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Introduction Compact Localization No-Go Theorem Limit of Representations Summary & Outlook

Infinite Spin Representations

Minkowski space & Poincaré group

Minkowski space M := (R4, η), η = diag(1,−1,−1,−1)

lightcone coordinates x± := x0 ± x3, x := x1 + ix2

matrix form of x , p ∈M (σ0 := 1, σi : Pauli matrices)

x˜ :=

(
x+ x
x x−

)
= σµx

µ, p̃ :=

(
p− −p
−p p+

)
⇒ px =

1

2
Tr p̃x˜

Poincaré group (unit component) P↑+ = SO(1, 3) nM

covering group Pc = SU(2) nM Λ→ P↑+

(Λ(A)x)˜:= Ax˜A†, (pΛ(A))̃ = A†p̃A

irreducible representations on one-particle Hilbert space H1 →
C. Köhler Localization of QFTs with Infinite Spin 2015-05-29 LQP36 4
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Minkowski space M := (R4, η), η = diag(1,−1,−1,−1)

lightcone coordinates x± := x0 ± x3, x := x1 + ix2

matrix form of x , p ∈M (σ0 := 1, σi : Pauli matrices)

x˜ :=

(
x+ x
x x−

)
= σµx

µ, p̃ :=

(
p− −p
−p p+

)
⇒ px =

1

2
Tr p̃x˜
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Infinite Spin Representations

Irreducible representations: Translation operators

U(a) = eiPa, momentum operator P

representation property U(A)U(a)U(A)† = U(Λ(A)a)

⇒ U(A)PU(A)† = pΛ(A)⇒ spP is Lorentz-invariant

Casimir operator P2 = m21 (Schur’s Lemma)

positive energy representations: (P0 > 0)

m > 0: upper mass-shell

H+
m = {p ∈M : p2 = m2, p0 > 0}

m = 0: boundary of the
forward light cone

∂V+ = {p ∈M : p+p− = p2, p0 > 0}
p3

p0

p+p−
∂V+

V+

H+
m
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C. Köhler Localization of QFTs with Infinite Spin 2015-05-29 LQP36 5



Introduction Compact Localization No-Go Theorem Limit of Representations Summary & Outlook

Infinite Spin Representations

Irreducible representations: Translation operators

U(a) = eiPa, momentum operator P

representation property U(A)U(a)U(A)† = U(Λ(A)a)

⇒ U(A)PU(A)† = pΛ(A)⇒ spP is Lorentz-invariant

Casimir operator P2 = m21 (Schur’s Lemma)

positive energy representations: (P0 > 0)

m > 0: upper mass-shell

H+
m = {p ∈M : p2 = m2, p0 > 0}

m = 0: boundary of the
forward light cone

∂V+ = {p ∈M : p+p− = p2, p0 > 0}
p3

p0

p+p−
∂V+

V+

H+
m
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Infinite Spin Representations

Irreducible representations: Little group construction

choose reference momentum q ∈ spP
little group Gq := stab q = {R ∈ SL(2,C) : qΛ(R) = q}
representation D on Hilbert space Hq

m > 0: massive representations
qm := (m,~0) ∈ H+

m (rest frame)
stab qm = SU(2)
D: spin s representation, Hqm = C2s+1

m = 0: massless representations
q0 := ( 1

2 ,
1
2
~e3) ∈ ∂V+

stab q0 = Ẽ (2)
λ→ E (2) (covering of 2d Euclidean group)

Ẽ (2) =
{

[ϕ, a] ∈ SL(2,C) : ϕ ∈ R, a ∈ R2
}

[ϕ, a] =

(
eiϕ

a e−iϕ

)
D[([ϕ, a])v ](k) = e−ik·av(kλ(ϕ)) ∀ v ∈ Hq0 := L2(κS1)
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C. Köhler Localization of QFTs with Infinite Spin 2015-05-29 LQP36 6



Introduction Compact Localization No-Go Theorem Limit of Representations Summary & Outlook

