N-Particle Scattering and Asymptotic
Completeness in Interacting Wedge-local QFT
Models

Maximilian Duell
(PhD Project, supervisor: Wojciech Dybalski)

Zentrum Mathematik
Technische Universitat Miinchen

Mathematics of interacting QFT models, York, July 1-5, 2019

U] B



Scattering Processes are the particle physicists’ Microscope.



Scattering Processes are the particle physicists’ Microscope.

X}



Scattering Processes are the particle physicists’ Microscope.

» Quantum Field Theory (QFT) used to
formulate dynamical laws governing
scattering reactions, particle structure,
-creation and -decay processes.

X}



Scattering Processes are the particle physicists’ Microscope.

» Quantum Field Theory (QFT) used to
formulate dynamical laws governing
scattering reactions, particle structure,
-creation and -decay processes.

» Scattering Theory of massive QFT is
mathematically well understood.
[Haag'58] [Ruelle'62]

X}



Scattering Processes are the particle physicists’ Microscope.

» Quantum Field Theory (QFT) used to
formulate dynamical laws governing
scattering reactions, particle structure,
-creation and -decay processes.

» Scattering Theory of massive QFT is
mathematically well understood.
[Haag'58] [Ruelle'62]

» Yet, so far only very few interacting
QFT models have been constructed with
mathematical control.

X}



Scattering Processes are the particle physicists’ Microscope.

» Quantum Field Theory (QFT) used to
formulate dynamical laws governing
scattering reactions, particle structure,
-creation and -decay processes.

» Scattering Theory of massive QFT is
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[Haag'58] [Ruelle'62]

» Yet, so far only very few interacting
QFT models have been constructed with
mathematical control.
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More recent progress: Rigorous constructions of “almost” QFTs
(“wedge-local”) exhibiting non-trivial 2-particle interactions.
[Grosse, Lechner'07] [Buchholz, Lechner, Summers'11]

What is the physical interpretation of these models?
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Problematic Geometry of Wedge-local 3-Particle Scattering

> Scattering Amplitudes
Sfi — 0ut<1 2 3|1/ 2/>in
> Large-time limit 7 — oo:

’123>OUt = Ii_}m 817—827—837—‘Q>
Bir|9) k)
“Haag-Ruelle Theory”

> Existence of Limit proven
using Separation of
Localizations

lim ||[Blra B27-]|| —0
T—00
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Problematic Geometry of Wedge-local 3-Particle Scattering

e

, P Scattering Amplitudes
Sfi — 0ut<1 2 3|1/ 2/>in
> Large-time limit 7 — oo:

’123>OUt = Ii_)m 817—327—837—‘Q>
BirlQ) —_|K)

“Haag-Ruelle Theory”

> Existence of Limit proven
using Separation of
Localizations

lim ||[Bl7-, 827-]” —0
T—00

> Wedges Wi, Wh, W3 cannot
pairwise space-like separate!




Overview

Introduction: Framework and Assumptions

Wedge-local N-Particle Scattering Theory
Importance of Velocity Ordering
Wedge-Swapping Symmetry of 1-Particle States
Wedge-local Haag-Ruelle Theorem

Applications of wedge-local N-particle scattering theory
Asymptotic Completeness of Grosse-Lechner models
Example: Failure of Asymptotic Completeness

Outlook and Summary
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What is a Wedge-local QFT?

» Field Theory: ¢(x) measurable quantity associated to
space-time point x € R5*1 (e.g. electromagn. fields)

» Quantum Field Theory (QFT): ¢(x) “operator” on ¢
> Local QFT: ¢(x) localized in €z + x, x = (t,x) € R**1:
CRr + x1, Cr + x2 space-like = [p(x1),d(x2)] =0

W' 7 Wx
» Wedge-Local QFT: ¢y (t,x) localized in W + (t,x):
x1 + Wi, xo + Wh space-like = [, (x1), P, (x2)] =0
3/17 MATHEMATICALLY /PHYSICALLY WEAKER!



Family of Rindler-Wedge-Regions in Space-Time

Rindler Reference Wedge:

Wei={(t,x) € RS : |t| < x;}

Definition: General Wedge regions W are generated by Poincaré
transformations A € P = £ x Rs*!

W =W, = NW, + x

Elementary advantages: Highly symmetric, causally closed, ...
4/17



Axiomatic framework for Wedge-local QFT

Wedge-local model defined by specifying the following
mathematical objects (2, o, Q, ).

