(m,\vec{0})$.

m-parametrized approach

■ Reference momentum q_m is given by

with q_{m-} independent of m.

■ Usual choice for q is $(m, \vec{0})$, switching between conventions amounts to the Lorentz transform:

$$B_m:=\left(egin{array}{cc} \sqrt{m} & \ & \sqrt{m}^{-1} \end{array}
ight)$$
 , since $q_m\Lambda(B_m)=(m,ec{0}).$

m-dependence of Wigner rotations

- Massless form of the Wigner boost B_p is still valid for all m, $q_m \Lambda(B_p) = p \ \forall \ p \in H_m^+$, result depends on m only via q_m .
- Wigner rotation in *m*-parametrized form:

$$R = \underbrace{B_p A}_{p \wedge (A)} B_{p \wedge (A)}^{-1} = C B_{q_m \wedge (C)}^{-1}, C =: \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

$$R = \frac{1}{\sqrt{|a|^2 + m^2|c|^2}} \begin{pmatrix} a & -m^2 \overline{c} \\ c & \overline{a} \end{pmatrix} \begin{cases} \in SU(2) & m = 1 \\ \in \widetilde{E(2)} & m = 0 \end{cases}$$

m-dependence of Wigner rotations

- Massless form of the Wigner boost B_p is still valid for all m, $q_m \Lambda(B_p) = p \ \forall \ p \in H_m^+$, result depends on m only via q_m .
- Wigner rotation in *m*-parametrized form:

$$R = \underbrace{B_p A}_{=:C} B_{p\Lambda(A)}^{-1} = C B_{q_m \Lambda(C)}^{-1}, C =: \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

with *C* independent of *m*. Explicit form:

$$R = \frac{1}{\sqrt{|a|^2 + m^2|c|^2}} \begin{pmatrix} a & -m^2 \overline{c} \\ c & \overline{a} \end{pmatrix} \begin{cases} \in \mathrm{SU}(2) & m = 1 \\ \in \widetilde{E(2)} & m = 0 \end{cases}$$

Reference Momenta & Little Groups

Special cases

For m = 1, $G_1 = SU(2)$, there is a correspondence between R rotating the sphere and R acting as **Möbius transform** on the complex plane - stereographic projection.

$$[D(R)f](z) = f(R^{-1}.z)$$
 where $\begin{pmatrix} a & b \\ c & d \end{pmatrix} .z = \frac{az+c}{bz+d}$

■ For m = 0, $G_0 = E(2)$, the Möbius transforms become rotations/shifts on the plane.

Special cases

■ For m = 1, $G_1 = SU(2)$, there is a correspondence between R rotating the sphere and R acting as **Möbius transform** on the complex plane - stereographic projection.

$$[D(R)f](z) = f(R^{-1}.z)$$
 where $\begin{pmatrix} a & b \\ c & d \end{pmatrix} .z = \frac{az+c}{bz+d}$

■ For m = 0, $G_0 = E(2)$, the Möbius transforms become rotations/shifts on the plane.

■ Stereographic projection: identification between $z \in \mathbb{C}$ and $\vec{n} \in S^2$ given by

$$n_3 = \frac{d^2 - |z|^2}{d^2 + |z|^2}, \ n_1 + in_2 = \frac{2zd}{d^2 + |z|^2}$$

 \blacksquare R corresponding to the usual choice $(m, \vec{0})$ can be obtained by

$$R_m := B_m^{-1} R B_m = \frac{1}{\sqrt{|a|^2 + m^2 |c|^2}} \begin{pmatrix} a & -m\overline{c} \\ mc & \overline{a} \end{pmatrix} \in SU(2)$$

$$R_m \vec{n}(z) = \vec{n}(R.z)$$

■ Stereographic projection: identification between $z \in \mathbb{C}$ and $\vec{n} \in S^2$ given by

$$n_3 = \frac{d^2 - |z|^2}{d^2 + |z|^2}, \ n_1 + in_2 = \frac{2zd}{d^2 + |z|^2}$$

