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Interacting Quantum Field Theory, Non-Perturbatively

Exercise 1 Quantum Mechanics:

(a) Find 2, Hamiltonian Hy and Observables for free particles
(b) Born probability interpretation |W(x)|?
(c) Add interaction H := Hy + H,,

Exercise 2 Constructive Quantum Field Theory

(a) Discover Free Quantum Fields ¢o(x), 74, Ho
(b) Interpretation of (¢, 70, Ho) in terms of free particles
(c) ¢o implements Einstein-Causality quantum mechanically

From now on may assume for simplicity spacetime-dim. 1+ 1
(e) add Interaction HR = Jerdx 1 d*(x) 1, goal R — o0

(F) HR = Hy + HE has ground state QfF == Roelp,
(g) Still w(A) = limg_00(QF, AQF) defines a state,
on the algebra of local observables.
(h) w defines new Hilbert space % on which interact. model lives

(change of rep.), and where H = I|m HR is well-defined.
R—o0
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What is known rigorously?

» Haag '54, Lehmann-Symanzik-Zimmermann '54
Postulated Asymptotic Condition:

0
“Interacting ¢(x*) X oo, o5 (x*) free"
» Ruelle '62, Hepp '65 — proof, isolated mass shell

» Herbst '71 — isolated vacuum,
“spectral condition” (SC),

i.e. need local operator A € A(O) s.t. AQ has
“nicely behaved" spectrum near mass shell

» Buchholz '77 — no (SC) nor other conditions
needed for m = 0 in even-dimensional space-time

» Dybalski '05 — (SC) + non-isolated vacuum
» Duch, Herdegen '13 — (SC) weakened, m > 0

€< €
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Our present assumptions restrict us to neutral-particle states V5.
(Electrical) Charges are expected to have

» non-sharp particle masses (“Infraparticle”)
[Buchholz'86]
» broken Lorentz symmetry

in states with well-defined space-like asymptotics of F*¥

> weaker localization properties: [Buchholz'82]
operators in space-like infinite “strings” ~ Wilson-lines



Remarks: Other Aspects of the Infrared Problem

Current Research and Tentative Approaches
» Scattering of Infraparticles? [Buchholz et al.’91-] [Herdegen'13)]

> Space-like asymptotics of F*¥ experimentally not accessible,
suitable Infravacuum-states conjectured to “stabilize” infraparticles
[Kraus, Polley, Reents'77] [Buchholz, Roberts'13]

— Feasible to describe Compton-scattering [Alazzawi, Dybalski'15]

» Perturbation Theory with String-local Quantum Fields
[Schroer et al.’04—] [Mund, de Oliveira'16]

» Study infrared problem in more tractable non-relativistic models
[Frohlich'73] [Chen, Fréhlich, Pizzo'07]. .. [Dybalski, Pizzo'12-]
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Algebraic Framework for Local Quantum Theory
Mathematical Objects

Haag-Kastler QFT (2, o, Q, ) in the vacuum sector.

Described by mathematical entities. . .
» Hilbert space .77 of pure states

v

distinguished vacuum Q €

net of von Neumann algebras R3t1 5 O — 2(0) c B(#)
itH—ix-P

v

> space-time translations of states (t,x) — U(t,x) = e

translations of observables oA := A(x) := U(x) A U(x)*

v



Algebraic Framework for Local Quantum Theory
The Haag-Kastler Axioms

.. which are subject to

(HK1) O1 C Oy = A(071) C A(0») (Isotony)
(HK2) 01 C O) = A(01) C A(O2) (Locality)
(HK3) ax2(0) =2A(0 + x), Vx € R* (Covariance)
(HK4) En,py({0})7 = CQ (Uniqueness of Q)
(HK5) supp Eqyy py C VT (Spectrum Condition)
(HK®6)

HK6) A(0)Q = 7 (Reeh-Schlieder Property)
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Preparing Single-Particle States
Single-particle states W1, Wy € Efpy—p,)-7 are non-local objects:
V; = EnAQ = x(M2)AQ ~ A(RDQ, (X € S, e \,0).

Instead now fix one bounded space-time region O C R%.
Reeh-Schlieder (HK6) = 3(Akg)s>0 C A(O): ||AkgQ — V|| = 5.

Def.: We call a family of local operators (Axg)s>0 C A(O) s.t.
[AksQ2 — V|| < B and [|Agsll < 77

a Reeh-Schlieder family for W of degree v > 0.

Assumption: Strengthened Reeh-Schlieder Property (HK6%)

Reeh-Schlieder families of finite degree generate
a total subset of the single-particle space JA4 C 7.



Strengthened Reeh-Schlieder yields Scattering States

Strengthened Reeh-Schlieder Property (v > 0)
(Ag)p>0 C A(O), s.t. [[Akp€2 — Wi|| < B and [[Aksll < 577

Theorem (MD'15) Let Wy be single-particle states admitting
Reeh-Schlieder families Ay of finite degree. Then for any regular
positive-energy Klein-Gordon sol. f, with disjoint velocity supports

W, =By, .. By QT wE,

The scalar products of any two such W, W'* can be computed
using the Fock prescription (similarly for incoming states).
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Strengthened Reeh-Schlieder Property (v > 0)
(Ag)p>0 C A(O), s.t. [[Akp€2 — Wi|| < B and [[Aksll < 577

Theorem (MD'15) Let Wy be single-particle states admitting
Reeh-Schlieder families Ay of finite degree. Then for any regular
positive-energy Klein-Gordon sol. f, with disjoint velocity supports

W, =By, .. By QT wE,

The scalar products of any two such W, W'* can be computed
using the Fock prescription (similarly for incoming states).