>

>

Hilbert space .77 of vector states
Distinguished vacuum state Q € 7

“Net” of von Neumann algebras W — A(W) C B(5¢),
W C R5*! wedge region in space-time

Space-time translations of states (t,x) ~ U(t,x) = eitf—1xP

Translations of observables a A := A(x) := U(x) AU(x)*



These objects (2, o, Q, ) further have to satisfy the wedge-local
Haag-Kastler postulates.

Firstly, minimal assumptions required for a sensible interpretation
of A€ (W) C B(J#) “being localizable” in wedge W C R+,

(HK1) Isotony: Wiy C Wr, = A(W1) C A(W>)
(HK2) Wedge-Locality: W; C W) = A(W1) C AW.)

(HK3) Translation-Covariance: o, A(W) = A(W + x)



These objects (2, o, Q, ) further have to satisfy the wedge-local
Haag-Kastler postulates.

Firstly, minimal assumptions required for a sensible interpretation
of A€ (W) C B(J#) “being localizable” in wedge W C R+,

(HK1) Isotony: Wiy C Wr, = A(W1) C A(W>)
(HK2) Wedge-Locality: W; C W) = A(W1) C AW.)
(HK3) Translation-Covariance: o, A(W) = A(W + x)

Secondly, need assumptions on structure of Hilbert space of states:
(HK4) Uniqueness of the vacuum 2
(HK5) Haag-Ruelle Spectrum Condition:

» Positivity of Energy
» Existence of Isolated Mass Shell
(Stable 1-particle states, purely massive theory)

(HK6) Cyclicity of Q



Analysis of the Particle Content & Spectrum Condition

Space-time translations a unitarily implemented: (A € A, x = (t,x))

A(x) = ax(A) = U(x)AU(x)*

supp E(A)

i

Generators of space-time translations:

U(t,X) _ eth—iP-x

Shape of joint spectrum of (H, P)
specified by spectrum condition:

G(H,P) = {0} U Hm U ll:l2m



Analysis of the Particle Content & Spectrum Condition

Space-time translations a unitarily implemented: (A € A, x = (t,x))

A(x) = ax(A) = U(x)AU(x)*

supp E(A)

i

Generators of space-time translations:

U(t,X) _ eth—iP-x

Shape of joint spectrum of (H, P)
specified by spectrum condition:

G(H,P) = {0} U Hm U ll:l2m



Analysis of the Particle Content & Spectrum Condition

Space-time translations a unitarily implemented: (A € A, x = (t,x))
A(x) = ax(A) = U(x)AU(x)*

Generators of space-time translations:

U(t,X) — eth—iP-x

w
/ Shape of joint spectrum of (H, P)
H,,  specified by spectrum condition:
supp E(A) ° Y
p

O(H,P) = {0} UH,U /:/2,,,

Def. (Wigner particle) Single-particle
states are eigenvectors Wi € ¢ of
the mass operator M2 := H2 — P2,



Analysis of the Particle Content & Spectrum Condition

Space-time translations a unitarily implemented: (A € A, x = (t,x))
A(x) = ax(A) = U(x)AU(x)*
Generators of space-time translations:
oiHEt—iPx

U(t,x) =

Shape of joint spectrum of (H, P)
specified by spectrum condition:

G(H,P) = {0} U Hm U ll:l2m

Def. (Wigner particle) Single-particle
states are eigenvectors Wi € ¢ of
the mass operator M2 := H? — P?.

Mass Gaps = Separation of Hp, and o4y, py \ Hm via X € S (RsT1)



Definition of Haag-Ruelle Creation-Op. Approximants

From a given wedge-local operator A € 2(W) can construct new
operators by space-time translations ax(A) and via superpositions.

Combined: Space-time Smearing of A with y : Rt — C,

B:=Ax) = /ds+1x X(x)ax(A)



Definition of Haag-Ruelle Creation-Op. Approximants
From a given wedge-local operator A € 2(()V) can construct new
operators by space-time translations ax(A) and via superpositions.

Combined: Space-time Smearing of A with y : Rt — C,

B :=A(x) = /dsﬂx X(x)ax(A)

Apply: Construct Solution of 1-Particle Problem [Haag, Ruelle'60s]
(Step 1) Construction of 1-Particle States
If ¥ separates mass shell from remaining spectrum,
B = A(x) creates 1-particle states from vacuum:

BQ € S4 = E(Hm)H

(Step 2) Introduce Comparison Dynamics
Adding spatial smearing with Klein-Gordon solution f
— 7-independent one-particle vector B, ()<,
created at time 7.

But: Wedge-Localization is obstacle for multi-particle problem!