■ R corresponding to the usual choice $(m, \vec{0})$ can be obtained by conjugation with B_m :

$$R_m := B_m^{-1} R B_m = rac{1}{\sqrt{|a|^2 + m^2 |c|^2}} \left(egin{array}{cc} a & -m\overline{c} \\ mc & \overline{a} \end{array}
ight) \in \mathrm{SU}(2)$$

• Compatible with stereographic projection if md = 1:

$$R_m \vec{n}(z) = \vec{n}(R.z)$$

Little Group Representations

Representation spaces \mathbb{C}^{2l+1} of SU(2) are spanned by spherical harmonics $Y_h^l(\vec{n}(z)) = e^{iharg z} P_h^l(n_3(z))$ with

$$\left(\frac{\mathrm{d}}{\mathrm{d} n_3}(1-n_3^2)\frac{\mathrm{d}}{\mathrm{d} n_3} + I(I+1) - \frac{h^2}{1-n_3^2}\right)P_h^I(n_3) = 0.$$

(Legendre polynomials)

Stereographic projection transforms the equation into

$$\left(\left(|z|\frac{\mathrm{d}}{\mathrm{d}|z|}\right)^2 + \frac{\kappa^2|z|^2}{\left(1 + \left(\frac{|z|}{d}\right)^2\right)^2} - h^2\right) P_h^I(n_3(|z|)) = 0,$$

with $\kappa^2 := 4I(I+1)/d^2$.

■ Solutions $J_h(\kappa|z|)$ in the limit $d \to \infty$, $\kappa = \text{const}$ span representation spaces $L^2(\kappa S^1)$ of E(2): (Bessel functions) • Once m is chosen, one can construct the following parametrization of Γ_{q_m} :

$$\xi_d: \mathbb{R}^2 \to \Gamma_q, \ [\xi_d(z)] = \frac{d^2}{d^2 + |z|^2} \left(\begin{array}{cc} |z|^2 & \overline{z} \\ z & 1 \end{array} \right)$$

Crucial property: $\xi_d(R.z) = \xi_d(z)\Lambda(R)$

■ Parametrization can also be given in terms of the usual choice for m = 1:

$$[\xi(z)] = (B_m^{-1})^{\dagger} (\mathbf{1} + \vec{\sigma} \cdot \vec{n}) B_m^{-1}$$

Intuition: Lorentz-boosted "celestial sphere"

 Once m is chosen, one can construct the following parametrization of Γ_{a_m} :

$$\xi_d: \mathbb{R}^2 \to \Gamma_q, \ [\xi_d(z)] = \frac{d^2}{d^2 + |z|^2} \left(\begin{array}{cc} |z|^2 & \overline{z} \\ z & 1 \end{array} \right)$$

Crucial property: $\xi_d(R.z) = \xi_d(z)\Lambda(R)$

Parametrization can also be given in terms of the usual choice

$$[\xi(z)] = (B_m^{-1})^{\dagger} (\mathbf{1} + \vec{\sigma} \cdot \vec{n}) B_m^{-1}$$

• Once m is chosen, one can construct the following parametrization of Γ_{q_m} :

$$\xi_d: \mathbb{R}^2 \to \Gamma_q, \ [\xi_d(z)] = \frac{d^2}{d^2 + |z|^2} \left(\begin{array}{cc} |z|^2 & \overline{z} \\ z & 1 \end{array} \right)$$

Crucial property: $\xi_d(R.z) = \xi_d(z)\Lambda(R)$

Parametrization can also be given in terms of the usual choice for m = 1:

$$[\xi(z)] = (B_m^{-1})^{\dagger} (\mathbf{1} + \vec{\sigma} \cdot \vec{n}) B_m^{-1}$$

Intuition: Lorentz-boosted "celestial sphere"

Construction of Intertwiners

Parametrization of string-localized intertwiners

■ Therefore, the intertwiner $u: H_m^+ \times H \to \mathcal{H}_q$ defined by

$$u(p,e)(h):=\int \mathrm{d}^2z\,\left(\frac{d^2}{d^2+|z|^2}\right)^2Y_h^I(\vec{n}(z))\,F(\xi_d(z)\Lambda(B_p)e),$$

where F is a numerical function, inherits the desired covariance properties from Y_h^I .

