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1925 to the discovery of quantum field theory. This comparison of fluctu-
ations in subsystems of heat bath systems (Einstein) with those resulting
from the restriction of the QFT vacuum state to an open subvolume (Jor-
dan) leads to a perfect analogy; the globally pure vacuum state becomes
upon local restriction a strongly impure KMS state. This phenomenon of
localization-caused thermal behavior as well as the vacuum-polarization
clouds at the causal boundary of the localization region places localization
in QFT into a sharp contrast with quantum mechanics and justifies the
attribute "holstic". In fact it positions the E-J Gedankenexperiment into
the same conceptual category as the cosmological constant problem and
the Unruh Gedankenexperiment. The holistic structure of QFT resulting
from "modular localization" also leads to a revision of the conceptual ori-
gin of the crucial crossing property which entered particle theory at the
time of the bootstrap S-matrix approach but suffered from incorrect use
in the S-matrix settings of the dual model and string theory.

The new holistic point of view, which strengthens the autonomous as-
pect of QFT, also comes with new messages for gauge theory by exposing
the clash between Hilbert space structure and localization and present-
ing alternative solutions including a new look at old problems of actual
interest as the "Schwinger-Higgs screening".

1 Preface

The subject of this paper grew out of many discussions with the late Jiirgen
Ehlers about Jordan’s discovery of quantum field theory (QFT) and in particular
the events between the publication of his thesis on statistical quantum mechanics
in 1924 [1] and his discovery of QFT which was published in one section of the
famous 1926 "Dreiménnerarbeit" [2] together with Born and Heisenberg.

I met Jiirgen Ehlers the first time around 1957 at the university of Hamburg
when he was Jordan’s assistant and played the leading role in Jordan’s general
relativity seminar. Our paths split, after I wrote my diploma thesis in particle
theory and particle physics moved to the newly constructed high energy lab-
oratory at DESY away from the old institute. Contacts with Ehlers and the
relativity group were less frequent and ended when both of us took up research
associate positions at different universities in the US. Only 40 years later, when
he moved to Potsdam/Golm in the 90s as the founding director of the AEI and
I was already close to retirement from the FU Berlin, we met a second time. At
that time he was interested to understand some of Jordan’s early work on quan-
tum field theory for which he became famous'. In particular he was interested
to understand some subtle points in the dispute between Jordan and Einstein’s
concerning Einstein’s use of statistical mechanics fluctuation arguments in favor
of the existence of photons which culminated in what is nowadays referred to
as the Einstein-Jordan conundrum.

As the terminology reveals, the E-J conundrum was a poorly understood

I After ww II Jordan interest was mainly focussed on general relativity and philosophical
implications. As a result Jiirgen and I were quite ignorant about his important work on QFT.



relation between fluctuations caused by restricting the vacuum state to the ob-
servables in a subvolume in Jordan’s newly discovered field quantization and
Einstein’s use of statistical mechanics arguments which led him to identify a
particle-like component in the fluctuation spectrum of a black body radiation
gas with a corpuscular nature of light. In Ehlers’s opinion [3], the foundational
aspects of the behavior of the global vacuum upon restriction to observables
localized in a subvolume were similar to problems about the origin of the cosmo-
logical constant. He hoped that with my experience of almost 40 years of work
on problems of QFT I could be of some help. I learned recently through John
Stachel that conjectures about possible connections between thermal aspects
of the subvolume fluctuations in QFT with the Hawking-Unruh type problems
already existed in the 80s [5].

For a some time this problem remained out of my range of interest, I did not
want to loose time on something which would draw me into unclear historical
problems away from my research concerning a nonperturbative access to QFT
via "modular localization"[4]. But around 2007 I suddenly realized that the
complete understanding of the E-J conundrum can be obtained with the help
of precisely those new insights. One just had to apply the principle of modular
localization which assigns a certain number of properties to localized subalge-
bras; the relevant property in this case being the thermal KMS? property of
the impure state which results from the restriction of the global vacuum to the
observables which were localized in a finite region. Those statistical mechanics
fluctuation properties (which led Einstein to postulate the existence of photons)
are indeed also present in the vacuum state if one only tests the state with the
ensemble of observables which are localized in a (without loss of generality)
causally complete region. This curious theoretical observation results from the
causal localization principle and for this reason this effect is not realized in
quantum mechancs (QM); in fact it is this counter-intuitive aspect with respect
to the intuition of physicists (which in most cases came from QM) which later
led to the term "conundrum". Nowadays we know that it is a predecessor of the
Unruh effect. It is an irony of history that Jordan discovered QFT without ever
becoming aware of a property which places QFT into its strongest conceptual
contrast with QM. This makes the E-J conundrum and its solution, as well its
relation to other counter-intuitive aspects of QFT and, last not least, the role
of the underlying causal localization principle in the actual research the most
fascinating topic of the history of QFT.

When I wanted to explain my findings [7][1][19] in 2008 to Ehlers, I learned
that he passed away shortly before my return from Brazil to Berlin.

The main aim of this paper, which I dedicate to the memory of Jiirgen Ehlers,
is to explain my findings and their relation to other open problems in QFT in
more detail as in [7]. One of these problems, which Ehlers in his capacity as
the founding director of the AEI took an interest in, was string theory (ST).
He was annoyed by the fact that he was unable to bridge the gaps between his

2The analytic characterization of thermal equilibrium states which survives in the thermo-
dynamic limit when the Gibbs trace formula is lost [6]. KMS states cannot be described in
terms of density matrix and the limiting von Neumann algebra changes its type.



understanding of spacetime properties and gravity and the (sometimes bizarre)
claims of members of the ST group at the AEI. What kept his interest alive was
his lifelong curiosity and the obvious considerable mathematical effort as well
as the substantial reputation of the protagonists of these new ideas.

The work on modular localization also led me to string-localized fields and
their important improved short distance property which promised a radical ex-
tension of renormalization theory to interaction between fields with higher spins.
The reason why I mention this here is that this new concept of string-localization
also revealed that string theory (ST) and its derivatives (embedding, dimen-
sional reduction, properties of "branes") had nothing to do with string localiza-
tion in spacetime but was rather the result of a fundamental misunderstanding
of causal localization. Hence in a curious way Ehlers problems with the ancient
Einstein-Jordan conundrum and his problems with ST were interconnected. His
death in 2008 prevented me from revealing this new message.

It is the purpose of these notes to explain its constructive [7] as well as critical
[9] power in a historical context. Usually a historical paper revisits the past
about closed subjects; a typical example are research papers on the discovery
and the conceptual struggle of QM. In contrast to such subjects which are closed
from a foundational point of view, the situation of the problems addressed in
this paper is very different in that they only were solved recently and that the
theory in which they appeared is still far from its closure. Some of the new
concepts which not older than one decade.

My posthumous thanks for introducing me to a fascinating topic from the
genesis of QFT which, far from being a closed part of history, exerts its con-
ceptual spell over actual particle theory, go to Jiirgen Ehlers. The present
exploration of the foundational principle of modular localization did not only
change the view about hitherto incompletely understood problems at the dawn
of QFT [7], but also promises to have an important say about its future [9].

2 Introduction

A dispute between Einstein and Jordan (referred to as the E-J conundrum [10])
led Jordan to propose the first quantum field theoretical model in order to show
that there exists a quantum analog of Einstein’s thermal fluctuations in open
subvolumes in form of two-dimensional quantized Maxwell waves in a global
ground state. A brief sketch of the pre-history which led Jordan is essential:

e Einstein (1909, more details 1917 in [11]): calculation of mean square fluc-
tuations in an open subvolume in statistical mechanics of black body radi-
ation shows two components: wave- and particle-like ("Nadelstrahlung")
which Einstein interpreted as intrinsic pure theoretical evidence for pho-
tons (in addition to the observational support coming from the photoelec-
tric effect).

e Jordan in his PhD thesis (1924, [12]) argued that the particle-like component ~
E,hv is not needed for attaining equilibrium.



e Einstein’s reaction [13] consisted in the statement that Jordan’s argument
seems to be mathematically correct but physically flawed (the absorp-
tion is incorrectly described). He praised Jordan’s statistical innovations
("Stosszahlansatz").

e Einstein’s paper caused Jordan’s radical change of mind; he fully ac-
cepted Einstein’s view by demonstrating that he can obtain the same wave-
and particle-like fluctuation components by restricting a "two-dimensional
quantized Maxwell field" (modern terminology: d=1+1 chiral current
model) to a subinterval. In this way he discovered field quantization
probably without understanding why a vacuum in QFT behaves radically
different from a quantum mechanical vacuum.

Shortly after this episode Jordan published his first field quantization in a
separate section in the famous 1926 "Dreiménnerarbeit" [2]. Gaps in Jordan’s
computation and his somewhat artistic treatments of infinities caused some
ruffling of feathers with his coauthors Born and Heisenberg [10]. From a modern
point of view the picture painted in some historical reviews, namely that this
was a typical case of a young brainstorming innovator set against a scientific
establishment (represented by Born), is not quite correct. Born and Heisenberg
had valid reasons to consider Jordan’s fluctuation calculations as incomplete,
to put it mildly; conceding this does however not lessen Jordan’s merits as the
discoverer of QFT .

One reason why this discovery of QFT was not fully embraced at the time
was that, although a free field on its own (staying with its linear properties) is
a quite simple object, the problem of energy fluctuations in open subvolumes
is anything but simple; to understand why subvolume fluctuations in ground
state problems of QFT are similar to Einstein’s statistical mechanics thermal
fluctuations is a deep conceptual problem which cannot be solved solely by cal-
culations, especially because such calculations can only be done in terms of
conceptually uncontrolled approximations. but it can be satisfactory answered
with the help of advanced ideas which relate the restriction of the vacuum to
the observables of a spacetime subvolume with thermal properties and vacuum
polarization ("split inclusions" of modular localized algebras [6]). One may
safely assume that Born and Heisenberg perceived that this new field model of
Jordan with infinitely many oscillators did not quite fit into their continuation
of the quantum mechanical project which Heisenberg started a short time be-
fore; in particular Jordan’s nonchalant way of handling infinities led to critical
comments [10].

Nevertheless Heisenberg, who in comparison to Jordan understood very little
about statistical at the time of the E-J conundrum, probably discovered vacuum
polarization (which is absent in QM) under the influence Jordan’s fluctuation
problem. A letter he wrote to Jordan before he published his famous vacuum
polarization paper [10], he challenges Jordan to account for a logarithmic di-
vergence lim._ o lne, ¢ = fuzziness at the interval ends (next section). Indeed
vacuum polarization and thermal manifestations of localization are opposite
sides of the same coin.



One note of caution. Since the terminology particles and waves played an
important role in the Einstein-Jordan dispute, the reader may think that the E-
J conundeum is related to the quantum mechanical particle-wave duality (which
was solved at the time of Bohr in terms of different but equivalent descriptions of
QM). This is not the case, rather the conundrum referers to the counterintuitive
fact that the vacuum in QM is inert, whereas in QT with causal localizability as
QFT (but not relativistic QM) it turns into a statistical mechanics-like impure
KMS state on spatially localized subalgebras.

The important distinction between the global quantum mechanical nature of
infinitely many oscillators and their holistic use in the implementation of causal
localization in a quantum theory of local fields had to wait almost 5 decades
before being understood on a foundational level. For some time QFT was sus-
pected to be afflicted by internal inconsistencies which lead to ultraviolet diver-
gencies; even after discovering the covariant renormalized perturbation theory
for quantum electrodynamics and finding an impressively successful agreement
of low order perturbation with experimental observations, some of these doubts
lingered on. Renormalized perturbation theory remained for a long time a col-
lection of recipes about how to extract time-ordered correlation functions from
the quantization rules starting with classical Lagrangians.

This quantization parallelism to the classical field theory of Faraday and
Maxwell as embodied in the Lagrangian or functional integral quantization pre-
vented for a long time an awareness about some radical differences of the quan-
tum counterpart of Einstein’s formulation of relativistic causality in Minkowski
space. One such difference was that quantum fields, in contrast to smooth
causally propagating classical functions, were rather singular operator-valued
Schwartz distributions which required testfunction smearing in order to attain
the status of (generally) unbounded operators with which one then can form
operator algebras which are causally localized in spacetime regions. The other
surprise was that these operator algebras have properties which were somewhat
unexpected from the conceptual viewpoint of QM in that causal localization
causes the global vacuum state to become impure upon restriction to a local
operator subalgebra A(O) generated by covariant fields A(z) smeared with O-
supported test functions. These impure "partial" states fulfill the so-called
KMS property [6] with respect to a modular Hamiltonian which is intrinsically
determined by the pair (A(Q), Qyqc) of local algebra and vacuum state vector.
The mathematical theory of operator algebras which highlights such properties
is the Tomita-Takesaki modular operator theory which is omnipresent in QFT
thanks to its causal localization structure. The presentation of QFT in terms
of a net of operator algebras and their properties was proposed by Rudolf Haag
[14] shortly after Arthur Wightman published his characterization of covariant
fields in terms of properties of their correlation functions [15] which afterwards
entered the first modern textbook in which a new axiomatic view about QFT
was formulated. Haag’s textbook [6] on "local quantum physics" (LQP) based
on an operator-algebraic approach to QF T appeared only many decades after he
gave a first account of this new formulation [14]. The terminology LQP in the
present article is used whenever it is important to remind the reader that the



arguments go beyond the view about QFT he meets in most textbooks which
is mostly restricted to a formulation of perturbation theory within the setting
of Lagrangian quantization and its functional integral formulation.

The mathematical property which guaranties the applicability of this theory
is the standardness of the pair (A(O), Qyac) i-e. the property that the operator
algebra acts on .. (more generally on all finite-energy state vectors) in a
cyclic (A(O)Qyqe = H) and separating (A(O) contains no annihilators of Q,4.)
manner. The first property is a result of the presence of a positive energy
representation of the Poincare group (the Reeh-Schlieder property [6]), whereas
the second property results from spacelike commutativity of observables and
is equivalent to the fact that also the commutant which contains the algebra
of the causal complement A(O) 2 A(O') acts cyclic on Qyqc, as long as the
spacelike complement O’ is non-void. It is these properties which are the cause
why, despite the shared attribute of being quantum theories, QFT is radically
different from QM [16].