Towards Construction of N-Particle Scattering States

Important: Localization and Ordering of Wave Packets and B;'s

f(t,x) — /dsk e—iwm(k)t-i-ikAx F(k), wm(k) = k2 4+ mZ7

B.(f) := /dsx f(r,x) B(r,x), fecE> R, 7cR.
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Important: Localization and Ordering of Wave Packets and B;'s

f(t,x) — /dsk e—iwm(k)t-i-ikAx F(k), wm(k) = v/k2 + ITIZ,

B.(f) := /dsx f(r,x) B(r,x), fecE> R, 7cR.

Defs.: Velocity support:
V(f) == {(L, 5e) - k € suppf}

¢ supp f1




Towards Construction of N-Particle Scattering States
Important: Localization and Ordering of Wave Packets and B;'s
Flex) = [ ke onen fll), () = Vi
B.(f) :== /dsx f(r,x) B(1,x), feE>[R®), 7ecR.
B.(f)

Defs.: Velocity support:
V(f) = {(1, ﬁ(k)) ck € supp f}
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Towards Construction of N-Particle Scattering States

Important: Localization and Ordering of Wave Packets and B;'s
f(t,x) — /dsk e*i(dm(k)t‘i’ik'x /":(k), wm(k) = k2 + mZ7
B.(f) = /dsx f(r,x) B(1,x), feE> R, 7R

B-(f+) BX(f)
t

Defs.: Velocity support:
V(f) = {(1, ﬁ(k)) ck € supp f}
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Towards Construction of N-Particle Scattering States

Important: Localization and Ordering of Wave Packets and B;'s

BA(FY)

B, (f)

/

X

f(t,x) — /dsk e*i(dm(k)t‘i’ik'x /":(k), wm(k) = k2 + mZ7

B.(f) = /dsx f(r,x) B(1,x), feE> R, 7R

Defs.: Velocity support:
V(f) = {(1, ﬁ(k)) ck € supp f}

Precursor Order Relation:

Vi<=wW i Vo — V) CW.
(Vk C RS W centered)

Proposition: Correct Ordering leads to Commutator Decay.



Construction of N-Particle Scattering States [MD'18]

Ingredient (1): Correct Ordering
Let Ax € AW), (1 < k < n), Bx := Ak(x), and f; s.t.

V(fn) <w V(fn—l) <Ww ... <w V(fl).
Then corresponding outgoing scattering state defined by
yt .= ILm Bi:(f1)Bar(f2) ... Bar ()2,

where ordering of operators must match velocity order!
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Construction of N-Particle Scattering States [MD’18]

Ingredient (1): Correct Ordering
Let Ax € AW), (1 < k < n), By := Ak(x), and fi s.t.

V(fn) <w V(fn_l) <W ... <w V(fl)
Then corresponding outgoing scattering state defined by

Ut = lim Bur(f)Bor(h) - Barl(f2)Q,

where ordering of operators must match velocity order!
t=rT1 t> 0

10/17



(2) Wedge-Swapping Symmetry of 1-Particle States

Ut = lim By, (f)Bar(f) ... Bor(£,)S2.
T—00

t=r1 t>0

Bm—(fn) Bn—lT(fn—l) B3T(f3) B2’T(f2) BlT(fl)

11/17



(2) Wedge-Swapping Symmetry of 1-Particle States
vt = lim Bi-(f)Bar () .. B (f,)Q.

t=rT1 t>0

B () Bn-17(fi-1)  Bs:(f3) Bor(f2)  Bir(f1)

Def.: A one-particle state Wy € 4 is swappable w.r.t. W if

WUy = E(Hm)AQ = E(Hn)ALQ, for Ac (W), AL e qnh).
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(2) Wedge-Swapping Symmetry of 1-Particle States
vt = lim Bi-(f)Bar () .. B (f,)Q.

t=rT1 t>0

B () Bn-17(fi-1)  Bs:(f3) Bor(f2)  Bir(f1)

Def.: A one-particle state Wy € 4 is swappable w.r.t. W if

WUy = E(Hm)AQ = E(Hn)ALQ, for Ac (W), AL e qnh).

Remark: Swappable W1 can be constructed from Wedge duality
11/172A(W)" = A(W') using Tomita-Takesaki Theory, dense in J4.