Infinite Spin Representations

Irreducible representations: Little group construction

choose reference momentum q ∈ spP
little group Gq := stab q = {R ∈ SL(2,C) : qΛ(R) = q}
representation D on Hilbert space Hq

m > 0: massive representations
qm := (m,~0) ∈ H+

m (rest frame)
stab qm = SU(2)
D: spin s representation, Hqm = C2s+1

m = 0: massless representations
q0 := ( 1

2 ,
1
2
~e3) ∈ ∂V+

stab q0 = Ẽ (2)
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Infinite Spin Representations

Irreducible representations: One-particle space

Wigner boost Bp with qΛ(Bp) = p:

Bp :=


√

p̃
m m > 0

1√
p−

(
p− p

1

)
m = 0

Wigner rotation R(A, p) = BpAB
−1
pΛ(A) ∈ stab q

representation of SL(2,C) on H1 := L2(spP)⊗Hq

[U1(A, a)ψ](p) = eipaD(R(A, p))ψ(pΛ(A))
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C. Köhler Localization of QFTs with Infinite Spin 2015-05-29 LQP36 7



Introduction Compact Localization No-Go Theorem Limit of Representations Summary & Outlook

Modular Localization

Tomita operator for wedges

Standard wedge W0 := {x ∈M : ±x± > 0}
∆it := U1(e−πσ3t) subgroup of boosts preserving W0

reflection (RW0x)± = −x±, J := U(RW0) complex conjugation

Tomita operator SW0 := J∆
1
2

(domain restricted by required analytic continuation)

real subspace for the standard wedge

K1(W0) := {ψ ∈ dom∆
1
2 : SW0ψ = ψ}

extension to arbitrary wedges by covariance:

K1(W ) := U1(A, a)K1(W0) for W = Λ(A)W0 + x

C. Köhler Localization of QFTs with Infinite Spin 2015-05-29 LQP36 8
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C. Köhler Localization of QFTs with Infinite Spin 2015-05-29 LQP36 8



Introduction Compact Localization No-Go Theorem Limit of Representations Summary & Outlook

Modular Localization

Tomita operator for wedges

Standard wedge W0 := {x ∈M : ±x± > 0}
∆it := U1(e−πσ3t) subgroup of boosts preserving W0

reflection (RW0x)± = −x±, J := U(RW0) complex conjugation

Tomita operator SW0 := J∆
1
2

(domain restricted by required analytic continuation)

real subspace for the standard wedge

K1(W0) := {ψ ∈ dom∆
1
2 : SW0ψ = ψ}

extension to arbitrary wedges by covariance:

K1(W ) := U1(A, a)K1(W0) for W = Λ(A)W0 + x
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Modular Localization

Real subspaces for arbitrary regions

subspace for O ⊂M

K(O) :=
⋂

W⊃O wedge

K(W )

real subspace K ⊂ H1 is standard iff

K ∩ iK = 0 (separating)

K + iK = H (cyclic)

Õ ⊂ O′ := {x̃ ∈M : (x̃ − x)2 < 0 ∀ x ∈ O}
⇒ K(Õ)⊥K(O) wrt. = ◦ 〈·, ·〉

K(C ) is standard for C ⊂M a spacelike cone
[Brunetti, Guido, Longo ’02]
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String-Localized Fields

Definition

Let H(c) = {e ∈M(c)|e2 = −1} the manifold of spacelike
directions.

u : H+
m/∂V

+ × H → Hq

is called an intertwiner, if

D(R(A, p))u(pΛ(A), e) = u(p,Λ(A)e) (intertwiner eq)

L2
loc & pol. bounded in p, analytic for e ∈ Hc with =(e) ∈ V+

and bounded by an inverse power at the boundary:

||u(p, e)||Hq ≤ M(p)|=(e)|−N with M pol.,N ∈ N

Two ways of constructing intertwiners:

1 pullback representation on Gq-orbits
[Mund, Schroer, Yngvason ’06]

2 characterization using the intertwiner equation
C. Köhler Localization of QFTs with Infinite Spin 2015-05-29 LQP36 10
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||u(p, e)||Hq ≤ M(p)|=(e)|−N with M pol.,N ∈ N

Two ways of constructing intertwiners:

1 pullback representation on Gq-orbits
[Mund, Schroer, Yngvason ’06]

2 characterization using the intertwiner equation
C. Köhler Localization of QFTs with Infinite Spin 2015-05-29 LQP36 10
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String-Localized Fields

String-localized one-particle states

conjugate intertwiner: uc(p, h) := Ju(−pRW0 , (RW0)∗h)

u has distributional boundary value in e.