For a structural comparison of the two quantum theories it is convenient to
rewrite (the Schrodinger form of) QM into the Fock space setting of "second
quantization". In this formulation the newly introduced vacuum remains, dif-
ferent from its active role in QFT, completely inert with respect to the action
of the Schrodinger "quantum field" (no vacuum polarization); instead of the
cyclic action the local algebra at a fixed time® corresponding to a spatial region
R CR3, one obtains a subspace and a tensor factorization of H

H(R) = A(R)Qinert C H=H(R)® H(R™) (1)
A(R) = B(H(R)), A= B(H) = A(R) @ A(R")

of This inertness of the quantum mechanical vacuum is very different from the
"vacuum polarizability" of 4. in QFT which in turn is connected to the lack
of tensor factorization (despite the commutation between A(Q) and A(Q")). In
terms of structural properties of operator algebras these remarkable differences
in the mathematical structure amount to the existence of two non-isomorphic
factor algebras in QFT: the global B(H) algebra of all bounded operators on
a Hilbert space and the local monad algebras A(Q) which are all isomorphic
to the unique hyperfinite type III; factor algebra in the Murray-von Neumann-
Connes classification of factor algebras [6]. The present choice of terminology
reveals the intention to see the new local quantum physical view of QFT in
analogy to the way Leibnitz understood reality in terms of relations between
monads. In this extreme relational view a monad by itself is structureless similar
to a point in geometry. Indeed in the local quantum physical description of
QFT all properties of quantum matter, including the Poincare covariance of its
localization in spacetime as well as the localization-preserving inner symmetries
in which it is localized, can be shown to arise from modular positioning of copies
of the abstract monade within a shared Hilbert space (section 3).

3In LQP such an algebra at a fixed time .A(R) is defined as the intersection of all spacetime
algebras A(O) with R C O.



Together with the thermal KMS property of the locally restricted vacuum
there is the formation of a vacuum polarization cloud at the causal boundary of
localization which accounts for a localization entropy. By replacing the boundary
by a thin shell of size € the localization entropy can be described in terms of a
(dimensionless) function of the dimensionless area o = area/e? which diverges
in the limit € — 0. This relation between the increasing sharpness of localization
and the increasing localization entropy is the substitute of the lost Heisenberg
uncertainty relation in QM. The position operator x,, is a global quantum
mechanical observable which does not belong to the observables obeying the
causal localization principle of LQP. The divergence in the sharp localization
limit € — 0 also shows another aspect in which QFT differs from QM. The
entanglement between the wedge-localized algebra and its opposite (that of the
spacelike separated wedge) is always infinite in the sense that it is not possible
to describe the associated state as density matrix; indeed there are no pure
states nor density matrix states on monad algebras; all states are impure in a
very radical way. In quantum statistical mechanics such states appear as KMS
states in the thermodynamic limit of Gibbs states (density matrices).

Reduced vacuum states assign a probability to the ensemble of local observ-
ables contained in A(Q); with other words the notion of probability is intrinsic
to quantum causal localization; unlike the probability interpretation which Born
added to QM and which led to heated epistemological philosophical discussions
about how the quantization of a theory of an individual mechanical observable
requires a probabilistic interpretation and led Einstein to reject quantum me-
chanics as a final description of reality (the Dear Lord does not throw dice).
But the intrinsic probability coming from quantum causal localization is not
different from that of statistical mechanics since it refers to the ensemble of all
observables which share the property of being localized in the same region. The
same KMS identity is shared by all observables which are localized in the same
spacetime region®. In fact this statistical mechanics-like probability is precisely
the kind of probability in Einstein’s used use of the fluctuation properties of
black-body gas. The understanding why this is also present in Jordan’s model
of QFT in the vacuum state was the aspect which was missing for a solution of
the conundrum. In retrospection QFT could have appeared together with the
probability of localized ensembles right from the beginning and not only Ein-
stein’s livelong resistance against assigning probabilities to individual quantum
events® but also the whole course of particle theory could have taken a different
direction right from the beginning!

But in the real world such big conceptual jumps are virtually impossible; even
for getting from inertial systems in Minkowski spacetime to General Relativity
it took Einstein many years and the same can be said about the development

4The causal completion property of LQP permits to assume without loss of generality that
the region is causally closed..

5In QFT each individual local observable inherits the KMS property of the local ensemble
to which it belongs. Perhaps with a future more foundational understanding about the relation
of QM with QFT it will be possible to understand that the imagined ensembles in global QM
are relics of real localized KMS ensembles of QFT.



of QM from the old semiclassical Bohr-Sommerfeld ideas. The problem for the
case at hand is aggravated by the fact that up to the middle of the 60s there did
not even exist a mathematical framework of operator algebras in which ideas
about "modular localization" could have been formulated. It is interesting to
note that modular operator theory (on the physical side often referred to a
modular localization) is the only theory to whose discovery and development
mathematicians (Tomita, Takesaki) and physicists (Haag, Hugenholz and Win-
nink) contributed on par. They first realized this at a 1965 conference in Baton
Rouge® with statistical mechanics of open systems and the role of the KMS
property representing the physical side [6]. The study of the relation between
modular operator theory and causal localization in LQP started a decade later
[17], and its first application consisted in a more profound understanding [18] of
the Unruh Gedankenexperiment [20]. The terminology "modular localization"
is more recent and marks the beginning of a new constructive strategy in QF T
based on the modular aspects of localization of states and algebras [43][4].

The E-J conundrum represents in fact a precursor of the Unruh Gedanken-
experiment and, as the latter, can be fully resolved in terms of the principle of
modular localization. In fact in the special case of Jordan’s chiral current model
on the side of QFT the E-J relation it represents a perfect unitary isomorphism
between a system defined by the vacuum state restricted to the algebra A(I)
localized in an interval I and an associated global statistical mechanics system
at finite temperature. Such isomorphic relations are referred to as describing
an "inverse Unruh effect", [23] and the Jordan model is the only known illus-
tration. However in both cases the KMS temperature is not something which
one can measure with a thermometer or use for "egg-boiling" and neither is the
localization region filled with radiation (section 5).

On several occasions the attribute "holistic" will be used in connection with
modular localization. This terminology has been previously applied by Hollands
and Wald [24] in connection with their critique of calculations of the cosmolog-
ical constant in terms of simply occupying global energy levels (with a cutoff at
the Planck mass). In previous papers [25] as in the present work, it refers to
the intrinsicness of localization which is connected with the cardinality of phase
space degrees of freedom and their subtle local interplay which distinguishes
physical localization of quantum matter from mathematical/geometrical con-
cepts. In fact it presents a strong resistance against attempts of geometrization
of QFT.

The simplest illustration of the meaning of holistic consists in the refutation
of the vernacular: "(free) quantum fields are nothing more than a collection
of oscillators" which often students are told after having taken a basic course
of QM. Knowing continuous families of oscillators in the form of creation and
annihilation operators a” (p) does not reveal anything about free quantum fields

6The mathematicians worked on the generalization of the modularity of Haar measures
("unimodular") in group representation theory whereas the physicists tried to understand
quantum statistical mechanics directly in the thermodynamic infinite volume limit (open
system statistical mechanics) by using the KMS identity instead of approaching this limit by
tracial Gibbs states.



and their associated local operator algebras. The free Schrodinger field and a
free scalar covariant field share the same global creation/annihilation operators

ot [ e, lalp)a ()] =50 o) 2

3
Agrr() = —— [ (™ a(p) + €70’ (p) L. p= (b VPP 107)
(2m) 2y/p? +m?
In both cases the global algebra is the irreducible algebra of all operators B(H),
generated by the shared creation/annihilation operators, but the local algebras’
generated by test function smearing of the fields with finitely supported Schwartz
functions suppf(x) C R of the fields and its canonical conjugate at a fixed time
in a spatial region R are very different. In the relativistic case they are identical
to the algebras A(Og), Ogr = R” i.e. the causal spacetime completion of R
which is also generated by smearing with Og-supported spacetime smearing
functions. According to what was stated before these algebras are of monad
type and the A(Og,)-restricted vacuum state is a KMS state; in the case of the
Schrodinger field the associated subalgebra B(H (R)) maintains the character of
the global algebra; the vacuum continues to be an inertial state in the "smaller"
factor Hilbert space H(R).

Whereas the global QM algebra is simply the tensor product of its factor
algebras, the relation of the net of local algebras to its A(Q) "pieces" is a more
holistic relation; although together with its complement it generates the global
algebra A(O) V A(O)" = B(H), the global algebra B(H) is not a tensor prod-
uct of the two. The most surprising property which underlines the terminology
"holistic" is the fact that the full net of local operator algebras which contains
all physical informations can be obtained by "modular tuning" of a finite num-
ber of copies of a monad in a shared Hilbert space®; the reader who is interested
in the precise formulation and its proof is referred to [26] also [16]. The fact
that the global oscillator variables are the same in both cases (2) does not reveal
these fundamental holistic differences which have very different physical conse-
quences. The present quantization formalism (Lagrangian, functional integral)
does not shed light on properties of QFT which solve the Einstein-Jordan co-
nundrum in a clear-cut way. If it comes to ensemble properties of localized
observables, the global aspects of covariant fields on which covariant perturba-
tion theory is founded are of lesser importance than the local operator algebras
A(O) which are generated by all smeared fields A(f) with suppf C O. The
emphasis changes from covariance properties of fields to properties of relative
localization of operattor algebras.

It is precisely this holistic aspect which renders any calculation of the sub-
volume fluctuation difficult, the simplicity of global oscillators is of no help here.

aQM (X,t) =

3
2

"Technical points as the connection between fields and the algebras they generate are not
important in the present context and therefore will be omitted.

8This number n is two for rhe simplest case of a chiral algebra, whereas for a net in four
spacetime dimension the correct modular positioning can be achieved in terms of n=7 copies.
The emergence of the spacetime symmetries in Minkowski spacetime as well as possible inner
symmetries of quantum matter is a consequence of this holistic tuning.
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A calculation in closed form is (even in the absence of interactions) not possible,
and the imposition of covariance, which was the important step for obtaining
the modern form of perturbation theory, does not provide any guidance. For
renormalized perturbation theory one has clear recipes which were extracted
from the imposition of covariance, but this is of not much help when one wants
to find "good" variables for the description of localized fluctuation. Saying that
the global aspects can be described in terms of oscillators is almost as useless for
understanding QFT as trying to understand a living body in terms of its chem-
ical composition. Although modular localization theory asserts the existence of
modular Hamiltonians, in its present state it does not provide ways to construc-
tion them. Jordan’s chiral model is an exceptional case for which, similar to the
Unruh Gedankenexperiment, an explicit identification of the modular Hamil-
tonian in terms of the spacetime symmetries of the model is possible. Actually
one may view Jordan’s fluctuation problem as a predecessor of the Unruh effect:
QFT was born with the "thermal"? localization aspects of the E-J conundrum
which includes a completely intrinsic pre-Born notion of probability"; however
the proximity of its date of birth to that of QT prevented an in-depth inesti-
gation of differences and possibly shared properties beyond & and the Hilbert
space.

This begs the question how, with the understanding of foundational prop-
erties of QFT still being incomplete, it was possible to achieve the remarkable
progress in renormalized perturbation; or to phrase it a more historical con-
text: how could one arrive at the standard model without having first solved
the 1925 Einstein-Jordan conundrum? The answer is surprisingly simple: to get
from the old Wenzel-Heitler formulation of perturbation theory, in which the
vacuum polarization contribution were still missing, to the Tomonage-Feynman-
Schwinger- Dyson perturbation theory for quantum electrodynamics (QED), one
only needed to impose covariance and "exorcise" some ultraviolet divergences
by finding plausible recipes and finally check the consistency of the so obtained
prescription. Many years later there were also derivation of these renormal-
ization rules by starting from invariant free field polynomials (without using
Lagangian quantization!'?) and invoking spacelike commutativity in an induc-
tive way (the causal perturbation setting of Epstein and Glaser [27]). But such
conceptual refinements of reducing prescriptions to to an underlying principle
had little impact and in any case would not have helped to obtain the founda-
tional insight into modular localization which is required in order to solve the
E-J conundrum.

This lucky situation of making progress by playfully pushing ahead and work-
ing once way through a yet incomplete formalism with the help of consistency
checks did not extend beyond Lagrangian quantization and renormalized per-
turbation theory. As will be shown in section 6, it is precisely this setting which
determined the fate of QF'T for more than half a century which is now being re-
placed by a more general setting based on modular localization. The latter has

9The reason for the quotation marks will be explained in section 6.
10The free fields do not have to fulfill Euler-Lagrange equations.
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not only removed unnecessary restrictions from renormalization theory, but also
led to a different view about on-shell constructions (section 5). When, in the
aftermath of the Lehmann-Symanzik-Zimmermann (LSZ) scattering theory and
the successfull adaptation of the Kramers-Kronig dispersion relations the first
attempts of S-matrix based on-shell construction were formulated, the concep-
tual difficulties of analytic aspects of on-shell properties were underestimated.
As one knows through more recent progress about modular localization, an im-
portant aspect of the S-matrix, namely its role as a relative modular invariant
of wedge-localization was missing and as a result, the true nature of the particle
crossing property was misunderstood by identifying it with Veneziano’s dual
model crossing which than led to string theory.

The correct formulation of the on-shell crossing property within a new S-
matrix based construction project and the solution of the E-J conundrum are
interconnected via the principle of modular localization. It is the aim of this
paper to show the power of the latter by presenting the solution to these two
problems. The first attempts to formulate particle physics and obtain an con-
structive access outside of quantization and perturbation theory was the S-
matrix in Mandelstam’s project [28]. As we know nowadays, and as it will be
explained in detail in the present work, this failed as a result of the insuffi-
cient understood on-shell analytic properties, whose connection to the causality
principles is more subtle than those to the off-shell correlation functions. In
retrospect it is clear that with the scant understanding of the central cross-
ing property and more generally the conceptual origin of on-shell analyticity
properties, there was no chance in 70s for Mandelstam’s S-matrix based parti-
cle theory project to succeed. In retrospect it is also clear why this happened
precisely when Veneziano’s mathematical construction of a crossing symmetric
meromorphic function in two variables was accepted as a model realization of
particle crossing for elastic scattering amplitudes. It is appropriate in an article
whose intention is to shed historical and philosophical light to try to explain
this situation in its historical context.

The importance of the E-J conundrum in the development of QFT can be
best highlighted by following Galileio’s example and invent a dialog between
Einstein and Jordan which is based on the same facts about the subvolume
fluctuation problem but takes place at the beginning of 1927 after Max Born
added his probability interpretation to Heisenberg’s and Schrédinger’s quan-
tum mechanics. Its invention is to argue that by a slight change of attention
the development of QFT could have taken a very different course. Einstein who
had just countered the claim in Jordan’s thesis that his "Nadelstrahlung" (the
particle-like component in Einstein’s statistical mechanics subvolume fluctuation
spectrum on which his ideas of photons was based) is unnecessary, whereupon
Jordan not only withdrew his mathematical objections, but even tried to con-
vince Einstein that the same two components appear in his first 2-dimensional
model of a quantized field.

Einstein: Dr. Jordan, I appreciate that you could finally accepted my
invitation to come to Berlin and I am extremely interested to understand why,
after first criticizing my fluctuation calculations in my statistical mechanics
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thermal blackbody radiation model in your Goettingen thesis, you now claim
you can obtain not only the wave-like component but also my "Nadelstrahlung-
component in your wave quantization even at zero temperature.