Main Result: Wedge-local Haag-Ruelle Theorem
Fix a wedge W, let Wy = E(Hm)AkQ = E(Hpm)A;-Q swappable,
i.e. Ax € AW), Al € A(W1), and assume isolated mass shells.
Let f1,...,f, regular Klein-Gordon solutions with velocities V(fy)
ordered s.t.
V(fn) <w ... <w V(f)
let Wy := Ii_)m By, (fx)S2 and consider scattering-state approximants

W(r) i= Bir(A)Bar(H) . . . Bur(f)



Main Result: Wedge-local Haag-Ruelle Theorem
Fix a wedge W, let Wy = E(Hm)AkQ = E(Hpm)A;-Q swappable,
i.e. Ax € AW), Al € A(W1), and assume isolated mass shells.
Let f1,...,f, regular Klein-Gordon solutions with velocities V(fy)
ordered s.t.
V(fa) <w ... <w V(f)
let Wy := Ii_)m By, (fx)S2 and consider scattering-state approximants

W(r) i= Bir(A)Bar(H) . . . Bur(f)

Theorem. [MD'18] (1) W' :=lim;, 1 V(7) convergent.

(2) For fixed W with “upright geometry”, scalar products of any
two such W+, W'T are given by the Fnock structure relation

(U U) = 6 [T (Wies Vi)
k=1

Interpretation: W outgoing scattering state
Remark: get also incoming W™, but need opposite ordering



Proof Idea (Convergence of 3-Particle Out-States)
Ax € AW), A € AW?), sit. EnAQ = EpALQ, (1 < k < 3)
Let f reg. positive-energy KG solutions, Vg <y Vi, <w Vg
B,((L) = AS(L)(X), and consider

\UOUt = lim \UT = lim BlT(fl)BQT(fQ)B37—(f3)Q.
T—»00
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Estimation of the third term
Recall: Vg < Vg < Vg

(0r Bur (1)) Bar (£2) Bar () = (- Bir (1)) Bor () B ()2
= B3 (£)(0;Bi+(f)) B2 (£)Q + commutators
= Bs,(f3)(0-Bir(f1)) B3, ()2 + O(r ")
= B;- () B5-(f2) (9> B17(f1))Q2 + more comm.
=0+ 0(r M.
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Estimation of the third term
Recall: Vg < Vg < Vg
(aTBlT(fl))B2T(f2)B3T(f3)Q = (aTBlT(fl))B2T(f2)B3J:r(fé)Q
= B3-(£)(9,B1- (1)) Bar (2)Q + commutators
= Bs,(f3)(0-Bir(f1)) B3, ()2 + O(r ")
= B;- () B5-(f2) (9> B17(f1))Q2 + more comm.

=0+ 0(r M.
Thus,
™ .
Ve = Wny | < / dr [0:V,|| < / dr Cyr=N < Clr—NH
1 7_1

is Cauchy for 7 — 4o00.

But: Perhaps V.. — 07

Answer: Excluded by (Fock structure) result [MD'18].



Ordered Asymptotic
Completeness in Wedge-local

QFT



Application: Asymptotic Completeness, GL-Models

» Wedge-local Mgller-Operators W1j/[v can exhibit dependence on the
preparation wedge W (ruled out in local QFT),

WiV @... @V = lim Bir(A)... By (fn)2,
where Bkr(fk)Q =V, B, = Ak(X), A € Q[(W)
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preparation wedge W (ruled out in local QFT),

WiV @... @V = lim Bi-(f) ... Bu-(fn)Q,
where Bkr(fk)Q =V, B, = Ak( ), A € Q[(W)

» Construction of Wi a priori only for velocity-ordered configurations,
ie. WjE F>W/<W — 2 map on ordered Fock spaces

r~w .= span{\lll R ...V VY <y ... < Vp, N e No}

Def.: A wedge-local QFT (21, U, Q, 5¢) is asymptotically complete (AC),
if Wi, V=w/<w = J# for any wedge region W.
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WiV @... @V = lim Bi-(f) ... Bu-(fn)Q,
where Bkr(fk)Q =V, B, = Ak( ), A € Q[(W)

» Construction of Wi a priori only for velocity-ordered configurations,
ie. WjE F>W/<W — 2 map on ordered Fock spaces
r~w .= span{\lll R ...V VY <y ... < Vp, N e No}.
Def.: A wedge-local QFT (21, U, Q, 5¢) is asymptotically complete (AC),
if Wi, V=w/<w = J# for any wedge region W.
Lemma. (in preparation) In the models of [Grosse,Lechner'07] and [Buch-
holz,Lechner,Summers'11] we have Waw = W(:)EWSEWRW, with unitary

SSWHW = H ePr@Pi/2 - Q GL deformation matrix. (%)
1<i<j<N



Application: Asymptotic Completeness, GL-Models

» Wedge-local Mgller-Operators W#fv can exhibit dependence on the
preparation wedge W (ruled out in local QFT),

WiV @... @V = lim Bi-(f) ... By (fv)Q
where Bkr(fk)Q =V, B, = Ak( ), A € Q[(W)

» Construction of Wi a priori only for velocity-ordered configurations,
ie. WjE F>W/<W — 2 map on ordered Fock spaces

r~w .= span{\lll R ...V VY <y ... < Vp, N e No}.