Single particle vectors ψ(c)(f , h) ∈ H1 are defined by

ψ(c)(f , h)(p) = f̃ (p)u(c)(p, h) for f ∈ S(M),D(H).

~x

x0

supp f

~e

e0

H

supp h

R+supp h

covariance under Pc :

U((Λ(A), a))ψ(c)(f , e) = ψ(c)((Λ(A), a)∗f ,Λ(A)∗e)
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String-Localized Fields

One-particle vectors are localized in spacelike truncated cones

ψ(f , h) + ψc(f , h) ∈ K1(supp f + R+supp h)

~x

x0

supp f + R+supp h

Bosonic Fock space H :=
⊕∞

n=0 Sym(H⊗n1 ), H0 = CΩ

CCR:

[a(ϕ), a†(ψ)] = 〈ϕ,ψ〉H11, [a(ϕ), a(ψ)] = [a†(ϕ), a†(ψ)] = 0
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String-Localized Fields

Field operators are defined by

Φ(f , h) =

∫
d̃p
(
f̂ (p)u(p, h) ◦ a†(p) + f̂ (−p)uc(p, h) ◦ a(p)

)
for f ∈ S(M), h ∈ D(H). (◦: scalar product in Hq)
cov. U(A, a)Φ(f , h)U†(A, a) = Φ((Λ(A), a)∗f ),Λ(A)∗h) and
PCT U(j0)Φ(f , h)U†(j0) = Φ((j0)∗f , (j0)∗h)† lead to

String-localization:

[Φ(f , h),Φ(f ′, h′)†] = 0

if supp f + R+supp h
and supp f ′ + R+supp h′

are spacelike separated.

construction possible for all
positive energy representations

W

W ′

~x

x0

supp f + R+supp h

supp f ′ + R+supph′

C. Köhler Localization of QFTs with Infinite Spin 2015-05-29 LQP36 13
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Two-Particle States

Dependency on semi-infinite string-direction is intrinsic for
infinite spin-case → No-Go Thm.
[Yngvason ’70] [Longo, Morinelli, Rehren ’15]

Construction of two-particle intertwiners [MSY ’06]

Let F ∈ S(R) and define u2 : (∂V+)×2 → H⊗2
q by

u2(p, p̃)(k , k̃) :=

∫
d2z eikz

∫
d2z̃ eik̃ z̃F (A(p, p̃, z , z̃)),

where A(p, p̃, z , z̃) := ξ(z)Λ(BpB
−1
p̃ )ξ(z̃)

and ξ is a parametrization of stab q.

u2 fulfils the two-particle intertwiner equation

D(R(A, p))⊗ D(R(A, p̃))u2(pΛ(A), p̃Λ(A)) = u2(p, p̃).

C. Köhler Localization of QFTs with Infinite Spin 2015-05-29 LQP36 15
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Two-Particle States

Localized two-particle wavefunctions (cf. MSY ’06, )

Let O ⊂M compact and g ∈ S(M×2) real-valued with
supp g ⊂ O×2. If u2 ∈ L2

loc ⊗H⊗2 is polynomially bounded, i.e.

||u2(p, p̃)||H⊗2
q
≤ M(p, p̃)

with M a polynomial, then the function

ψ(p, k , p̃, k̃) := g̃(p, p̃)u2(p, p̃)(k , k̃)

is modular localized in O, which means

ψ ∈ K2(O)

with the two-particle subspace K2 defined via second quantization
of the operators SW .
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Candidates for Two-Particle Observables

Proposed construction of two-particle observables [MSY ’06]

Candidate observables are of the form

B(g) :=

∫
d̃p

∫
dν(k)

∫
d̃p̃

∫
dν(k̃) ĝ(p, p̃)u2(p, p̃)(k , k̃)

a†(p, k)a†(p̃, k̃) + . . .

such that B(g)Ω ∈ H2 is a two-particle wavefunction given by

(p, p̃, k, k̃) 7→ ĝ(p, p̃)u2(p, p̃)(k , k̃).