Jordan: Thank you Professor Einstein for taking so much interest in my
work. The appearance of such a fluctuation spectrum in my new setting of quan-
tized waves in a vacuum state is indeed surprising because my model uses quan-
tization rules which are generalizations of those in Heisenberg’s quantum me-
chanics. But even if one would formulate QM (as you did in your pre-Heisenberg
quasiclassical statistical mechanics calculations on black body radiation) as a
thermal many body system, this would not change the fact that the ground
state remains inert. A quantum mechanical system in the ground state cannot
produce thermal-like fluctuations by restricting it to a subvolume. Despite sim-
ilarities in the quantization procedure, the fluctuations in a localized subsystem
cannot be thermal-like. My quantized Maxwell waves cannot be subsumed into
a quantum mechanics of systems with a large particle number.

Einstein: As you remember, I have some grave reservation against asso-
ciating a probability to an individual measurement on a quantized mechanical
system which I expressed in the formulation "the Dear Lord does not throw
dice", which meanwhile became a vernacular. But I never had any problem with
probability in statistical mechanics, in fact my calculation of the Nadelstrahlung-
component in the black body fluctuation spectrum, which led me to the particle
nature of light, is based on the probability of statistical mechanics. Does the
result of your subvolume fluctuation calculation in the ground state of your field
quantization mean that this state does not remain inert if looked upon from a
local point of view 7

Jordan: Professor Einstein, I am glad that you raised this question. I have
been breaking my head over these unexpected consequences of my new quantized
field theory and I would be dishonest with you, if I claim to understand these
conceptual implications. But since the main difference to mechanics is the causal
propagation, which was already implicit in the Nahewirkungsprinzip of Faraday
and Maxwell and which you then succeeded to generalize into your new relativity
principle in a Minkowski spacetime, I am inclined to suspect that the ensemble
aspect which one needs in order to avoid the assignement of a probability to an
individual mechanical system as proposed by my adviser Prof. Max Born has its
origin in the quantum realization of causal localization. Somehow this principle
creates a natural ensemble associated with its causal completion of a localization
region, namely the ensemble of all local observables attached to that spacetime
region. I tried to convince Prof. Born and my colleague Heisenberg with whom I
am presently collaborating on a joint publication, but they conceded a separate
chapter to me only with reservations. It would be very helpful for me to obtain
some support from your side.

Einstein: I need some time to think about this new situation. Your conjec-
ture means that the new theory of quantum fields, which is certainly much more
fundamental than Heisenberg’s and Schrodinger’s quantized mechanics, comes
with an intrinsic notion of localized ensembles of observables and the associated
statistical mechanics type of probability. If one would better understand how
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the less fundamental global quantum mechanics can be related as a limiting
case to your new fundamental quantum field theory in such a way that Born’s
added probability is a relict of the ensemble probability (which your analogy
of subvolume fluctuations suggests to be an intrinsic property of the quantum
counterpart of causal localization), I may have to modify my rejection of Born’s
probability and perhaps even my Weltanschauung. Let us remain in contact
and please keep me informed about future clarifications about the points raised
in out conversation.

In this imagined dialog which could have radically changed the history of
QFT, I tried to not use the concept of modular localization (there was no math-
ematical support in the 20s) but limit the ideas to those which Unruh had at
his disposal (free fields and analytic thermal aspects of a spacetime restricted
vacuum expectation values).

The organization of this paper is as follows. In the next section the vacuum
polarization on the boundary of causal localization is derived for the "partial
charge", which is a modern formulation of Heisenberg’s original observation.
Section 3 sketches the issue of modular localization and its KMS property with
special emphasis on the difference between a KMS temperature and that mea-
sured by a thermometer. In section 4 the KMS property is used for the explicit
construction of an isomorphism between the thermal subvolume (interval in
Jordan’s chiral model) fluctuations in Jordan’s model with a corresponding sta-
tistical mechanics model representing Einstein’s side. Section 5 explains mod-
ular localization and its relation with the Tomita-Takesaki modular operator
theory. The impact of modular localization on on-shell constructions of QFT
with particular emphasis on the connection of particle crossing with the KMS
identity is addressed in section 6. The perhaps most important consequence of
modular localization for the ongoing research in particle theory is the general-
ization of renormalized perturbation to interactions involving arbitrarily high
spin through the use of string-localized fields in section 6. But in the same
section the origin of the misunderstandings which led to the dual model and
ST are also explained. Section 8 addresses some little known relations between
the cardinality of phase space degrees of freedom and localization which also
includes a critique of the Maldacena conjecture concerning the nature of the
AdS-CFT correspondence. Other arguments which expose localization as the
Achilles heel of ST were already presented in section 7. It is the aim of the
present work to address in particular those problems which cannot be solved
without foundational knowledge about modular localization.

3 Vacuum polarization, area law

In 1934 Heisenberg [29] finally published his findings about v. p. in the context
of conserved currents which are quadratic expressions in free fields. Whereas in
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QM they lead to well-defined partial charges associated with a volume V,
811]“ =0, chas( ) / d3xjdas(t,x) (3)
1%
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there are no sharp defined "partial charges" Qv in QFT, rather one finds (with
gr a finite support smooth interpolation of the delta function) [30]
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The dimensionless partial charge Q(fr.Ar,gr) depends on the "thickness"
(fuzziness) AR = ¢ of the boundary and becomes the f and g-independent (and
hence t-independent i.e. conserved) global charge operator in the large volume
limit. The deviation from the case of QM are caused by vacuum polarizations
(v. p.). Whereas the latter fade out in the R — oo limit, they grow with the
dimensionless area TBR for AR — 0. The simplest calculation is in terms of the
two-point function of conserved current of a zero mass complex scalar free field.
In the massive case the leading term in the limit AR — 0 remains unchanged.
We leave the elementary calculations (not elementary at the time of Heisenberg)
to the reader.

The presence of vacuum polarization causes relativistic quantum fields to be
more singular than Schrodinger fields and require the formulation in terms of
Schwartz distribution theory for which the above smearing of the current with
smooth finitely supported test function serves as an illustration. The LQP set-
ting on the other hand avoids the direct use of such singular objects in favor of
local operator algebras. In such a description the singular nature of vacuum po-
larization does not appear directly in the individual operators but rather shows
up in ensemble properties of operator algebras. It turns out that under rather
general conditions there exists between two monad algebras a distinguished (by
modular theory) intermediate type I, algebra A [6]

AOgiag) DN DAOR), HLXHOH, n=V(Q©Q) (5)
VAB'Q=AQ® BQ, Ac A(Og),B' € A(Og ar) VNV =BH)®1

The algebra A is simply a B(H) in the first factor of the factorization. In QM
the V would be simply the identity operator consistent with the trivial tensor
factorization of the vacuum.

However the QFT vacuum does not split on N' ® N’in this trivial manner,
since the operator V generates an entanglement which is uniquely determined
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in terms of the state vector n which in turn is uniquely related to the inclusion.
Different from entanglements in quantum information theory, one does not have
to average over the degrees of freedom in the second factor, rather the density
matrix which corresponds to the global vacuum is simply obtained by restricting
the vacuum state to A. The split vacuum is a rather involved state which
is canonically defined in terms of the inclusion and the global vacuum which
has nontrivial components to all higher particle states which are allowed by
superselection rules. In the limit AR — 0 the type one factor A converges
to the monad A(Og),and the tensor factorization is lost. In this limit the
entanglement becomes very singular which is reflected in the fact that the N-
restricted density matrix Gibbs state becomes a more singular KMS state.
The strength of the entanglement is measured in terms of the von Neumann
entropy of the A-associated density matrix obtained by restricting the global
vacuum state to . From the above effect of the vacuum polarization cloud
on the dimensionless partial charge with a fuzzy surface of size AR one would
expect that the vacuum polarization cloud within the split distance behaves
in the same way. This leads to an dimensionless area law for the localization
entropy (LE)
LE(a) ~a, a=A/(AR)?, for AR —0 (6)

a result which is also supported by ’t Hooft’s brickwall picture [31]. For chiral
theories which live on a lightray, the divergence is LE(a) ~ Ina, a = I/e
for ¢ — 0, where I is the length of an interval on the lightray and ¢ is a small
interval around the endpoints of I; this result follows from the fact that Jordan’s
model in the E-J conundrum is an isomorphism which relates the standard heat
bath statistical mechanics behavior with the localization entropy (section 4).
Although all objects, including the distinguished N algebra and the splitting
operator V, are determined in terms of the standard inclusion (A(Op Ap) D
A(O), Q) ', it is presently very difficult to do explicit computations in the as
yet insufficiently developed modular operator setting.

There is another idea which leads to a logarithmically modified area law for
entropy which is based on the analogy with the dimensionless volume propor-
tionality of the heat bath entropy. This picture suggests to think in terms of
"box" in which two sides are space-like and the third one is lightlike. The two-
dimensional case has no transverse direction; the contribution from the lightlike
direction is equal to the known logarithmic behavior. It suggests a logarithmi-
cally modified area law

LE(a) ~ alna, AR — 0 (7)

This result would place the localization entropy in close relation with the heat
bath entropy; the thermodynamic entropy would be related to the localization

1A standardness for a pair (A(O), ) means that Q is cyclic and separating for .A(O) which
follows from the Reeh-Schlieder theorem [6]. Standardness of an inclusion means that the two
included algebras and the relative commutant of the smaller within the bigger are standard
with respect to Q.

16



entropy by a change of parametrization which account for the change of a space-
like with a lightlike direction (with the dimensionless volume ~ V (kT)?). The
thermodynamic limit algebra is a monad as the sharply localized algebra, but
the parametrizations in the approach of the two monads by sequences of B(H)
algebras is different. This behavior of the localization entropy would correspond
to the existence of a correspondence between the localization entropy and the
conventional heat bath entropy at a certain temperature (a weak kind of "inverse
Unruh effect" [23]).

The final answer about the leading terms in the localization entropy has to
await the improvements of computational techniques within modular operator
theory. The ultraviolet divergences of localization entropy in the sharp local-
ization limit is a consequence of the principle of causal localization and in no
way indicates a threat against the existence of QFT; it already occurs in the ab-
sence of interactions. It does however show that the intuitive content of causal
localization is lost even if one only wants to realize it in form of a thought-
experiment with existing hardware; already the Unruh effect shows that the
observer (thermometer, counter) has to be uniformly accelerated i.e. one has to
go outside inertial systems and for double cones instead of noncompact wedges
the required conformal counters to be placed onto conformal trajectories simply
do not exist. In this connection it is important to note that there are two kinds
of temperatures which coalesce in inertial systems but differ in Unruh situations
and (as a result of the Einstein equivalence principle) in black hole situations.

Haag’s formulation of QFT in terms of nets of local observable algebras is
based on the quantum adaptation of the causal localization as formulated in Ein-
stein’s use of the Minkowski spacetime (with physical roots in the Nahewirkung-
sprinzip of Faraday and Maxwell [6]) is clear on a conceptual/intuitive level, but,
as explained before leads to problems in terms of hardware. However a certain
intuitive appeal coupled with a precise mathematical formulation is all one can
ask for in the realm of principles of quantum physics; the latter should lead to
observational consequences but need not be directly observable. In later sections
we will meet experimentally accessible consequences of causal localization. For
their derivation it is helpful to reformulate causal localization in a way which is
independent of the use of particular "field coordinatizations". This is achieved
in the algebraic setting of LQP. For reasons which become clearer in the next
section, this intrinsic formulation is referred to as modular localization. The
entropical aspect corresponds to the thermal KMS manifestation of modular
localization. In particular in the case of black holes, when the localization hori-
zon is not the "fleeting" kind of observer-dependent construct but an intrinsic
property of the spacetime metric, the localization entropy corresponds precisely
to the KMS thermal manifestation (the Hawking "temperature") of the part of
the world which is localized outside the black hole horizon.

Note that the well known entropy conjecture by Bekenstein, based on equat-
ing a certain area behavior in classical General Relativity with entropy results
formally from the above area law by equating AR with the Planck length. Quan-
tum Gravity is often thought of that still elusive theory which explains why and
how the quanta of gravity can escape the consequences of modular localization

17



for sharp localization. If Bekenstein’s conjecture is valid and the possibility
that gravity is (like van der Waals forces) an effective residue of fundamental
quantum matter is excluded, the conclusion that modular localization has to be
replaced by a more foundational principle is unavoidable.

The relation between AR and the entropy is reminiscent of Heisenberg’s
quantum mechanical uncertainty relation in which the uncertainty in the posi-
tion is replaced by the split distance A R within which the vacuum polarizations
can attenuate so that outside the vacuum returns to play its usual role if tested
with local observables in the causal complement of OgiaArg.

It was already mentioned in the introduction and will be stressed here again
that the probability interpretation, which Born had to add to Heisenberg’s and
Schrédinger’s formulation of QM, is completely intrinsic to LQP. It is a conse-
quence of the "thermal" KMS property of ensembles of operators contained in a
localized algebra A(Q) in the O-restricted vacuum state. It is in no way different
from the statistical mechanic probability, which Einstein used in his fluctuation
arguments to show the particle character of photons, and by which he challenged
the physical content of Jordan’s thesis. It is only with the modern concept of
modular localization and the hindsight of more than 8 decades that one realizes
how close the E-J conundrum scraped past the intrinsic probability coming from
the quantum formulation of the Faraday-Maxwell-Einstein causal locality prin-
ciple in Minkowski spacetime. QM is, as classical mechanics, a global theory
of individual instantaneously interacting material bodies. It is conceivable that
within a future more foundational understanding of a conceptual connection of
local QFT with global QM, quantum probability survives even though modular
localization is lost. Instead of a real ensembles the surviving probability refers
to a fictitious ensemble which leaves its trace in the statistics of the outcome of
repetitive experiments.

With Einstein in the possession of these implications of his dispute with Jor-
dan, his philosophical stance with respect to quantum mechanical probabilities
may have taken a different turn. and many philosophical discussions from the
beginnings of QM up to the present time may have taken a different turn.

A particular radical illustration of this point is the reconstruction of a net of
operator algebras from the relative modular position of a finite number of copies
of the monad [16]. For chiral theories on the lightray one needs two monads
realized in a shared Hilbert space in the position of a modular inclusion, for
d=1+2 this "modular GPS" construction needs three and in d=143 six posi-
tioned monads [26] to create the full reality of a quantum matter world including
its Poincaré symmetry (and hence Minkowski spacetime) from abstract modular
groups as well as inner symmetries via the DHR superselection theory applied
to the net of observable algebras (which determines the kind of quantum mat-
ter). This possibility of obtaining concrete models by modular positioning of a
finite number of copies of an abstract monad is the strongest "holistic outing"
of QFT. For d=1+1 chiral models the modular positioning leads to a partial
classification of chiral theories as well as to their explicit construction (section
5).