Def.: A wedge-local QFT (21, U, Q, 5¢) is asymptotically complete (AC),
if Wi, V=w/<w = J# for any wedge region W.
Lemma. (in preparation) In the models of [Grosse,Lechner'07] and [Buch-
holz,Lechner,Summers'11] we have W%,W = WGEWSSWRW, with unitary
SSWHW = H etPrQFi/2 - Q GL deformation matrix. (*)
1<i<j<N
Kor. BLS-deformed model AC <= underlying undeformed model AC.

Thm. N-particle states of GL-model have factorizing scattering data (x).
Hence the GL-Model is interacting and asymptotically complete



Example: Failure of Asymptotic Completeness
Inspiration: [Longo, Tanimoto,Ueda’17] [D'Antoni,Longo,Radulescu’01]
S = L2(R, d9)
A =TUH4)= P R4 (unsymmetrized)

k=0
U(x, N) =T (Ui(x, N))

16/17



Example: Failure of Asymptotic Completeness
Inspiration: [Longo, Tanimoto,Ueda’17] [D'Antoni,Longo,Radulescu’01]

S = 12(R, d0)
A= U = @ QA (unsymmetrized)
U(x,N) = I_(U1(>< /\))
W)W, i=vVnyYp eV, e A,
(2() )b, .., 00) = /7 T 1/d9 WO Vi1 (0,01, ..,00),
(JU) (61, ...,0,) =V, (0,,...,01).
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Inspiration: [Longo, Tanimoto,Ueda’17] [D'Antoni,Longo,Radulescu’01]

A= PR A6)
A =TUH4)= P R4 (unsymmetrized)
U(x.A) = TF(Us(x: 1)
W)W, i=vVnyYp eV, e A,
(2() )b, .., 00) = /7 T 1/d9 WO Vi1 (0,01, ..,00),
(JW) (01, ...,0,) =V, (0,,...,00).
Define fields (f € .#(R2), m > 0)
O(F) = 2 (F )+ 2(F),  O(F) = JO(F),

2
FE(0) = / C;l eHPm(O)xf ().
0




Example: Failure of Asymptotic Completeness
Inspiration: [Longo, Tanimoto,Ueda’17] [D'Antoni,Longo,Radulescu’01]

A= PR A6)
H=T"4)= P R 4 (unsymmetrized)
U(x.A) = TF(Us(x: 1)
W, =V WV,  ¢eA,
(2 V)01, . 0n) = VT 1/d9 WO Vosa(0,01, . .0n),
(JW)n(b1,...,00) = V,o(0,...,01).
Define fields (f € . (R2), m > 0)
O(F) = 2 (F )+ 2(F),  O(F) = JO(F),

2
FE(0) = / C;l eHPm(O)xf ().
0

Observation: ordered incoming and outgoing states are orthogonal,
ordered AC fails.



Outlook and Summary

» Scattering Theory of Haag and Ruelle has been extended to massive
wedge-local theories [MD'18]. Most notably, a fully general
treatment of the N > 3-particle case is provided.

» Applicable to presently known wedge-local models. (Interacting
non-perturbative models in space-time-dim. four already available!)
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Outlook and Open Problems:

» Work in progress: GL/BLS-models are the first examples
wedge-local QFT on space-time dim. d > 2 + 1 which are both
interacting and asymptotically complete

» Many open conceptual questions on scattering in wedge-local QFT

> Extension to massless wedge-local case?



Outlook and Summary

» Scattering Theory of Haag and Ruelle has been extended to massive
wedge-local theories [MD'18]. Most notably, a fully general
treatment of the N > 3-particle case is provided.

» Applicable to presently known wedge-local models. (Interacting
non-perturbative models in space-time-dim. four already available!)

Outlook and Open Problems:

» Work in progress: GL/BLS-models are the first examples
wedge-local QFT on space-time dim. d > 2 + 1 which are both
interacting and asymptotically complete

» Many open conceptual questions on scattering in wedge-local QFT

> Extension to massless wedge-local case?

Thank you for your attention.
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