Locality in the vacuum expectation value

〈Ω, [B(g),B(g̃)]Ω〉 = 0

if (x − x ′)2 < 0 ∀x ∈ suppg , x ′ ∈ suppg̃ .

Relative locality wrt. string-field Φ(f , h)?

C. Köhler Localization of QFTs with Infinite Spin 2015-05-29 LQP36 17
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1 Introduction

2 Compact Localization

3 No-Go Theorem
Assumptions & Statement
Characterization of Intertwiners
Relative Commutator
Restriction of the Integrals
Analysis of Singularities

4 Limit of Representations

5 Summary & Outlook
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Assumptions & Statement

Q: Existence of nontriv. operators with compact localization?
→Negative result for the following class of operators on F ,
motivated by the suggestions in [YMS ’06], [Schroer ’08].

Definition

An operator-valued distribution B on S(M×2) of the form

B(g) =

∫
d̃p

∫
d̃p̃

∫
dν(k)

∫
dν(k̃)

ĝ(p, p̃)u2(p, p̃)(k, k̃)a†(p, k)a†(p̃, k̃)

+ĝ(−p,−p̃)u2c(p, p̃)(k , k̃)a(p, k)a(p̃, k̃)

+ĝ(p,−p̃)u0(p, p̃)(k , k̃)a†(p, k)a(p̃, k̃)

+ĝ(−p, p̃)u0c(p, p̃)(k , k̃)a†(p̃, k̃)a(p, k)

with fixed coefficient functions u2, u2c , u0, u0c is called a
Two-particle observable if... [cf. Streater, Wightman ’64, chap. 3]

C. Köhler Localization of QFTs with Infinite Spin 2015-05-29 LQP36 19
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Assumptions & Statement

1 Domain and Continuity

For all g ∈ S(M×2), B(g) is defined on the domain D of
vectors which is spanned by products of the String fields
Φ(f , h) applied to the vacuum Ω.
By the Reeh-Schlieder Thm., D is dense in the Fock space F .
For fixed vectors φ, ψ ∈ H, the assignment

g ∈ S(M×2) 7→ 〈φ|B(g) |ψ〉 ∈ C

is a tempered distribution, i.e. g 7→ B(g) is an operator-valued
distribution.
B(g) = B(g)†

C. Köhler Localization of QFTs with Infinite Spin 2015-05-29 LQP36 20
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Assumptions & Statement

2 Transformation Law
For p, p̃ ∈ ∂V+ and A ∈ SL(2,C), the two-particle intertwiner
equation holds almost everywhere in the sense of

d̃pd̃p̃dν(k)dν(k̃):

D(R(A, p))⊗ D(R(A, p̃))u2(pΛ(A), p̃Λ(A)) = u2(p, p̃).

u2, u2c , u0, u0c are locally square-integrable and polynomially
bounded.

3 Relative locality
Let f ∈ S(M), h ∈ D(H) and g ∈ S(M×2) such, that

(x + λe − y1,2)2 < 0 ∀ x ∈ supp f , e ∈ supp h, λ ∈ R+,

(y1, y2) ∈ supp g .

Then the associated fields commute:

[Φ(f , h),B(g)] = 0
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Characterization of Intertwiners

One-particle string-intertwiners

Lemma

Let u1(p, e)(k) a solution of the one-particle intertwinereq. Then
there is a function F1, defined on the interior of the upper
half-plane, such that:

1 The intertwiner u1 is given by

u1(p, e)(k) = e
ik·

e−
e−
p−

p

2p·e F1(p · e).

2 A choice of the function F1 can be made in such a way that
u1 is polynomially bounded in p, analytic in e for =(e) ∈ V+

and bounded by an inverse power at the boundary.
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Characterization of Intertwiners

∂V+

H

p

e

κS1

k

cf. uniqueness proof for
string-localized fields
[MSY ’06, Lemma B 3 ii)]

Step 1

A = Bp ∈ SL(2,C)

R(B−1
p , p) = 1

u1(q,Λ(Bp)e) = u1(p, e)

f := Λ(Bp)e
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Characterization of Intertwiners

∂V+

H

f
q

q · e = cst.