Apart from d=1+1 factorizing (integrable) models, where such modular as-
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pects were used for the existence proof, QFT has not yet reached the state of
maturity where such holistic properties can be applied for classifications of fam-
ilies of models and their construction through controlled approximation. An
extension to curved spacetime would be very interesting; the simplest question
in this direction is the modular construction of the local diffeomorphism group
on the circle in the setting of chiral theories.

4 Modular localization and its thermal manifes-
tation

The aim of this section is to collect some properties which form the nucleus of
LQP, among them "modular localization" as the intrinsic formulation of causal
quantum localization. Since subalgebras in QFT A(O) localized in spacetime
regions O are known to act cyclic and separating on the vacuum (the Reeh-
Schlieder property [6]), the conditions for the validity of the Tomita-Takesaki
modular theory are always fulfilled for regions whose causal completion is smaller
than the Minkowski spacetime. For such regions QFT secures the existence of
the uniquely defined Tomita operator Sp whose polar decomposition yields the
building blocks of modular localization theory.

It has been known for a long time that the algebraic structure underlying
free fields allows a functorial interpretation in which operator subalgebras of the
global algebra B(H) are the functorial images of subspaces of the Wigner wave
function spaces ("second quantization"'?).

LQP generalizes the quantization approach of QFT in the sense that it avoids
the Lagrangian or functional integral parallelism to classical field theory; being
more fundamental than classical field theory, the content of QFT should reveal
itself without the classical detour. In contrast to QM, QFT in the LQP setting
de-emphasizes individual operators in QFT in favour of ensembles of operators
which share the same spacetime localization region. This intends to follow more
closely the situation in the laboratory where the experimentalist measures coin-
cidences between events in spacetime; all the rich particle properties, including
the nature of spin and internal quantum numbers were obtained by repetitions
and refinements of observations based on counters which are placed in compact
spatial region and remain "switched on" for a limited time. Their detailed in-
ternal structure is generally not known, what matters is their localization in
spacetime and the sensitivity of their response.

The role of covariant quantum fields in LQP is that of generators of a net
of local operator algebras {A(O)}pecrs which act in a fixed Hilbert space. In
the Wightman setting a field is a covariant operator-valued distribution A(x)
which is globally defined for all z € R*. From its global definition one passes to
(unbounded) O-localized operators, formally written as A(f) = [ A(z) f(z)d*z,
suppf C O, which according to Wightman’s axioms, define a system of polyno-

12Not to be confused with quantization; to quote a famous saying by Ed Nelson: "quanti-
zation is an art, but second quantization is a functor".
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mial (unbounded) operator *-algebras P(O). Formally these unbounded opera-
tors can be associated with an aforementioned net of easier manageable bounded
operators (von Neumann algebras) which define Haag’s LQP setting. The ad-
vantage is that one obtains access to the well-developed mathematical theory
of operator algebras (from now on omitting "bounded"). Certain causality as-
pects allow a more natural definition and more profound understanding in the
LQP setting. The mathematical details which allow to pass from Wightman’s
description to LQP and vice versa are tedious and incomplete [6], but the lack
of precise understanding about the mathematical connection had little effect on
progress and plays certainly no role in a description of the historical and actual
impact of concepts as modular localization and its holistic manifestations.

Whereas both settings are different formulations of closely related physical
concepts, there is a significant distinction between these settings and construc-
tions based on (Lagrangian/functional integral) quantization methods, where
quantization has the well-known meaning of a canonical formalism which is
build on a kind of parallelism to classical fields. Quantization is not a physical
principle; whereas it is conceivable that certain successful classical descriptions
of nature can be pictured as limiting cases of certain quantum theories, there
is no general correspondence. The fact that the less fundamental QM (it lacks
causal localization and its holistic consequences) is capable to maintain an al-
most (up to ordering prescriptions of operators) unique relation to classical
mechanics does not imply that such a close relation must continue to hold in
QFT. The strong link between classical mechanics and its quantum counter-
part finds its best known expression in the fact that Lagrangian quantization
(canonical quantization) and functional quantization (path integrals) enjoy solid
mathematical support frrom measure theory.

All this breaks down in interacting QFT. Although one can formally start
from such representation of quantization, there is no basis for a mathematically
controlled procedure; the only thing which one can do is to impose the suc-
cessful rules of renormalized perturbation theory; the functional representation,
although without mathematical support, takes care of the correct perturba-
tive combinatorics and other formal aspects. With the hindsight of covariance
and plausible rules to remove infinities for renormalizable couplings, one finally
arrives at a (divergent) perturbative series which, although in many cases ob-
servational successful, reveals nothing about the mathematical ezistence of a
solution; hence the question whether the observational successful lowest order
terms can be considered as an asymptotic approximation for vanishing interac-
tion strength remains unanswered. It should be mentioned that in d=1+1 there
exists a superrenormalizable class of interaction (free field like short distance
behavior, no uncontrolled infinities) for which an extension of the measure the-
oretical path integral approach of QM permits a mathematical construction [32],
but these models shed no light on realistic strictly renormalizable interactions.

The so-called causal perturbation setting of Epstein and Glaser [27] avoids
running into the infinities which one encounters in the Lagrangian or functional
setting; it has the additional advantage that it does not require Euler-Lagrange
fields but rather works for all spinorial /tensorial fields which result from the co-
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variantization of Wigner’s positive energy representations (i.e. it is not a quan-
tization setting '?); this is of particular importance in case one uses stringlike
covariant fields (section 6). Causal perturbation theory starts with a pointlike
Wick-odered coupling of free fields to a composite scalar and implements the
principle of causal commutativity in an inductive way by viewing the itera-
tive step as a distributional extension problem, subject to a "minimal scaling"
requirement which can only be fulfilled for (by definition) renormalizable cou-
plings. For interaction densities whose short distance scaling properties remain
within the so-called power counting limit (4 in d=1+3), one finally arrives at
the renormalized perturbation series for operator-valued distributions (or their
correlation functions) which depend on a finite number of coupling parameters.

There is a finite number of renormalizable interactions between massive
scalar and s=1/2 fields; non of these couplings develops infrared divergencies in
the massless limit. Interactions with s=1 vectormesons are on the borderline:
the charge-neutral (gauge-invariant) quantities define a renormalizable subset,
but the (physical) matter fields coupled to the vectormesons remain nonrenor-
malizable; only by passing from a Hilbert space setting to an indefinite metric
Krein space, one can recover renormalizability in terms of unphysical but renor-
malizable fields; however the Krein formalism has not led to a prescription for
extracting physical pointlike matter fields. In contradistinction to the s < 1
couplings, all vectormeson couplings have infrared divergencies for vanishing
vectormeson masses. This behavior, as well as similar problems for higher spins,
will be explained in the section 6 where it is also shown how to avoid it by the
appropriate use of string-localization. The divergence of the perturbative series
even after having renormalized each term, may be a result of the fact that, in
contradistinction to QM, one is not perturbing operators but rather singular
operator-valued distributions. LQP avoids the use of these singular objects in
its operator-algebraic formulation; but apart from integrable systems and some
not yet tested proposals for general systems, an approximation scheme in terms
of operators instead of operator-valued distributions is still not available (section
7).

Thanks to the better short distance property of stringlike free fields, renor-
malized perturbation theory leads to an extension of the Hilbert space setting
of renormalized perturbation theory to fields for any spin (section 6). In this
way the number of couplings below the power-counting limit (the prerequisite
of renormalizability) is enlarged from the finite number of pointlike couplings
to an infinite number of couplings involving stringlike fields; this is a vast area
for future investigations. A helpful analogy for the passing of pointlike gen-
erators to nets of algebras is that of changing from coordinate description of
geometry to its intrinsic presentation. The net of operator algebras does not
depend on which of the infinitely many possible field coordinatizations was used,
only conserved currents associated to spacetime- and inner- symmetries main-
tain a preferential status. In fact the local net point of view de-emphasizes the

I3Free fields are obtained from the unique (m,s) positive energy Wigner representation of
the Poincare group [44] either by (highly non-unique) covariantization or (for string-localized
fields) by implementing modular localization [42].
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role of individual operators by deriving the local net and all physical properties
from the relative modular positioning of a finite number of algebras in a shared
Hilbert space (a "GPS" formulation ).

Even the spacetime symmetries and the nature of the spacetime on which
they act, as well as internal symmetries are encoded in the modular positioning.
As already mentioned in the introduction, the ensemble aspect of operators
sharing the same spacetime localization region is not something added, but
rather an intrinsic consequence of the LQP setting of QFT. In a way this setting
is converse to the Atiyah-Witten project of the 70s in which operator properties
were considered consequences of geometric properties.

The most conspicuous physical manifestation of the LQP setting is the fact
that the restriction of any finite energy pure state to a local algebra is impure
on the ensemble of operators contained in that algebra; in fact the restriction is
equal to a Kubo-Martin-Schwinger thermal state, whose main difference from a
heat-bath state of statistical mechanics is that the Hamiltonian is not that of the
global time translation but rather the modular Hamiltonian which is uniquely
determined in terms of the local algebra A(QO) and the global finite energy state.
In case of the vacuum state and certain LQP models one can even identify this
Hamiltonian with generators of covariances which leave O invariant; the Jordan
model in the next section is one of such models. As mentioned on previous
occasions, the statistical mechanics character of localized states in LQP comes
with an ensemble probability, whereas in QM the probability interpretation has
to be added.

The central issue in LQP refers to two physically motivated requirements on
the local net

[A(O,), A(0,)]
A(0)
A0

0, O1 >< O,, FEinstein causality (8)

A(O"), causal completeness

A(O)', Haag duality

The first line is a condensed notation for the commutativity of operators from
spacelike separated regions; it is only required for observable fields. The commu-
tation property for nonabsorbable operators, as those coming from spinor fields
or fields carrying superselected charges, have commutation relations which are
determined by the application of superselection theory to their associated ob-
servable subalgebras'? [6]. The causal completeness (8) is a local adaptation
of the old time-slice property [35]. Whereas causal commutativity refers to
spacelike separations, causal completeness stands for the quantum counterpart
of hyperbolic propagation of classical relativistic fields for which initial values
at a fixed time determine the wave functions in the causal shadow of the initial
values. The singular nature of quantum fields prevents a simple formulation in

MT,ocality and the ensuing covariance in low spacetime dimensions allow more general com-
mutation relations than Fermi/Bose relations. In d=1+2 particles and fields maybe plektons
[33] (braid group statistics) and in d=1+41 the commutation relations can be changed within
the same relative local field class (soliton class) without having any influence on particles
("schizons" [34]).
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terms of fields and prefers the above clearer algebraic formulation. Interesting
situations arise when Haag duality is violated; the simplest illustration is the
Aharonov-Bohm effect for the net which is generated by the free electromagnetic
field strength [36].

Mathematically it is very easy to construct Einstein-causal theories which
violate causal completeness; as a consequence they have pathological physical
properties!®. Well-known cases result from generalized free fields with certain
continuous mass distributions [35]. The AdS — CFT correspondence and the
construction of "branes" within a higher dimensional QFTs are also illustra-
tions (section 7) for violations of causal completeness. On the other hand the
holographic projection onto a null-hypersurface leads to the correct reduction of
degrees of freedom so that its cardinality adjusts itself to the lower dimensional
situation. As a consequence one cannot return to the original theory without
some additional information.

As a result of a subtle relation between the cardinality of phase-space de-
grees of freedom with localization (split property, causal completeness,..), the
nuclearity property, introduced decades ago by Buchholz and Wichmann [6],
became in conjunction with modular theory ("modular nuclearity") an impor-
tant concept for the classification and nonperturbative construction of models
of QFT [37] [25].

After having aquainted the reader with some of the physical requirements of
the LQP formulation, we now pass to a brief description of its main mathemati-
cal support: the Tomita-Takesaki modular operator theory. This theory has its
origin in the operator-algebraic aspects of group representation algebras from
which Tomita took the terminology "modular" (originally referring to proper-
ties of Haar measures). A conference in the US (Baton Rouge, 1967), which
took place in the middle of the 60s and which was attended by mathematicians
(Tomita, Takesaki, Kadison,..) and mathematical physicists (Haag, Hugen-
holz, Winnink, Borchers,..), is nowadays considered as the birth of the Tomita-
Takesaki modular operator theory [38]. The participating physicists obtained
important aspects of that theory through their project of formulating quantum
statistical mechanics directly in the thermodynamic limit (statistical mechanics
of open systems) [6]. In their new setting, the Kubo-Martin-Schwinger prop-
erty (originally an analytic shortcut for computing Gibbs traces) assumed a new
conceptual role because it can be directly formulated for open quantum systems
in thermal equilibrium states. Although these ideas originated independently,
this conference brought them together; there is hardly any area in which the
contribution of mathematicians and physicists have been that much on par as
in modular operator theory/modular localization.

One reason for this perfect match was that the area of physical application of
modular theory widened beyond thermal systems and became combined with the
defining foundational property of QFT which has been referred to as causal lo-
calization. The basic fact which leads to this new connection, the Reeh-Schlieder

15The breakdown of causal completeness leads to a "poltergeist" effect where degrees of
freedom apparently enter from "nowhere"; one finds them in O” but they were not in O.
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theorem [6], was already known at the time of the Baton-Rouge conference. The
analyticity properties following from the positivity of the energy-momentum
spectrum secure the cyclicity of the action of operator algebras and the Ein-
stein causality the absence of annihilators of the vacuum in algebras A(O) for
regions O C R*. This cyclic and separating property is the "standardness
property" for the applicability of the Tomita-Takesaki theory. But the impor-
tance of the relation between localization and the T-T theory was only noted a
decade later by Bisognano and Wichmann [6] in the context of localization in a
wedge region for which the Tomita-Takesaki theory makes contact with known
geometrical/physical objects.

The general T-T theory is based on the existence of an unbounded antilinear
closable involution S with a dense domain dom.S in H which contains all states
of the form Af2, in case of a standard pair (A,Q2) [40][41]. Whereas the cyclicity
secures the existence of a dense domain, the absense of annihilators of € in A
insures the uniqueness of the definition.

SoAQ=A*Q, Ac ACB(H), S=JA> =A"3] (9)
J antiunit., A" mod. unitary, o,(A) = AdA™A

The existence of a polar decomposition in terms of a antiunitary J and a pos-
itive generally unbounded operator A follows from the closability of S (in the
following S stands for the closure). The modular unitary gives rise to a modular
automorphism group of the localized algebra A.