Previous results (Herbst '71, Dybalski '05, Herdegen '13)
require spectral condition of Herbst-type, e.g. for some € > 0,

v, = E{M:m}AkQ, Ak € 2[(0), HE{0<|M—m|<5}AkQH < 6.
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Reeh-Schlieder and Haag-Ruelle Creation Operators

Reference Dynamics: Klein-Gordon solutions fj with disjointly
and compactly supported wave packets f, € €>°(R3) (“regular’)

Creation-Operator Approximants: with § € €2 (R*\ V), set

B 1= Au () 1= [ b x(x) Aua(x),

Bkr = /d3X fk(T, X) Bk/g(T, X), (7' € R).




Reeh-Schlieder and Haag-Ruelle Creation Operators

Reference Dynamics: Klein-Gordon solutions fj with disjointly
and compactly supported wave packets f, € €>°(R3) (“regular’)

Creation-Operator Approximants: with § € €2 (R*\ V), set

B 1= Au () 1= [ b x(x) Aua(x),

BkT = /d3X fk(T, X) Bk/g(T, X), (7' € R).

Haag-Ruelle/LSZ: B, Q — V(i) := f(P)W, € 44 for fixed
small enough (.

Reeh-Schlieder: | 8 = () := |7| ™", u > 0| then By Q — Wi (fx).

Candidate Scattering States: Limits 7— +o00 of V. := By, B2:1.
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)
llwfz—wﬁn:‘/ dr o,
T1

) |
S/ dr |9, V.|| < oo (12 — £00)
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2
/ dr 0,V
T1

|
1Wry =Vl <7 || Biry Bare s Q — Bir, Bor, Q|| < 00 (v — %00)
k

H\UTZ - Wﬁ“ - ‘

™ |
S/ dr [|0;V,]| < oo (12 — £00)

1




Mathematical Tools (1) — Discretized Cook’'s method

T2
[Wr, = Wr || = ‘ / dr 0V,
T1

T2 |
§/ dr [|0: V|| < oo (12 = +0)

1

!
||wﬂv B \UTIH < Z ||B].Tk+lB2Tk+IQ - BlTkB2TkQH < o0 (TN - :I:oo)
k

H\UTz - leH < HBsz(B?ﬁ - 3271)QH + ”(Bsz - 6171)62719”
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Mathematical Tools (1) — Discretized Cook’'s method

T
o= vl = [ arorw,
T1

) |
§/ dr ||0; V.|| < oo (T2 — £o0)

1

!
Wey = Wn | < Z H817'k+1827'/<+19 - BlTkB2TkQH < oo (Ty — £00)
k

H\UTz - leH < "817’2(3272 - 3271)QH + H(Bl7'2 - 6171)62719”
< "817’2(6272 - 8271)QH + ”8271 (‘817’2 - Bln)Q” (*)
+ (commutators) (%%)

Recall: B;;Q — V; € JA (by construction)

For best possible summability as N — oo we should
» choose (7k)ken as sparse as possible, 7y := (1 + p)*m0, p >0
» control equal- and non-equal-time commutators in (x*)

» control estimation of unbounded leftmost B;, in (x)
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Tools (2) — Non-Equal-Time Commutator Estimates

fi(t,x) = [ &k ekxion(t £ (k) f € CP(R®), wm(k) == VkZ+m?

» velocity v(k) = wmk(k)
» velocity support
s :=v(suppf)
> propagation region
Tr:={(t,vt), velys, teR}
» creation operators

fd fkTX AkB(T X)

Lemma: Let fi be regular s.t. [1 N2 = ) and Agp have finite degree.

Cw || Aspr) | | A28 |

Jp >0V |[r—72| <plmil: ||[Bin,Bon]l| <
e 1+ |V + ||V




Assembling the Mathematical Arsenal

The reason why Discrete Cook works may be summarized:

Lemma (local difference estimate) Let Axg be RS families of finite
degree, and f, regular positive-energy Klein-Gordon solutions with
disjoint velocity supports. Then for sufficiently small scaling p > 0,
E|p>0V ’Tl —7'2| Sp‘Tﬂ,

Ve, = VA [P < G 1BinQ = B, QI + Co 7|
k=1

Proof based on non-equal-time commutator estimates,
energy-bounds [Buchholz'90], and Clustering arguments from
[Dybalski'05], [Buchholz'77], and [Araki, Hepp, Ruelle'62].



Is it useful?



Wave Operators and S-Matrix

Let .# denote Fock space over finite RS-degree 1-particle vectors
and Fgis; C .7 the set of product states with disjoint I'.

Def. (Mgller oNp.) For Wpod = V1(A)Q® ... @ V,(£,)Q € Zqisj,
Wk = Iim,3_>0 fk(P)Ak/BQ define
Fdisj — I,
W i YW og s lim By, By
The S-matrix is defined for U, ® € Fy; by
(U, S&) = (W, W, W_0).
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Plausibility of Strengthened Reeh-Schlieder?

» Rem. There are examples of QFT-models exhibiting A € 2(O)
which violate the Herbst spectral regularity condition.

» Proposition. In scalar free field theory, there exist
Reeh-Schlieder families Ag of arbitrarily small degree v > 0.

Proof. Taking Ag := ¢(f)e_ﬂ|¢(f)|N for compactly supported f
has degree v = 1/N for any N € 2N does the job.

» Conjecture: Wy € J# single-particle state with sufficiently
small Reeh-Schlieder degree v < 1 = W; non-interacting.

» Proposition. Assume there is a regular local A € 2(O) with
Herbst-exponent € >0. Then one can construct Ag € A(O+B)
S.t.

IE(A)(AsQ = Wi)[| < CaB, InflAg] <577

for any compact A C RSt1, with suitable Ca, and v ~ 1/e.
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v

Thanks for your attention!
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