κS1

k

cf. uniqueness proof for
string-localized fields
[MSY ’06, Lemma B 3 ii)]

Step 2

A = [0, f/f+] ∈ Gq

⇒ R(A, q) = A

e
−ik· f

f+ u1(q, f ) = u1 (q, f +)
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Characterization of Intertwiners

∂V+

H

qf +

κS1

k

cf. uniqueness proof for
string-localized fields
[MSY ’06, Lemma B 3 ii)]

Step 3

A = [ϕ, 0]: q and f + invariant,
F1(f+/2) := u1(q, f +)(k)
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Characterization of Intertwiners

Substitution of the intertwiner equations yields the first part

u1(p, e)(k) = e
ik·

e−
e−
p−

p

2p·e F1(p · e).

2p · e in exponent produces essential singularities at the
boundary =(e) = 0.

At any singularity one can show
∣∣∣k · (e− e−

p−
p
)∣∣∣ ≤ κ.

u1 is therefore an intertwiner iff F1r in

F1(p · e) = e
−i κ

2p·e F1r (p · e)

is pol. bounded distributional boundary value of analytic
function on H+.

F1r (p · e) := 1 yields the candidate

u1(p, e)(k) = e
i
k·
(

e−
e−
p−

p

)
−κ

2p·e .
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Characterization of Intertwiners

Two-particle scalar intertwiners

Similar result for the two-particle intertwiner u2:

Lemma

Let u2(p, p̃)(k, k̃) the function given in assumption 2, which is a
solution of

D(R(A, p))⊗ D(R(A, p̃))u2(pΛ(A), p̃Λ(A)) = u2(p, p̃)

Then there is a L2
loc-function F2 : R2 → C such, that

u2(p, p̃)(k, k̃) =e
−ik· 1

p−p̃
p−
p̃− e

−ik̃· 1

p̃−p
p̃−
p−

F2

(
(kk̃)−1

(
p− p̃

p−
p̃−

)(
p̃− p

p̃−
p−

))
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Characterization of Intertwiners

Extension of the characterization for u2 to the coefficient
functions u2c , u0 and u0c :

Lemma

There are L2
loc-functions F0 and F0c , such that the following

equations hold:

u2c(p, p̃)(k , k̃) =e
+ik· 1

p−p̃
p−
p̃− e

+ik̃· 1

p̃−p
p̃−
p−

F2

(
(kk̃)−1

(
p− p̃

p−
p̃−

)(
p̃− p

p̃−
p−

))
u0(p, p̃)(k , k̃) =e

−ik· 1

p−p̃
p−
p̃− e

+ik̃· 1

p̃−p
p̃−
p− F0 (. . .)

u0c(p, p̃)(k , k̃) =e
+ik· 1

p−p̃
p−
p̃− e

−ik̃· 1

p̃−p
p̃−
p− F0c (. . .)
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Relative Commutator

Consider the function

γ(a) = 〈φ, [B(g),Φ(fa, h)]Ω〉 , where fs := (1, sn)∗f

Proof strategy:

γ evaluates nontrivial
matrix elements

B tempered distribution
⇒ pol. bounded

rel. locality to Φ ⇒
half-sided support

~x

x0

W

W ′

O
a

supp f + R+supp h

supp fa + R+supp h

dist. FT of γ is S ′-BV of an analytic function

incompatible with singularities in u2, u0, ...
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Relative Commutator

Lemma (regularity of γ)

The function γ has the following properties:

1 Support: supp γ ⊆ (−∞,−b]

2 Boundedness: There are constants C , L > 0 and N ∈ N,
such that

|γ(a)| ≤ C

(
1

L
χ[−L,0]−b(a) + |a + b|N−1

)
∀a < −b.

3 Continuity: γ is a continuous function.
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Relative Commutator

Lemma (holomorphic FT)

The holomorphic Fourier transform of a continuous polynomially
bounded function γ : R→ C with supp γ ⊆ (−∞,−b] for some
b > 0, which is defined by

γ̂(z) =

∫
da e−izaγ(a) ∀ z ∈ H+,

where H+ := {z ∈ C : =(z) > 0} is the upper half-plane, has the
following properties:

1 Analyticity: γ̂ is an analytic function on H+.

2 Boundedness: There are constants C > 0,N ∈ N, such that

|γ̂(z)| ≤ Ce−b=(z)(1 + =(z)−N) ∀ z ∈ H+

3 Distributional boundary value: . . .
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Relative Commutator

Lemma (holomorphic FT, part II)