As a result of the Reeh-Schlieder theorem which, as a consequence of Ein-
stein causality is equivalent to the standardness the local pairs (A(O), ) with
Q) the vacuum state, the existence of the modular objects is secured for all lo-
cal pairs. However their physical interpretation is only generically known for
O = W = wedge regions which are Poincare transforms of the t-z wedge W;, =
{z > |t|;x €R?} . In that case the modular objects are All, = U(Aw (—7t)) the
unitary transformation representing the W-preserving Lorentz ("boost") sub-
group and J is a reflection on the edge of the wedge which is, up to a m-rotation
within the edge, equal to Jost’s TCP operator. Since in a theory with a complete
particle interpretation (to which the considerations of this paper are restricted,
unless stated otherwise) the interacting TCP operator and its incoming (free)
counterpart are related by the scattering operator Sg..¢, we obtain for the cor-
responding J

JW = SscatJW,in fOT‘ all W

This expresses a property of Ss.q¢ which is not covered by LSZ scattering theory
but turns out to be indispensable for the constructive use of modular localization
in QFT: Sgcqt s a relative modular invariant between the interacting and the
associated free (particle) wedge algebra. This property was recently used in a
proof [39] which reduces the interacting case in theories for which particles are
"too close" to fields to the free case, whose proof is almost trivial (see below).
The relative modular invariance of Ss.q: is the crucial property which ac-
counts for the analytic properties of Sscq+ , which find their most important ex-
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pression in the particle crossing property. The connection between algebraic and
analytic properties is much more subtle for on-shell (referring to the mass shell)
objects as the S-matrix and formfactors, than for off-shell correlation function.
Since most of these properties were not understood in the 60s, it is not surprising
that the project of formulating particle physics as a quantization-free on-shell
project failed. The misunderstandings about the particle crossing property in
the construction of the dual model, which later entered string theory, are a fasci-
nating illustration of how incomplete understanding of QFT which began in the
E-J conundrum (and continued in the perturbative quantization approach with-
out seriously affecting its content) finally ended in misunderstandings in an area
were the correct understanding of modular localization and its consequences for
the particle crossing property really matters, namely in on-shell constructions
of models of particle theory (section 7).

This has led to a deep schism within particle theory between a minority which
more or less knows what has gone wrong, and the majority, which probably
cannot be reached any more because it has cutoff itself from unsolved conceptual
problems of QFT.

Since it is not possible to present a self-consistent complete account of the
mathematical aspects of modular localization and its physical consequences in a
history-motivated setting as the present one, the aim in the rest of this section
will be to raise awareness about its physical content.

It has been known for a long time that the algebraic structure associated
to free fields allows a functorial interpretation in which operator subalgebras of
the global algebra B(H) are the functorial images of certain real subspaces of
the Wigner space of one-particle wave functions (the famous so-called "second
quantization"!%), in particular the spacetime localized algebras are the images
of localized real subspaces. This means that the issue of localization to some
extend can be studied in the simpler form of localized subspaces of the Wigner
particle representation space (unitary positive energy representations of the P-
group).

These localized subspaces can be defined in a intrinsic way [43] i.e. without
quantization, only using operators from the positive energy representation U of
the proper Poincare group Py (det = +1) on the direct sum of two copies of
the Wigner representation u of the connected component (proper orthochronous
Pl) on the one-particle space H;. For simplicity of notation the transformation
formulas are limited to the spinless case:

e = [0n@ L, o= — [emi? (o)

2po’ B (277)% 2po
U(g) (1 @ @2) = u(g)e1 & u(g)pa, ula, A)p(p) = e u(A~"p)
© =TCP, O(p1 @ p2) = Cipa & Cipr, Cop(p) = (p) (11)

16Not to be confused with quantization; to quote a famous saying by Ed Nelson: "quanti-
zation is an art, but second quantization is a functor".
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Any P, transformation can be generated from U(g) and ©. For representations
with s > 0 the Lorentz group acts through Wigner rotations (Wigner’s "lit-
tle group") on the little Hilbert space which in the massive case is the 2s+1
component representation space of rotations. The massless case leads to a
2-dimensional Euclidean "little space”" whose degenerate representation (triv-
ial "little translations") form a two-component little Hilbert space (helicity),
whereas faithful representation acts in an infinite dimensional Hilbert space ("in-
finite spin") [42]. The Lorentz transformations as well as © act also (through
representations of the little group) on the little Hilbert space.

It is precisely through the appearance of this little Hilbert space that the
problem of causal localization of states (wave functions) cannot be simply solved
by Fourier transformation and adding positive frequency contributions of par-
ticles with those of negative frequency from antiparticles. Whereas in the case
of the two classes of finite little spaces (the massive and zero mass finite helic-
ity class) of positive energy Wigner representation their "covariantization" was
easily achieved in terms of group theoretic methods [44] and led to local point-
like generating wave functions and fields, this third infinite spin class posed a
series obstacle. Attempt to convert its members into covariant pointlike wave
functions and corresponding fields remained unsuccessful and there was no un-
derstanding of the origin of this failure!”. Weinberg dismissed this large positive
energy representation class by stating that nature does not make use out of it
[44]. Since all important physical properties are connected to aspects of local-
ization which are precisely those properties which remained poorly understood,
such a dismissal seems to be premature in particular in times of dark matter.

The localization problems of the infinite spin class were finally solved [43]
with the help of modular localization which for different problems was already
used in [4]. In fact the main theorem in that paper states [43] that all positive
energy wave functions are localizable in noncompact spacelike cones and only the
first two classes are in addition localizable in double cones (the causal shadow
of a 3-dim. sphere). Since the (topological) core of arbitrarily small double
cones is a point and that of arbitrary narrow spacelike cones is a semiinfinite
spacelike string, the remaining problem consisted in actually constructing the
generating fields of these representation; this was achieved in [42]. The result
can be described in terms of operator-valued distributions ¥(x, e) which depend
in addition to the start  of the semiinfinite string also on the the spacelike string
direction e, €2 = —1. They are covariant under simultaneous transformations
of z and e and fulfill Einstein causality

[\Ill(xl,el),\l'g(xg,eg)]w =0, x1+ R+€ >< To +R+€2

where gr stands for graded (fermionic strings anticommute).

The modular localization of states uses the following construction. With
a wedge W = (x| x3 > |zg|) there comes a wedge preserving one paramet-
ric group of Lorentz-transformation Ay (x = —277) where x is the hyper-

ITReference [45] is an exception in that certain aspects of the localization problem were
already noted.
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bolic boost parameter and Oy, denotes the operator which implements the
xo-x3 reflection. The latter differs from the total reflection ©® by a 7 rota-
tion 7y around the z3 axis (in the z1-zo plane ) and therefore acts on the
wave functions as Jy = U(ry )©. Both transformations Ay and Jy commute.
Since the generators of one-parametric strongly continuous unitary groups are
selfadjoint operators, there exists an "analytic continuation" in terms of pos-
itive unbounded operators with dense domains. This forces the W-localized
wave functions to have certain analyticity properties in the momentum space
rapidity 6 (po,p3) = /m? + p? (chb, shf) which relate the analytic continua-
tion of particle wave function to the complex conjugate of the antiparticle wave
function'® Using the notation Aif, = U(Aw (—277)), the commutation with the
antiunitary Jy leads to

1 _1
Sw = Jwoy, = 0y Jw, S‘Q,V C 1, acts on Hy & Hq (12)
Swip =1, Ky = {¢ € domSw; Swe = +¢}, Swip = —ip

Kyw 7is standard” : Ky NiKyw =0, Kyw + iKw dense in Hy & H;

where 1) denotes the complex conjugate wave function'®. The properties are
straightforward consequences of the commutation between the boost and the
associated reflection [43]. The transformation of a wave function into its complex
conjugate is represented by an unbounded operators whose definition requires
the restriction to a dense domain which connects both components through
analytic continuation.

The properties in (12) result simply from the commutativity of Ay () with
the reflection J on the edge of the wedge; since J is anti-unitary it commutes
with the unitary boost, there will be a change of sign in its action on the analytic
continuation of u. Hence it has all the properties of a modular Tomita operator
and it is easy to check that it acts on wedge-localized wave function by complex
conjugation where in the presence of charge quantum numbers the particle wave
function is mapped into its antiparticle. The K-spaces K (O) for causally closed
sub-wedge regions O can be obtained by intersections i.e. Ny K (W); this
intersection may however turn out to vanish (see below) if the region is "too
small".

The surprise resides in the fact that the transformation of wave functions
to their complex conjugate (12, second line) defined on a certain dense subset
encodes the information about two geometric objects: a one-parametric mod-
ular group leaving a wedge invariant and a reflection on that wedge into its
opposite; the concrete wedge depends on the dense set of definition of the map
into complex conjugate. This is certainly something which is totally incompre-
hensible in QM; it represents a small aspect of the incomplete understanding of

I81f there exists an operator creating a partice, the negative frequency part associated with
the antiparticle annihilation must be related to the positive frequency part of the antiparticle
creation in its hermitian adjoint.

19 Although the action of Sy is diagonal, the definition of the Jyy needs the antiparticle
doubling of the Wigner space.
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the foundations of QFT which passes like a red thread through QFT from its
inception up to the present.

The connection with causal localization is of course a property which only
appears in the physical context. The general setting of modular real subspaces
is a Hilbert space which contains a real subspace K C H which is standard in
the above sense. The abstract S-operator is then defined in terms of K and i K.

The above application to the Wigner representation theory of positive en-
ergy representations®’ also includes the infinite spin representations which lead
to semiinfinite string-localized wave functions i.e. there are no pointlike covari-
ant wave function-valued distributions which generate these representations;
they are genuinely string-localized (which the superstring representation of the
Poincaré group is not; so beware of terminology. The application of the above
mentioned second quantized functor converts the modular localized subspaces
into a net of O-indexed interaction-free subalgebras A(Q). Interacting field the-
ories can of course not be obtained in this way; as mentioned before, in this
case one can start with the Wightman setting or the LQP algebraic formula-
tion with the additional assumption that the theory has a complete scattering
interpretation (its Hilbert space is a Wigner-Fock space).

But as it happens often in physics, if one arrives at a foundational property
which has been derived from lesser fundamental setting, one changes the setting
in such a way that the less fundamental properties are derived as consequences
of the foundational principle. This means in particular that renormalized per-
turbation and all the other (within the setting of formal power series expansions)
rigorous statement must also be reproducible in the new setting; this has been
verified to a large extend.

The algebraic setting in terms of modular localization also gives rise to a
physically extremely informative type of inclusion of two algebras which share
the vacuum state, the so-called modular inclusions (A C B, Qy4.) where modular
means that the modular group of the bigger A% compresses (or extends) the
smaller algebra [26]. A modular inclusion forces the two algebras automatically
to be of the monad type. The above mentioned "GPS construction of a QFT"
from a finite number of monads positioned in a common Hilbert space uses this
concept in an essential way. It is perhaps the most forceful illustration of the
holistic nature of QFT.

There are two properties which always accompany modular localization and
which are interesting in their own right

o KMS property from restriction of global vacuum to A(O). By ignoring the
world outside O one gains infinitely many KMS modified commutation
properties with modular Hamiltonians K associated to the O restricted
vacuum.

20The positive energy condition is absolutely crucial for obtaining the prerequisites (12) of
modular localization.
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(AB) = <Be*KA>, A=e¢K A Bec A©), infinitly many K for0>O0
(13)
(AB) # (A)(B) if [A,B] =0 in contrast to QM

For chiral theories on the lightray there is a rigorous derivation of the local-
ization entropy for an interval with vacuum attenuation length ¢ (surface fuzzi-
ness) from the well-known linear length L — oo behavior (the "one-dimensional
volume factor" L). They are related as Ine~! ~ L x kT. This inverse Unruh
effect plays an important role in the full understanding of the E-J conundrum
presented in the next section.

e Higher dimensional localization entropy. A rigorous derivation for d > 1+1
based on the split property [6] does not yet exist. As mentioned in the
previous section there are two competing ideas leading to results which
are different by a logarithmic factor. One is based on the analogy with
the vacuum polarization caused increase in the norm of the dimensionless
partial charge (4); it is also favored by 't Hooft’s "brickwall" idea [31]. The
other idea [46] which contains an additional log term is favored by the idea
of a "weak inverse Unruh effect"[23] which is based on a "lightlike box"
(closely related to a holographic projection onto the causal boundary null-
surface) in which two spacelike directions account for an area factor and
the logarithmic factor for a lightlike direction in a spacetime localization of
the spatial surface which leads to an analogy between the infinite volume
heat bath entropy with that caused by localization?!

. R n—2 R
Vi1 (KT) ! |T=Tpoa = (AR) In (AR) (14)

V-1 is the well known thermodynamic volume factor (made dimension-
less by the kT powers) and the AR represents the thickness of a light sheet
of a sphere of radius R and corresponds to the attenuation distance for
the vacuum polarization. The logarithmic factor corresponds to the men-
tioned lightlike length L and its fuzzy boundary so that V"2 x L ~ y»—!
i.e. transverse volumexlightlike L written in a dimensionless way. A di-
mensionless matter-dependent factor (which is expected to be identical on
both sides) has been omitted.

The holographic projection onto a null-surface reduces the original symmetry
but at the same time leads to a vast symmetry enlargement [46] containing the
infinite Bondi-Metzner-Sachs symmetry which in turn contains a copy of the
Poincaré group.

21Both the large distance thermodynamic divergence and the short distance "split" diver-
gence of localized algebras involve approximations of monads by type I factors and it is
suggestive to look for a connection. For n=2 there is a rigorous derivation (see last section).
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There is a rather deep reason why the terminology temperature in connec-
tion with "localization temperature" has to be handled with great care. This is
because the notion of temperature as measured by a thermometer is based on
the zeroth thermodynamic law, whereas the KMS property refers to the second
law according to which it is impossible to gain energy from equilibrium states
by running a Carnot cycle (the absolute temperature). In inertial systems those
two definitions coalesce (after normalization), whereas in a accelerated systems
used e.g. in the Unruh Gedankenexperiment to achieve the Rindler-wedge local-
ization, this is not the case. A closer examination shows [47] that the conclusion
about "egg-boiling" and particle radiation claimed as observed by an accelerated
observer are incorrect. To the extend of validity of Einstein’s equivalence princi-
ple, this also affects thermal manifestation ascribed to gravity as in case of black
holes [48]. This does however not lead to changes of entropical consequences.
It also does not change the fact that localization-caused "thermal" behavior
leads to impure KMS states by restricting pure vacuum states to subalgebras of
localized observables.

5 The E-J conundrum, Jordan’s model

With the locally restricted vacuum representing a highly impure state with
respect to all modular Hamiltonians Hmod(@), O D O on local observables
A € A(0) = A(0"), a fundamental conceptual difference between QFT and
QM has been identified. QM (type I, factor) is the conceptual home of quan-
tum information theory®?, whereas in case of localized subalgebras of QFT a
direct assignment of entropy and information content to a monad, if possible
at all, can only be done in a limiting sense. The present work shows that QF T
started with this conceptual antagonism in the E-J conundrum but its founda-
tional understanding only started more than half a century later and is still far
from its closure.

For this reason it is more than a historical retrospection to re-analyze the
E-J conundrum from a contemporary viewpoint. In a modern setting Jordan’s
two-dimensional photon?? model is a chiral current model. As a two-dimensional
zero mass field which solves the wave equation it can be decomposed into its
two u,v lightray components

22 Another subject which would have taken different turn with a better appreciation of the
problems in transfering notions of quantum information theory to QFT is the decades lasting
conflict about the problem of "black hole information loss".