■ Infinite spin limit: $(d, l \to \infty, m \to 0, \kappa \text{ fixed})$

$$u(p, e)(h) = \int d^2z \, e^{iharg z} J_h(\kappa|z|) F(\xi(z) \Lambda(B_p) e)$$
$$= \frac{i^n}{2\pi} \int d\varphi \, e^{ih\varphi} \int d^2z \, e^{ik(\varphi) \cdot z} F(\xi(z) \Lambda(B_p) e)$$

$$k(\varphi) := \kappa(\cos\varphi, \sin\varphi)$$

- 5 Summary & Outlook
 - Current form of the No-Go Theorem
 - Characterization of Standard Subspaces
 - Towards weaker Regularity Assumptions

Summary

- Infinite spin representations are known to imply weaker localization properties.
- Known quantum fields are localized in semiinfinite strings/cones.
- Compact (modular) localization is possible for two-particle wavefunctions.
- → Corresponding nontrivial operators do not exist.
- Result is based on the incompatibility between the analyticity of the relative commutator versus the singularities arising from the infinite spin covariance.

- First requirement to be weakened is that u_2 is an intertwiner.
- Any different class \tilde{B} of operators localized in \mathcal{O} has to generate vectors $B\Omega \in K(\mathcal{O})$.
- Can these be fundamentally different from the mentioned vectors $B(f)\Omega$?

Characterization of modular subspaces [Lechner, Longo '14]

In the one-particle Hilbert space of a 1d massless chiral/2d massive particle, modular subspaces corresponding to intervals/double cones can be characterized by the support of the inverse FT/momentum space analyticity.

- Application to present context needs several generalizations:
 - d > 2 requires intersection of infinitely many wedges.
 - behaviour of non-scalar representations
 - *n*-particle subspaces for $\mathcal{O} \subseteq W$ are not necessarily tensor products of the one-particle subspaces.

Limit of Representations

- L_{loc}^2 integrability of u_2 , u_{2c} , u_0 , u_{0c} is a technical assumption
- Idea: Apply the Schwartz Kernel Theorem and study B(g) in terms of a distributional integral kernel
- \blacksquare Restrict distribution to cones using approximation technique for ψ
- cone-localized distributions can be understood as derivatives of continuous functions

References

On Unitary Representations of the Inhomogenous Lorentz Group

Ann. of Math., 40:149-204, 1939

Valentine Bargmann, Eugene Paul Wigner '47 Group Theoretical Discussion of Relativistic Wave Equations PNAS. 34:211-223, 1948

Geoffrey J. Iverson, Gerhard Mack '70

Quantum Fields and Interactions of Massless Particles: the Continuous Spin Case

Ann. of Phys., 1:211-253, 1971

Larry F. Abbott '75

Massless particles with continuous spin indices

Phys. Rev. D (Particles and Fields), 13:2291-2294, 1976

Jakob Yngvason '69

Zero-Mass Infinite Spin Representations of the Poincaré Group and Quantum Field Theory

Commun. math. Phys. 18, 195-203 (1970)

Jakob Yngvason, Jens Mund, Bert Schroer '06 String-localized Quantum Fields and Modular Localization

Commun. Math. Phys. 268, 621-672 (2006)

- ▶ Jakob Yngvason, Jens Mund, Bert Schroer '04 String-localized quantum fields from Wigner representations Phys. Lett. B 596(1-2), 156-162 (2004)
- Bert Schroer '08
 Indecomposable semiinfinite string-localized positive energy matter and "darkness"

 arXiv:0802.2098v4 [hep-th]

References

- Gandalf Lechner, Roberto Longo '14 Localization in Nets of Standard Spaces Commun. Math. Phys. Nov 2014, 1-35 (2014)
- Roberto Longo, Vincenzo Morinelli, Karl-Henning Rehren '15 Where Infinite Spin Particles Are Localizable arXiv:1505.01759 [math-ph]