3 Distributional boundary value: The sequence of
distributions γ̂t ∈ S ′(R), given by the restrictions of γ̂ to
horizontal lines of constant imaginary part t > 0,

γ̂t : S(R) 7→ C, ϕ 7→
∫

ds γ(s + it)ϕ(s),

converges for t → 0 to the distributional FT of γ,

γ̂ : S(R)→ C, ϕ 7→
∫

da γ(a)ϕ̂(a)

with ϕ̂(a) :=

∫
ds e−isaϕ(s) the FT on S(R),

in the sense of S ′(R): limt→0 γ̂t(ϕ) = γ̂(ϕ) ∀ϕ ∈ S(R)
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Relative Commutator

γ(a) can be stated in terms of functions of p− ∈ R
Ψ(p, k) := f̂ (p)ũ1(p, h)(k) with

ũ1(p, h)(k) :=

{
u1(p, h)(k) for p ∈ ∂V+

u1c(−p, h)(k) for p ∈ ∂V−

I (p, p̃, k, k̃) := e
+ik· 1

p−p̃
p−
p̃− e

−ik̃· 1

p̃−p
p̃−
p− S(p, p̃, ψ) with

S(p, p̃, ψ) := Θ(pp̃)[ĝ(p̃,−p)F0(2pp̃eiψ/κ2)

+ĝ(−p, p̃)F0c(2pp̃eiψ/κ2)]

+Θ(−pp̃)[ĝ(p̃,−p)F2(2pp̃eiψ/κ2)

+ĝ(−p, p̃)F2(2pp̃eiψ/κ2)],

coordinate ψ is stable under k , k̃ 7→ λk , λ−1k̃ for λ ∈ SO(2)
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Restriction of the Integrals

With abbreviation q := (p, p̃, k, k̃) (measure µ), one obtains

γ(a) =

∫
dp−
p−

eip−a/2

∫
dµ(q)φ(p̃, k̃)Ψ(p, k)I (p, k , p̃, k̃)

Singularities contained in I can be exposed:
replacing φ and ψ by

1

φp̃0,k̃0,ε
(p̃, k̃) :=

χBε(p̃0,k̃0)(p̃, k̃)

µ(Bε(p̃0, k̃0))

→ valid choice for φ ∈ H1

2

Ψp0,k0,ε := f̂

(
p−,
|p|2
p−

)
δp0,ε(p)δk0,ε(k)

→ Ψ is determined by Φ(f , h), limiting procedure necessary.

Resulting sequence of functions denoted by (γq0,ε)ε>0.
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Restriction of the Integrals

Let p0 ∈ R2, k0 ∈ κS1 such, that p0 ∦ k0. For ε > 0, consider the
function

Ψp0,k0,ε : ∂V × κS1 → C , (p, k) 7→ f̂

(
p−,
|p|2
p−

)
δp0,ε(p)δk0,ε(k).

There is a sequence of sets of finitely many functions(
(f iε,N , h

i
ε,N) ∈ S(M)×D(H), i = 1, ...,Mε,N

)
N∈N

which conserve the support properties of Φ(f , h), i.e.

supp f iε,N ⊂W , supp hiε,N ⊂W ∩ H ∀ i = 1, ...,Mε,N ,N ∈ N,

which converge to Ψp0,k0,ε in the sense of L2 up to a continuous
function c(p, k):∫ dp−
|p−|d

2p
∫
dν(k)

∣∣∣∑Mε,N

i=1 f̂ iε,N(p)ũ1(p, hiε,N)(k)− c(p, k)Ψp0,k0,ε(p, k)
∣∣∣2

converges to 0. The function c is has the property c(p, k0) = 1.
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Analysis of Singularities

The analyticity of each γ̂q0,ε is preserved in the limit ε→ 0:

Lemma (compact convergence)

The set of sequences of functions

γ̂q0,ε : H+ → C, z 7→
∫

da e−izaγq0,ε(a)

has the following property: For µ-almost all q0 ∃ analytic function
γ̂q0 on H+ such, that

lim
ε→0

γ̂q0,ε(z) = γ̂q0(z) ∀ z ∈ H+

in the sense of compact convergence.