23This terminology was quite common in the early days of field quantization before it was
understood that that in contrast to QM the physical properties depend in an essential way on
the spacetime dimension. Jordan’s photons and his later neutrinos (in his "neutrino theory of
light" [8]) do not have properties which permits to interprete the real 4-dimensional objects
as higher dimensional versions in the same sense that a chain of oscillators is independent
embedding space..
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0,0t®(t,x) =0, ®(t,z) =V(u)+ V), u=t+z, v=t—=z (15)
) . o, 1

5 = V(W) 30) = DV (), () 50) ~

T(u) = 5(u) :, T(v) = 5%(v) 5, [5(u),j(v)] =0

The scale dimension of the chiral current is d(j) = 1, whereas the energy-
momentum tensor (the Wick-square of j) has d(T") = 2; the u and v world are
completely independent and it suffices to consider the fluctuation problem for
one chiral component. The logarithmic infrared divergence problems of zero
dimensional chiral d(V') = 0 fields arise from the fact that the zero mass field V,
different from what happens in higher dimensions?*, are really stringlike instead
of pointlike localized. In fact the V is best pictured as a semiinfinite line integral
(a string) over the current [8]; this underlines that the connection between in-
frared behavior and string-localized quantum matter also holds for chiral models
on the lightray. It contrasts with QM where the infrared aspects are not related
to the infinite extension of quantum matter but rather with the range of forces
between particles. Exponentials of string-localized quantum fields involving in-
tegration over zero mass string localized d=1+3 vectorpotentials share with the
exponentials of integrals over d=141 currents expiaV the property that their
infrared behavior requires a representation which is inequivalent to the vacuum
representation of the field strength or currents; the emergence of superselection
rules ("Maxwell charges") is one of the more radical consequences of string-
localization.

The E-J fluctuation problem can be formulated in terms of j (charge fluctua-
tions) or T (energy fluctuations). It is useful to recall that vacuum expectations
of chiral operators are invariant under the fractionally acting 3-parametric act-
ing Mobius group (x stands for u,v)

U(a)j(z)U(a)* = j(x +a), UN)F(@)UN)" = j(Az) dilation (16)
1 ., cosTax + sina

U(a)j(z)U(a)" =

- J - ) rotation
(—sinma + costa)?’ " —sinmax + cosmwa

The next step consists in identifying the KMS property of the locally re-
stricted vacuum with that of a global system in a thermodynamic limit state.
For evident reasons it is referred to as the inverse Unruh effect, i.e. finding
a localization-caused thermal system which corresponds (after adjusting para-
meters) to a heat bath thermal system. In the strong form of an isomorphism
this is only possible under special circumstances which are met in the Einstein-
Jordan conundrum, but not in the actual Unruh Gedankenexperiment for which
the localization region is the Rindler wedge.

Theorem 1 (/23]) The global chiral operator algebra A(R) associated with the
heat bath representation at temperature B = 21 is isomorphic to the vacuum

24The V are semiinfinite integrals over the pointlike j’s, just as the stringlike vectorpoten-
tials in QED are semi-infinite integrals over pointlike field strength [36].
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representation restricted to the half-line chiral algebra such that

1%

(AR), Qor) = (A(RY), Quac) (17)
('A(R)/a Q27T) = (A(R—)a Qvuc)

The isomorphism intertwines the translations of R with the dilations of Ry,
such that the isomorphism extends to the local algebras:

(A((a, b)), Q2r) = (A((e”, ")), Quac) (18)

This can be shown by modular theory. The proof extends prior work by
Borchers and Yngvason [49]. . Let A denote the C* algebra associated to the
chiral current j°. Consider a thermal state w at the (for convenience) Hawking
temperature 27 associated with the translation on the line. Let M be the
operator algebra obtained by the GNS representation and €25, the state vector
associated to w. We denote by N the half-space algebra of M and by N'NM the
relative commutant of A/ in M. The main point is now that one can show that
the modular groups M, A and N'NM } generate a "hidden" positive energy
representation of the Mobius group SL(2, R)/Z> where hidden means that the
actions have no geometric interpretation on the thermal net. The positive energy
representation acts on a hidden vacuum representation for which the thermal
state is now the vacuum state 2. The relation of the previous 3 thermal algebras
to their vacuum counterpart is as follows:

N = A(1,00), N'nM = A(0,1), M = A(0, ) (19)
M'= A(-00,0), A(—00,00) = MV M’
M(a,b) = A", e2™0) (20)

Here M’ is the "thermal shadow world" which is hidden in the standard Gibbs
state formalism but makes its explicit appearance in the so called thermo-field
setting i.e. the result of the GNS description in which Gibbs states described by
density matrices or the KMS stated resulting from their thermodynamic limits
are described in a vector formalism. The last line expresses that the interval
algebras are exponentially related.

In the theorem we used the more explicit notation

M(a,b) = (A(a,b), p) = (A(e*™, 62”b), Quac)

Moreover we see, that there is a natural space-time structure also on the
shadow world i.e. on the thermal commutant to the quasilocal algebra on which
this hidden symmetry naturally acts. Expressing this observation a more ver-
nacular way: The thermal shadow world is converted into virgin living space.
In conclusion, we have encountered a rich hidden symmetry lying behind the
tip of an iceberg, of which the tip was first seen by Borchers and Yngvason.

250ne can either obtain the bounded operator algebras from the spectral decomposition of
the smeared free fields j(f) or from a Weyl algebra construction.
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Although we have assumed the temperature to have the Hawking value
B8 = 2x, the reader convinces himself that the derivation may easily be gen-
eralized to arbitrary positive 5 as in the Borchers-Yngvason work. A more
detailed exposition of these arguments is contained in a paper Looking beyond
the Thermal Horizon: Hidden Symmetries in Chiral Models [23].

In this way an interval of length L (one-dimensional box) passes to the size
of the split distance ¢ which plays the role of Heisenberg’s vacuum polarization
cloud ¢ ~ e~ L. Equating the thermodynamic L — oo with the the limit of a
fuzzy localization converging against a sharp localization on the vacuum side in
(e=27L, e2™L) for I — oo with the fuzzynes e 2% = ¢ — 0, the thermodynamic
limit of the thermal entropy passes to that of the localization entropy in the limit
of vanishing ¢

LET ‘k:T:27r§ —Ine (21)

where the left hand side is proportional to the (dimensionless) heat bathe en-
tropy and the right hand side is proportional to the localization entropy.

Although it is unlikely that a localization-caused thermal system is isomor-
phic to a heat bath thermal situation in higher dimensions (the strong inverse
Unruh effect), there may exist a "weak" inverse Unruh situation in which the
volume factor corresponds to a logarithmically modified dimensionless area law
Le. (£5)"2n(Z;) where R is the radius of a double cone , % its dimension-
less fuzzy surface and the box with two transverse- and one lightlike- directions
is the counterpart of the spatial box so that the volume factor V' corresponds to
a box where one direction is lightlike. This would be different by a logarithmic
factor (14) from the area law which is suggested by the analogy to the behav-
ior of vacuum polarization of a partial charge in the sharp localization limit
(see previous section) and which also appears in the Bekenstein’s work and in
't Hooft’s proposal to make the derivation of the Hawking radiation consistent
with Bekenstein’s area law with the help of a brickwall picture [31]. The present
state of computational control of the split property is not able to decide between
these two possibilities for n>2.

The above isomorphism shows that Jordan’s situation of quantum fluctu-
ations, i.e. fluctuations in a small subinterval of a chiral QFT restricted to
a halfline, is isomorphic to Einstein’s Gedankenexperiment of thermal fluctua-
tions in a heat bath thermodynamic limit state on a line restricted to an interval.
Such a tight relation, also referred to a an inverse Unruh effect [23], can not
be expected in higher spacetime dimension. Although the thermal aspect of a
restricted vacuum in QFT is a structural consequence of causal localization, the
general identification of the dimensionless modular temperature with an actual
temperature of a heat bath system, or, which is equivalent, the modular "time"
with the physical time is not correct; the modular Hamiltonian is does not de-
scribe the inertial time for which the local temperature defined in terms of the
zeroth thermodynamic law agrees with the "Carnot temperature" of the second
law [47].

The mean square energy fluctuation in a subinterval requires to compute
the fluctuations of integrals over the energy density T'(u) and compare them
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to the calculation in a thermal heat bath calculation (the Einstein side). This
would go beyond our modest aim of showing that both systems are structurally
(independently of the chiral model) identical.

Properties of states in QFT depend on the nature of the algebra: a monad
does not have pure states nor density matrices, but only admits rather singular
impure states as singular (non Gibbs) KMS states. The identification of states
with vectors in a Hilbert space up to phase factors becomes highly ambiguous
and physically impractical outside of QM. The state in form of a linear expec-
tation functional on an algebra and the unique vector (always modulo a phase
factor) obtained by the intrinsic GNS construction [6] leads to a vector represen-
tation, but this depends on the particular state used for the GNS construction.
In QM the algebras are always of the B(H) type where this distinction between
vector states and state vectors is not necessary.

6 On-shell constructions from modular setting

An important new insight into "particles & fields" comes from a new conceptual
view of the crossing property of formfactors, every formfactor is analytically
connected with the vacuum polarization formfactor

(O[B|p1,-p)™ = " (=Prs1-—Pu | Bl P1, Dk (22)
B e B(O), O =W, p=antiparticle of p

The S-matrix pair-crossing follows via LSZ scattering formalism from formfactor
crossing. Hence formally (without the analyticity) crossing is supported by the
LSZ formalism, but without analytic continuation the crossing identity is a
tautology. The physical content of (22) consists in the statement that the right
hand sight is not only an object which can be expressed in terms of a time-
ordered correlation function within the same model, but is even the analytic
continuation of another on-shell quantity: the crossed formfactor; in this form
the crossing becomes highly nontrivial.

As will be seen, the process of crossing some incoming momenta into their
outgoing (backward mass-shell of antiparticle) counterpart is nothing else than
the cyclic KMS commutation relation?® with a wedge affiliated Lorentz boost
generator as the KMS Hamiltonian. This changes the conceptual setting of
crossing from what it was thought to be at the time of the bootstrap- and the
dual model- project. Who among the dual model followers has thought at the
time that the foundational crossing property is in the same conceptual boot
as the Unruh [20] effect? Whereas the latter will probably remain (together
with the Einstein-Jordan subvolume fluctuation idea) an Gedankenexperiment
(albeit one which characterizes foundational properties of a successful theory),
the consequences of particle crossing are observational accessible e.g. in the

26The replacement of the thermal Gibbs representation, which for open systems (in the
thermodynamic limit) ceases to make mathematical sense [50], by the Kubo-Martin-Schwinger
analytic boundary formulation.
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comparison of the high energy limit of a process with its crossed counterpart
[21]. As long as the physical origin of the dual model crossing was not known it
was difficult to dismiss its use in Mandelstam’s S-matrix based approach. But its
identification of the meromorphic dual model function with Mellin transforms
of conformal 4-pointfunctions (section 7) has shown that it is not related to
approximations to scattering amplitudes.

For a special case (elastic scattering) Bros, Epstein and Glaser [22] derived
crossing from properties of Wightman functions within the rather involved set-
ting of functions of several analytic variables. These methods are similar to
those which Killén and Wightman used in their (later abandoned) project of
finding the analyticity domain of the 3-point function. Presumably the reason
why these methods were given up at the beginning of the 70s, was that the rela-
tion between mathematical expenditure and physical gain was too unfavorable.

The modern conceptual understanding came from the recognition that cross-
ing identify is equivalent to the modular KMS identity for wedge localization?”
together with the representation of wedge-localized multi-particle states in terms
of "emulated" expressions in terms of interacting wedge-localized operators act-
ing on the vacuum state [25][19]. "Emulation" involves different algebras acting
in the same Hilbert space and sharing the same P-representation.

To get some technicalities out of the way, let us first formulate the KMS
relation for the case without interactions. Let B(A) be a composite of a free
field A(x) i.e. either a W-smeared Wick-ordered polynomial pointlike compos-
ite or a product of W-smeared Wick-ordered smeared free fields A(f;) with
suppf CW. Consider

(B:A(f1).-A(fr) ) #0, B, A(f) < A(W) (23)

KMS 1 A fri1) A(fn) s A B A(f1)A(fy) 3), A" = U(L(~27t))

(0|B|p1,---pn) = (—Dk+1s--» —Pn | Bl P1, .., i) 1= <I3tr,k+1, ey Dtron A%B‘ P, ---,pk>
(24)

where p,. = (mch@,mshf, —p1, —p2) stands for the p in which the transverse
component is reflected. The fields affiliated with the interaction-free operator
algebra localized on the wedge obey the thermal KMS relation?® (second line).
By carrying out the Wick contraction and converting the free fields acting on
the vacuum into particle states, one obtains the free particle form of the crossing
relation in the last line.

Another way to arrive at the last line which is closer to the structural ar-
guments in the presence of interactions (below) goes as follows. Letting the
: A(fr+1)--A(fn) : in the second line act as their adjoint on the bra state, the
wave functions of the particles change to wave functions of the corresponding

271t shares the connection between locality and analyticity with the old derivation, but
instead of going back to the Wightman functions, the analyticity is channeled through the
more foundational properties of modular localization.

28The vacuum restricted to A(O) looses its global groundstate property and becomes a
thermal state.
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anti-particles. Taking these wave functions outside the bra state they continue
to change into the complex conjugate anti-particle wave functions with inverted
transverse components. Letting A of the A act on these wave functions (ana-
lytic continuation by i7), and using the fact that they are mass-shell projections
of Fourier transforms of W-localized test functions, the i7 analytic continuation
leads back to the original particle wave functions but with reflected transverse
components, whereas the plain wave bra state vector remains those of anti-
particle. Using the density of W-localized wave functions?® one finally obtains
the crossing identity in the last line.

Now we come to the much more subtle case with interactions; we use the
notation: A(W) = interacting algebra, A;,(WW) = free algebra, the letter B
stands for an operator from (or at least affiliated with) the interacting algebra.
Any W-localized field affiliated to the A;, (W )-algebra which creates a state in
domSpwy = domS 4,,(w) has a bijectively related image in A(W) ("emulation"
of free field structure in A(W) [19][25]) denoted by a subscript:

CA(f)Af) i (CA(f)--A(Sfr) 5).A(W)7 suppf C W, A(fi) < Ain(W)
(25)

FA(F)-AG) 10) = ( AGR)-AG) Do 100 = [Frofi) o f =

where f is the wave-function associated with the test-function f. Its existence
and uniqueness is secured by modular theory applied to the wedge region [51].
The KMS relation from which the particle crossing is to be derived reads [52]

<B(Az('7lz))A(W) (Az(‘i))A(W)> = ((A7,) aw)AB(A}) aw)) (26)
AAS 4w 10) = AEJ,AL), [0)

All free operators have been "emulated" within the interacting algebra so that
the KMS relation for the wedge-localized algebra can be implemented. At the
same time the emulation permits to rewrite its content in terms of particle states
whenever the emulats act on the vacuum. The only emulate which cannot be
reconverted in this way is the one in the middle of the left hand side (26).
In this case one has to understand how emulats act on multi-particle states.
This problem has been solved for integrable models. It is one of the fortunate
consequences of the holistic properties of causal localization in QFT that inte-
grability in the sense of explicit analytic solvability has a direct connection to
that fundamental principle of QFT.

The result is that integrability can be re-expressed in terms of a simple
domain property of the emulate of a single free field (a PFG operator in the
sense of [51]). Whereas emulats in general only inherit the invariance property
of their domains under the wedge-preserving subgroups from the modular wedge
localization, the requirement that the domain is also invariant under translations

29The necessary local sqare integrability of formfactors and their analytic continutations
follow by inspection.
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turns out to be very restrictive [51]. In d > 1+ 1 forces the S-matrix to be
trivial Sgeqr = 1, whereas in d = 1 + 1 it forces the nontrivial S-matrices to
be given by suitable combinatorial products of elastic 2-particle S-matrices®”
so that the connected higher particle contributions vanish. Each such S-matrix
has an associated QFT which is unique within the assumed translation invariant
domain property of the PFG which turns out to be equivalent to the existence of
a Fourier transform (= temperateness) of PFGs. Such models are susceptible to
solutions in closed form and are therefore called "integrable". Hence integrable
QFTs are defined to those with temperate PFGs. Their S-matrix is determeined
in terms of a two-particle generally matrix-valued 2-particle scattering function
in the rapidity variable which fulfills unitarity and crossing. Scattering functions
can be classified and computed in terms of the bootstrap relations; they are
in turn uniquely related to crossing symmetric formfactors via the bootstrap-
formfactor construction program [54].

In contradistiction to classical models or QM where one needs to find a
complete set of "conservation laws in involution" and where integrable systems
exist in every dimension, integrability in QFT is directly related to domain
properties of wedge-localized PFGs under translations [51]. properties which
only admit a nontrivial solution in d=141. The simplicity of integrable S-
matrix matrices (the absence of connected parts for n>2) keep integrable models
in the proximity of interaction-free models. Therefore it is not surprising that
their wedge-generators (the Zamolodchikov-Faddeev algebra generators) can be
obtained (in case of absence of bound states) by deformations of free fields [53]
instead of the more complicated emulation. The wedge generators (PFG, W-
smeared emulates of free fields) turn out to be the Fourier-transforms of the Z-F
algebra generators

(Ain () 4wy = / f(0)Z*(0)do, C = Ostrip, p = m(ché, shd) (27)
c
strip={z | 0<Imz<mn}, Z(0)=2Z"(0+in)
Z(21)Z" (z2) = S(21 — 22) 27 (22) Z" (z1), 2 € C
Since integrable models preserve the particle number in scattering processes,

the n-fold application of the creation parts Z*(6) to the vacuum are n-particle
states. Identifying the velocity-ordered particle state with the incoming states

Z*(61)Z"(02)..Z27(0,) 0) = 104,02, .,0y)
a.c.(01 g 02) <O |B| 91, 92, 0n>

in> 01 >02>..>0, (28)
=5(0, — 02) (0| B| 02,04, ..6,,)

in in

the old degenerate representation related to (bosonic) statistics has been "dumped"
into the incoming configuration which frees the left hand side for another non-
trivial representation in of the permutation group in which the transposition of

30In d=1+1 the cluster factorization does not distinguish a nontrivial elestic scattering
amplitude from Sgeqr = 1.
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two neighboring #’s involves the scattering function. This nontrivial represen-
tation takes care of the analytic exchange of 0's inside a formfactor (second line
in (28)).

The analytic change of a 6 through a k-cluster of 6 on its right hand side will
be a product of of scattering functions which in terms of the full k+1 S-matrix
corresponds to to a grazing shot S-matrix

Sy.s.(0;01,..08) = S¥(01,..0,) "1 S*T(0, 64, ..01) (29)

Without the restriction of integrability there is no known physical interpreta-
tion of analytic changes of orderings in terms of particle formfactors. As a result
of the presence of inelastic scattering thresholds they are not meromorphic in
the rapidities®! but contain cuts on the real axis which wreck the meromorphy
which was needed to obtain a representation of the permutation group in terms
of the scattering function.

Assuming that all singularities arise from such threshold cuts, their local
square integrability secures the validity of the crossing relation. This is seen as
follows. The first step is to use the extendibility of (26) from the dense set of
boundary values of in (0,im) analytic wave funtions to locally integrable wave
functions using the assumption that the singularity structure of the formfactors
is given in terms of threshold cuts. The - ordering on the left hand side (26)
can than be achieved by extending its validity to locally square integrable wave
functions with finite f-support. This leads to the validity of (22) if the two
clusters are ordered according to (61,..0r) > (0kt1,..0n) where the ordering
within the two clusters is arbitrary. In (22) the crossing relation has been
written as one finds it in the literature in order to be able to say that this is not
correct, the cluster ordering cannot be omitted.

The crossing relation is not sufficient for starting an on-shell construction
project, one needs to know in addition how a PFG acts on an n-particle state.
Since nontemperate PFGs have difficult domain problems it is better to study
the bilinear form Z*(6) between two particle states. If 6 is in an ordered position
with respect to the other 6 in the bilinear form Z* acts like an incoming creation
operator. A conjecture which generalizes the findings for the integrable case can
be formulated in terms of a generalized grazing shot S-matrix S, ;. which in this
case has matrixelements to arbitrary high particle states. This is an Ansatz for
an algebraization of an analytic ordering change. The resulting formulas for
bilinear forms associated with non-temperate PFGs are quite involved and their
consistency has yet to be tested [25].

A managable replacement of Mandelstam’s on-shell construction project for
nonintegrable QFT (which includes all physical relevant models) can only be
expected if it turns out that the path-dependent analytic ordering change can
be encoded into a braidgroup-like structure.

The ideas about PFGs and emulations of wedge-localized particle states in
terms of their creation with emulated free fields is best understood as an exten-

31They are never meromorphic in the Mandelstam s, t variables, and the rapidities are only
uniformization variables in case of integrable models.
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sion of Wigners representation-theoretical approach for noninteracting particles
to the realm of interactions. The distance between the two settings is immense,
but it only reflects the subtleties in the particle-field relation which has nothing
in common with the particle-wave duality of QM which already found its expla-
nation at the time of Bohr in the use of different bur equivalent representations
of QM. In contrast the particle-field relation in QFT is intrinsic, its subleties
cannot be simplified by changing representations. Between Wigner’s 1939 rep-
resentation theory enriched with modular localization and the present attempt
to extend it to interactions, the middle ground is occupied by integrable QFTs.
There distance to interaction free systems has made them an interesting the-
oretical laboratory for which most of the important questions (but not yet all
!) have already been answered. This would not have been possible without the
use of concepts related to modular localization.

7 Impact of modular localization on gauge the-
ories

It is well-known that the Hilbert space formulation for renormalizable couplings
of pointlike fields is limited to spin s < 1. For s=1 vectorpotentials one is forced
to use a Krein space formulation either in the form of Gupta-Bleuler or, in the
massive case, in terms of the more ghost fields containing Becchi-Rouet-Stora-
Tyutin (BRST) setting. The description in the massive case starts from the
observation that by adding an indefinite metric scalar Stiickelberg ¢ field (two-
point function with the opposite sign) to the dsq = 2 Proca field one obtains a
lower short distance dimension dsq = 1 "Krein vectorpotential”

AR (2) = AL (@) + 0,0 (30)

The choice of the independent ¢ depends on the d;g = 1 "gauge" description
one wants to use (Feynman, Landau,.. ). The short-distance-improving nature
of indefinite metric descriptions has been realized quite early in the history
of particle physics. If ones interest is limited to the on-shell S-matrix (the
adiabatic limit of the Bogoliubov generating operator-valued functional S(g))
one only needs to use the on-shell formulation of the BRST formalism which
is a simple linear transformation involving the Krein potential and the BRST
ghost fields but leaves the free matter field (a free spinor- or complex scalar
field) unchanged.

Using this formalism Scharf [61] showed that the time-ordered products in
terms of free fields which enter the formula for the S-matrix for massive spinor
QED can be defined in such a way that S passes the cohomological descend to a
unitary operator in Hilbert space. He emphasized that nowhere in his calculation
it was necessary to think of renormalizability as requiring to generate the masse
in terms of a spontaneous symmetry breaking from the massless vectormesons.
The same construction works for scalar QED. In both cases the model is uniquely
determined by the specification of its field content within the setting of BRST
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renormalizability which includes the specification of charge or other internal
symmetries of the matter fields®>. In a similar vein the most general coupling
of a real (neutral) field to a massive vectorpotential within the setting BRST
renormalizability leads to the Higgs model but without the Higgs symmetry
breaking mechanism. Whereas charge conservation restricts the complex matter
field to appear together with its complex conjugate in the interaction density,
there is no such protection against renormalization-produces odd terms in the
neutral case. The critical distance to the Higgs mechanism received additional
support in a more recent paper by other authors [62].

This is not the first time that the Higgs mechanism appeared as a quasiclas-
sical metaphor of a more foundational principle. The main motivation which
led to the Higgs mechanism was the idea that by starting from zero mass vec-
torpotentials and generating a mass through spontaneous symmetry breaking
the renormalizability is preserved in each step and hence the resulting massive
vectormeson coupling will be renormalizable, even though dy.(A}) = 2 ie. a
direct massive coupling leads to a violation of the power-counting limit. There
are two misunderstandings in this argument. First a perturbation in the zero
mass setting would amount to a kind of renormalized perturbation in two para-
meters, the coupling and the mass term, which is even worse than the violation
of the power-counting limit for which each order is well-defined up to an inceas-
ing number of counterterms. The second misunderstanding is the belief that the
massless theory (scalar QED) is renormalizable whereas its massive version is
not. Actually both pointlike couplings are renormalizable in an indefinite metric
Krein space setting, but since the Proca field has no massless limit one expects
that it will be more difficult to extraxt physical objects acting in a Hilbert space
in the massless case. That this is indeed the case will be shown later.

The better idea is to view massive vectormesons interacting with charged or
neutral matter fields in the context of the Schwinger-Swieca screening mecha-
nism [63] which states that the identically conserved Maxwell current i.e. the
divergence of the field strength F},,, leads to charge screening i.e. the "Maxwell
charge" in a model, in which massive vectormesons couple to matter fields van-
ishes. Although the proof of this theorem is quite involved, its explicit check
in massive models is very simple. Note that this theorem is only concerned
with the Maxwell charge, all other charges corresponding to different currents
(baryon/lepton number) remain nontrivial. In the Higgs model (the neutral
coupling) the Maxwell current is the only current and its charge is screened.
Conserved currents fall into 3 different types

32The group structure of couplings between vectormesons is not an input but rather a
consequence of Scharf’s "operator gauge principle" [61].
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screening @ @Q = /jo(a:)d?’a: =0, 9"j, =0 (31)
spont.symm. — breaking : /jo(x)de =00

symmetry : /jo(z)d3:r = finite

and identically conserved Maxwell currents in theories with mass gaps belong
to the first class which is markedly different from the symmetry-breaking type.
It is interesting to note that Swieca always referred to the "Schwinger-Higgs"
screening mechanism; for him the Higgs model was a kind of charge-screened
counterpart of scalar QED. His previous profound understanding of spontaneous
symmetry breaking®® prevented him from accepting the Higgs mechanism for
more what it is, namely a quasiclassical metaphor, a kind of "pons asini" for
those who believed that the renormalizable pointlike coupling of a massive vec-
tormeson to neutral matter cannot be treated directly but rather needed the
round about way through two-parametric scalar QED (in which the third spin
degree of freedom, which is formally necessary to for obtaining massive vec-
tormesons, is inherited from the complex matter field via Goldstone symmetry
breaking). He used this terminology also in his various publications in which
better accessible 2-dimensional models played the role of a "theoretical labora-
tory". A prominent illustration is the charge screening in Schwinger’s d=1+1
massless QED which "converts" this model into one which is fully described
in terms of a massive scalar free field. This model was proposed by Schwinger
when he found that it was not possible to realize his screening mechanism in
spinor QED; nonrenormalizable pointlike couplings as massive QED in those
days were believed to be unphysical. In accordance with the historical charac-
ter of the present work, it is interesting to mention that Swieca, on the occasion
of a visit of Rudolf Peierls to Brazil, he asked him about his opinion about mas-
sive gauge theories. Peierls upheld the traditional view of a unique connection
between a gauge principle and zero mass photons.

While cleaning up certain loopholes in Swieca’s screening proof [57], Buch-
holz and Fredenhagen realized, that by extending the ideas which were used in
its proof, one could establish a structural theorem concerning the connection
between the mass gap hypothesis in the energy-momentum spectrum and lo-
calization properties of superselection charge carrying fields in theories of local
observables. The theorem [59] states that although one never needs generating
fields which are "more" nonlocal than semiinfinite spacelike strings (the cores of
spacelike cones of arbitrary small aperture in their LQP setting). Their conjec-
ture that the matter fields of massive gauge theories may be string-generated in
this sense begs the question whether the nonrenormalizability of the pointlike
formulation may be the result of forcing a pointlike localization on a situation
which in a Hilbert space setting requires stringlike localization.

33His 1970 Cargese [56] lecture notes represent still the most profound and comprehensive
account of spontaneaous symmetry breaking.
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In the Krein space setting the indefinite metric fields are formally point-
like renormalizable, but what about the physical fields? For the massive vec-
tormesons in abelian models the answer is simply obtained by passing through
differentiations to the pointlike field strength; however for the matter fields there
seems to exist no proposal in the existing literature and this includes the cou-
pling of massive vectormesons to neutral scalar matter field (the Higgs model).

In fact the rational presented for the Higgs mechanism that at the end of the
day one obtains a renormalizable theory in a Hilbert space which includes the
Higgs field was never checked in perturbation theory; otherwise it would have
been noticed that this is simply not true. A direct treatment of the Higgs model
in the same Krein space (BRST) formalism which works for massive QED was
given by Scharf [61]. The BRST formalism permits to calculates the physical S-
matrix but the cohomological descend from Krein- to Hilbert space did not work
for the matter fields. In fact this problem was already noticed in the old (Gupta-
Bleuler) renormalization treatment of massive QED [69]; there was a problem
with the matter field in the "unitary gauge" which did not seem to exist as a
Wightman field (operator-valued distribution) but was much more singular at
short distances. Of course the problem of the physical matter content was also
unsolved in massless QED but there one could subsume it under the label of
insufficiently understood infrared problems. This is of course not specific for
the Higgs model, it rather affects all couplings involving massive vectormesons.