Consider the difference γ̂(z) := γ̂q1(z)− P(z , q1, q0)γ̂q0(z),
with q0 7→ q1 by (k0, k̃0) 7→ (λk0, λ

−1k̃0), P relative phase
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Analysis of Singularities

Lemma (Uniform convergence)

Let (γε)ε>0 a sequence of analytic functions on H+ with the
following properties:

1 limε→0 γε = γ exists in the sense of compact convergence,

with γ an analytic function on H+.
The sequence fulfils the uniform bound
|γε(z)| < C=(z)−1 ∀z ∈ H+, ε > 0 for some C > 0.

2 For ε > 0, the (boundary-) limt↘0 γε(·+ it) = gε exists and

is given by a function gε ∈ L1(R), where convergence is
understood in the weak-* topology.

3 The corresponding sequence of boundary functions (gε)ε>0

fulfils limε→0 gε = 0 in L1(R) .

. . .
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Analysis of Singularities

Lemma (Uniform convergence, part II)

γε(·+ it) gε

γ(·+ it) 0

t ↘ 0, weak-*

t ↘ 0, weak-*

ε→ 0 +uniform bound ε→ 0 L1

Then γ = 0 on all of H+. (using [SW ’64, Thm. 2-17])

⇒ γ̂q1 has a singularity, which is a contradiction!
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C. Köhler Localization of QFTs with Infinite Spin 2015-05-29 LQP36 37



Introduction Compact Localization No-Go Theorem Limit of Representations Summary & Outlook

Reference Momenta & Little Groups

Pauli-Lubanski spin-vector

Sµ =
1

2
εµνλκMνλPκ

Mνλ: Lie-Algebra of generators of L↑+

m > 0 interpretation: “angular momentum” in particle’s rest
frame

S2 = Sµµ defines another Casimir operator.
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Reference Momenta & Little Groups

Comparison of the massive and massless case

Important distinction between massive and massless case:
m2 spP q Bp Gq Hq −1

4S
2

1 H+ (1,~0)
√

p̃/m SU(2) C2s m2s(s + 1)

0 ∂V+ (1,~e)
2

1√
p−

(
p− p

1

)
Ẽ (2) L2(S1) κ2

Construction of the previous objects is usually done separately
for m > 0 and m = 0.

Fundamentally different properties in the case m = 0, κ > 0

How do these difficulties arise in the limit κ = const., m→ 0?

Idea: Comparison between massive and massless fields is
simplified, if construction is unified.
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Reference Momenta & Little Groups

m-parametrized approach

Reference momentum qm is given by

q̃m =

(
1

m2

)
∂V+

H+
m

q1

q0
(m,~0)

qm

with qm− independent of m.

Usual choice for q is (m,~0), switching between conventions
amounts to the Lorentz transform:

Bm :=

( √
m √

m
−1

)
, since qmΛ(Bm) = (m,~0).
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Reference Momenta & Little Groups

m-dependence of Wigner rotations

Massless form of the Wigner boost Bp is still valid for all m,
qmΛ(Bp) = p ∀ p ∈ H+

m , result depends on m only via qm.

Wigner rotation in m-parametrized form:

R = BpA︸︷︷︸
=:C

B−1
pΛ(A) = CB−1

qmΛ(C), C =:

(
a b
c d

)

with C independent of m. Explicit form:

R =
1√

|a|2 + m2|c |2

(
a −m2c
c a

){∈ SU(2) m = 1

∈ Ẽ (2) m = 0
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Reference Momenta & Little Groups

Special cases

For m = 1, G1 = SU(2), there is a correspondence between R
rotating the sphere and R acting as Möbius transform on
the complex plane - stereographic projection.

[D(R)f ](z) = f (R−1.z) where

(
a b
c d

)
.z =

az + c

bz + d

For m = 0, G0 = Ẽ (2), the Möbius transforms become
rotations/shifts on the plane.
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C. Köhler Localization of QFTs with Infinite Spin 2015-05-29 LQP36 42



Introduction Compact Localization No-Go Theorem Limit of Representations Summary & Outlook

Little Group Representations

Stereographic projection: identification between z ∈ C and
~n ∈ S2 given by

n3 =
d2 − |z |2
d2 + |z |2 , n1 + in2 =

2zd

d2 + |z |2

C

S2

z

~n

d

R corresponding to the usual choice (m,~0) can be obtained by
conjugation with Bm:

Rm := B−1
m RBm =

1√
|a|2 + m2|c |2

(
a −mc
mc a

)
∈ SU(2)

Compatible with stereographic projection if md = 1:

Rm~n(z) = ~n(R.z)
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Compatible with stereographic projection if md = 1:

Rm~n(z) = ~n(R.z)
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Little Group Representations

Representation spaces C2l+1 of SU(2) are spanned by
spherical harmonics Y l

h(~n(z)) = eiharg zP l
h(n3(z)) with(

d

dn3
(1− n2

3)
d

dn3
+ l(l + 1)− h2

1− n2
3

)
P l
h(n3) = 0.

(Legendre polynomials)

Stereographic projection transforms the equation into
(
|z | d

d|z |

)2

+
κ2|z |2(

1 +
(
|z|
d

)2
)2
− h2

P l
h(n3(|z |)) = 0 ,

with κ2 := 4l(l + 1)/d2.

Solutions Jh(κ|z |) in the limit d →∞, κ = const span

representation spaces L2(κS1) of Ẽ (2): (Bessel functions)
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Construction of Intertwiners

Once m is chosen, one can construct the following
parametrization of Γqm :

ξd : R2 → Γq, [ξd(z)]̃ =
d2

d2 + |z |2
(
|z |2 z
z 1

)
Crucial property: ξd(R.z) = ξd(z)Λ(R)

∂V+q1

H+
1

Γ1

qm

(m, 0)

H+
m

Γm
∂V+

q0

Γ0

Parametrization can also be given in terms of the usual choice
for m = 1:

[ξ(z)]̃ = (B−1
m )†(1 + ~σ · ~n)B−1

m

Intuition: Lorentz-boosted “celestial sphere”
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Construction of Intertwiners

Parametrization of string-localized intertwiners

Therefore, the intertwiner u : H+
m × H → Hq defined by

u(p, e)(h) :=

∫
d2z

(
d2

d2 + |z |2
)2

Y l
h (~n(z))F (ξd(z)Λ(Bp)e),

where F is a numerical function, inherits the desired
covariance properties from Y l

h.

Infinite spin limit: (d , l →∞, m→ 0, κ fixed)

u(p, e)(h) =

∫
d2z eiharg zJh(κ|z |)F (ξ(z)Λ(Bp)e)

=
in

2π

∫
dϕ eihϕ

∫
d2z eik(ϕ)·zF (ξ(z)Λ(Bp)e)

k(ϕ) := κ(cosϕ, sinϕ)
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Current form of the No-Go Theorem

Summary

Infinite spin representations are known to imply weaker
localization properties.

Known quantum fields are localized in semiinfinite
strings/cones.

Compact (modular) localization is possible for two-particle
wavefunctions.

→ Corresponding nontrivial operators do not exist.

Result is based on the incompatibility between the analyticity
of the relative commutator versus the singularities arising from
the infinite spin covariance.
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Characterization of Standard Subspaces

First requirement to be weakened is that u2 is an intertwiner.

Any different class B̃ of operators localized in O has to
generate vectors BΩ ∈ K (O).

Can these be fundamentally different from the mentioned
vectors B(f )Ω?

Characterization of modular subspaces [Lechner, Longo ’14]

In the one-particle Hilbert space of a 1d massless chiral/2d massive
particle, modular subspaces corresponding to intervals/double
cones can be characterized by the support of the inverse
FT/momentum space analyticity.

Application to present context needs several generalizations:
d > 2 requires intersection of infinitely many wedges.
behaviour of non-scalar representations
n-particle subspaces for O ( W are not necessarily tensor
products of the one-particle subspaces.
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Towards weaker Regularity Assumptions

L2
loc integrability of u2, u2c , u0, u0c is a technical assumption

Idea: Apply the Schwartz Kernel Theorem and study B(g) in
terms of a distributional integral kernel

Restrict distribution to cones using approximation technique
for ψ

cone-localized distributions can be understood as derivatives
of continuous functions
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Thanks for your attention!
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