The answer to all these questions is: follow the message in section 3 to achieve
renormalizability not by making compromises with respect to the Hilbert space
structure, but by passing from pointlike to stringlike localization. In this case the
starting observation is the relation between pointlike Proca fields and stringlike
vectorpotentials in Hilbert space (see section 3 for notation):

Ap(z,e) = AL () + 0ud(w,€), dea(Ay) =1, dea(9) =1, dea(AL) =2 (32)
deAy(z,e) = 0udeg(z,€), detp(z,€) = exact one — form
w(z,e) — weigd)(z,e)w(z)w

The string-localized perturbation theory is based on the adiabatic equivalence
principle which is a perturbative implementation of the relative locality of the
pointlike Proca potential to the stringlike potential (i.e. both are members of
the same Borchers class). It turns out that this requirement leads to the relation
in which the string-localized fields are related to their pointlike counterparts by
a kind of operator gauge transformation in terms of the Stiickelberg-like field
¢(z,e) (32); the quotation mark indicate a normal product (which generalizes
the Wick product) which has to be determined by implementing the adiabatic
equivalence principle order by order.

The terminology "adiabatic" refers to the requirement that the difference
between the n** order pointlike and stringlike form of the interaction should
have the form of a derivative term of the same increasing short distance dimen-
sionality as that of the nonrenormalizable pointlike interaction. In this case the
renormalization-preventing terms have the form of boundary terms and drop
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out in the adiabatic limit. This idea attributes a certain perturbative status to
pointlike fields while maintaining their power growth in momentum space with
polynomial degree which keeps increasing with the perturbative order. This is
only consistent with nonperturbative localizability if the nontempered growth
leads to strictly localizable fields (SLF) in the sense of Jaffe [58]. SLF are
operator-valued distributions which are not of the Schwartz type in that they
cannot be smeared with all compact supported test functions in spacetime but
only with a dense set. Jaffe has shown that besides the exponential functions,
all entire Wick-ordered power series in a scalar free field are SLF; if this contin-
ues to be true for exponentials of interacting dsq = 1 fields, the pointlike fields
would acquire a nonperturbative mathematical status. It is however not clear
if SLF’s can be used as generators of localized operator algebras in the sense of
LQP.

It is interesting to note that string-localized fields entered QFT long before
the problem of localization of Wigner’s infinite spin representation was solved.
As already mentioned, they appeared in the work of Buchholz and Fredenhagen
[59]. In the course of improving some points in Swieca’s screening theorem [57]
these authors realized that the mass gap hypothesis allows to infer much more
than screened Maxwell currents in massive theories in that they place limitations
on localizability of the screened matter fields. They used the LQP formulation
in terms of localized algebras and proved that the superselection-charge carrying
operators associated with compact localized always admit a description in terms
of the tightest noncompact causal localization which are limits of spacelike cones
with arbitrary small opening angles. In terms of stringlike generators this cor-
responds to e-smeared strings ¥(z, f) = [ ¥(z,e)f(e)de where the integration
extends over a small region in a d = 2 + 1 de Sitter space.

The new perturbative approach requires string-like localization for all renor-
malizable couplings which involve fields with s > 1/2. However not all couplings
which in the new sense are "string-renormalizable" (within the powercounting
limit) are physically acceptable. They should admit observable subalgebras
which are pointlike generated and these pointlike observable fields should be
invariants of an adiabatic equivalence relation which is the quantum substitute
of the classical notion of gauge invariance. The nonobservable stringlike fields
should not admit pointlike Wightman fields in their class of relative local fields.
In perturbation theory such non-Wightman pointlike fields should be nonrenor-
malizable and even if it turns out that they exist outside of perturbation theory
in the sense of SLF Jaffe fields [58], they should not lead to compactly localized
nets of local operator algebras. Their unwiedy short distance properties may
explain why in the pointlike Krein space setting [61] one did not succeed to
define physical matter fields.

The model-independent nonperturbative theorem in [59] showed that the
spacelike direction of these strings (the "directions at infinity") can be changed
by a unitary operator within the charged sector. The superselection structure
is, as in the case of pointlike localizability, determined in terms of compact
internal groups, more explicitly they have the composition structure of group
duals [6]. Later investigations found that although these strings are present
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in the localization properties of correlation functions, the on-shell properties
(S-matrix, formfactors) are not different from those of models with pointlike
generators. This explains why the formfactors of the field strength as used
by Swieca, did not reveal that charge screening requires interpolating string-
localized fields.

By the 80s it became clear that generating matter fields in (massless) QED
cannot be pointlike generated [64]. There are simply no physical pointlike mat-
ter fields, not even the nonrenormalizable pointlike physical fields in the per-
turbative treatment of massive QED do not survive in the zero mass limit,
each perturbative order develops incurable infrared divergencies. In this case
one cannot even change the asymptotic direction of the string-localized matter
fields; they are part of the superselection structure. The infrared divergences
are stronger in massless YM interactions, they even prevent the existence of
unphysical pointlike matter in covariant gauges in a Krein space setting which
has been erroneously interpreted as a breakdown of perturbation theory whereas
it only indicates that the perturbation theory must be formulated in terms of
string-localized matter fields which automatically obrained from interactions
with stringlike vectorpotentials.

It is remarkable that although historically the idea of screened Maxwell-
currents and that of string-localized matter originated together with the Higgs
model (charge-neutral "Maxwell-matter"), the quasiclassical Higgs mechanism
remained but the more physical Schwinger-Swieca sceening description was lost
in the maelstrom of time [60]. an interesting problem which should be explained
by historians of science.

The rigidity property at infinity of (Maxwell) charged strings is the cause of
all infrared divergence problems which one encounters if one blindly applies the
standard scattering formalism to QED; this problem even lead to a breakdown
of Lorentz-invariance in charged sectors** [6]. In case of the QED strings the
quest for a natural infrared cutoff which modifies the rigid infrared clouds in
an intrinsic way (so that the infrared divergencies on the mass shell of charged
matter disappear) has led to an ongoing conceptual renovation [71] of one of
the oldest problems which entered particle theory through the Bloch-Nordsiek
model.

All the previous statements are presently obtaining a perturbative support
through the use of string-localized vectorpotential in the setting of the adiabatic
equivalence requirement. The second order calculations confirm the S-matrix
results of the Krein space approach. Different from the latter there is no problem
with the physical matter fields which were still missing in the Krein setting. The
matter fields are obtained in terms of operator gauge transformation in terms
of the A, (z,e) associated intrinsic Stiickelberg field ¢(x,e) (32). The strongest
differences with the Krein space approach show up in Y-M models. In that case
the implementation of adiabatic equivalence requires a nonlinear transformation
of the multi-component Proca field

34Covariant on-shell formfactor as used by Swieca only exist for interactions of massive
vectomesons with matter but not in QED.
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Ay(z,e) ="U(g9(z, e))Aﬁ(x)” + 0, 0(x,e) (33)

where U(g¢(x,e)) denotes a "rotation" in color space in which the intrinsic
Stiickelberg fields (multiplied by a coupling parameter) substitute the rotation
parameters and the quotation mark refers to normal product generalizations of
the Wick product. In this case the nonlinear modifications do not only affect the
matter field (32) but also rotates the vectorpotential. This is marked difference
to [61] where the linear cohomological BRST @Q-formalism is only consistent
with an additive change which is implemented in terms of a bilinear dependence
of @ on ghost fields.

To call (33) an operator gauge transformation may be misunderstood as a
return of the quantum implementation of the classical gauge principle, but here
this a consequence of the adiabatic equivalence requirement which implements
the most basic modular localization principle by insuring that the stringlike
vectorpotential remains in the same local equivalence class as the (formally
nonrenormalizable) pointlike Proca field. The best possible result with respect
to the B-F structural theorem would be if the pointlike matter fields (with
their worsening short distance behavior with perturbative order) have the status
of a SLF field. If one could prove in addition that the nontemperate SLF
fields cannot be used to generate localized operator algebras, the match between
the operator-algebra based B-F theorem and the perturbative situation would
be perfect. The borderline between compact localizable operator algebras for
s < 1 and the necessity of noncompact (spacelike cone) localized (superselection)
charge-carrying algebras with compact localizable observable for s > 1 would
than attain structural significance beyond perturbation theory®®.

The adiabatic equivalence of the renormalizable stringlike to a formally non-
renormalizable pointlike field breaks down in the zero mass limit of the vec-
tormeson mass. This can be seen from (32), the Proca potential diverges and
hence the stringlike potential looses its pointlike partner. Whereas pointlike lo-
calization in the massive case leads to a short distance behavior which increases
with the order of perturbation, infrared convergent pointlike physical matter
fields simply do not even exist in perturbation theory; the impossibility of com-
pact localization follows from the quantum Gauss law [64][6] and its realization
in terms of fluxes in narrow spacelike cones whose cores are semiinfinite space-
like strings is chosen in order to uphold as much covariance as possible. Starting
from the stringlike potential one may replace the nonexistent pointlike potential
e.g. by the rotational covariant Coulomb potential in which case the stringlike
localization of the formally scalar Stiickelberg scalar also becomes spread out.
In a Krein space prescription one may be able to maintain the pointlike mat-
ter description at the high price of loosing the physical relevance (the clash
between Hilbert space and pointlike localization). Since it is not possible to
implement the adiabatic equvalence principle, the best perturbative approach

35We remind the reader that perturbation theory cannot insure the existence of a theory
associated with a scalar Wick-ordered interaction density since perturbative series are known
to diverge.
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consists in defining the "true" string-localized generators as massless limits of
the convenient renormalizability-implementing massive generators.

In zero mass Y-M couplings these infrared divergencies in the pointlike set-
ting even extend to the correlation of unphysical pointlike matter fields, a fact
which has been incorrectly interpreted as a signal of a breakdown of perturba-
tion for long distances whereas it only indicates the breakdown of the pointlike
description even in Krein space®®. Hence results which have been supported by
ad hoc models of beta functions without a perturbative derivation of correla-
tion functions and Callan-Symanzik equations should be repeated in the new
string setting. The latter may also lead to a new assessment of the unsolved
confinement problem.

Last not least the new setting of massive vectormeson couplings has changed
the way one looks at the Higgs model. Stripped of its metaphoric wrappings
of spontaneous symmetry breaking being followed by a tranformation of the
massless Goldstone mode into the third spin degree of freedom of a massive
vectormeson, it belongs to the same group as massive (spinor or scalar) QED
which are nonrenormalizable in a pointlike setting but become renormalizable
if one starts perturbation theory from stringlike potentials, except that the
scalar field is not complex (charged) but real (neutral). The insurance that the
stringloke formulation does not change the physics which one had in mind when
one was formulating the nonrenormalizable pointlike interaction is the validity
of the adiabatic eqivalence which secures (at least in perturbation theory) that
the pointlike and the stringlike generator are in the same locality class.

This raises the question why this simplest of all vectormeson interactions
did not appear before Higgs. Well, actually it did appear before in form of a
Al (x)0Mp? coupling (whose completion within the renormalization formalism
formalism is the Higgs coupling) [65]. Its purpose was to show the existence of
a "mildly nonrenormalizable" subclass which can be treated in terms of ideas
of resummation of Feynman graphs. As we know nowadays this idea was not
correct in this form; but the fact that it is renormalizable in a wider localization
framework shows that the belief that that it belongs to a special class of "mildly
nonrenormalizable" couplings in the pointlike setting was not wrong. The mo-
tivation for the Higgs mechanism, namely the search for a mechanism which
makes the interaction of matter with massive vectormesons renormalizable in
the pointlike sense was incorrect; interaction in which massive vectormesons
participate can by no pointlike trick be converted into pointlike renormalizable
interactions; they are however renormalizable in the sense of string-localization
independent of whether the matter is spinorial, charged scalar or neutral scalar.

Presently the stringlike perturbation theory has only been verified for abelian
interactions. For the massive nonabelian case the implementation of the adia-
batic equivalence requires the perturbative verification of the relation (33) be-
tween a pointlike Proca potential and its stringlike counterpart. As a result of
its nonlinear dependence on the Stiickelberg potential this is more complicated;

36The BRST formalism as a linear cohomological relation of a Krein- to a Hilbert space
may not be appropriate and lead to contraditions with the adiabatic equivakence in case of
YM selfcouplings. This point requires further investigation.
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compared with the linear BRST formula (32) there are additional coupling terms
between the color components of A, (z,e) and the intrinsic Stiickelberg field
¢(x, e) which mimick the coupling to an external Higgs field. This casts doubts
on the correctness of the BRST scheme for nonlinear YM selfinteractions. The
cohomological nature of BRST seems to be only consistent with linear (abelian)
gauge transformations (quadratic field dependence of the ghost charge). In that
case it was only possible to save its consistency for YM interactions by coupling
the vectorpotential to outside scalar fields; this appears like a return of the Higgs
particle for different reasons than the historical Higgs mechanism, namely for
maintaining the consistency of the BRST setting.

In view of the experimental results at LHC which seem to comply with the
scalar neutral nature of a Higgs-like multiplet, the question arises: is it possible
that a stringlike scalar Stiickelberg field applied to the vacuum has scalar bound
state components? By definition the noninteracting ¢ has a spin=1 component.
In fact stringlike scalar fields may have any integer spin particle content [42].
This suggests the possible existence of a boundstate mechanism which is con-
siderably different from that of pointlike fields. In the latter case boundstates
would be associated with composites (monomials), but in the stringlike situation
they may be described by ¢(z,e) itself. Hence not only are there alternative
theoretical ideas which could explain the LHC findings, but these ideas are also
more physical than postulating a new particle based on a consistency argument
of model in an unphysical Krein space description. In any case the Higgs is-
sue has not been closed by the LHC experiment since for the first time after
a 40 year stagnation there are now viable alternatives on the theoretical side
which come from the correct formulation of the renormalization problem of YM
interactions.

At this point it is expedient to use Galileos method of codification in terms
of a dialog between Sagredo and Simplicio although nowadays there is no inqui-
sition (the God in the God-particle is Einstein’s "Dear Lord")

Sagredo: My dear Simplicio are you seriously claiming that the Higgs mech-
anism is a metaphor for the coupling of real scalar fields to a massive vector-
potential? But doesn’t the renormalizability of the Higgs model show that its
status is different from other models in which massive vectormesons appear?

Simplicio: The renormalizability of the Higgs mechanism is a belief based
on the well-known fact that QED-like couplings of massless vectorpotentials
are Gupta-Bleuler renormalizable and that spontaneous symmetry breaking re-
spects renormalizability. But in order to formulate a consistent perturbation
theory one first has to do a formal resummation which generates a mass of a
vectormeson. At this point the model looses its appearance of a renormalizable
model and its renormalization problems are not significantly different from that
of massive QED.

Sagredo: Does this mean that the Higgs mass generation is part of the
metaphor ?

Simplicio: QFT in its widest sense is that QT which (different from QM)
fulfills the (quantum adapted) causal localization principle. Every "pons asini"
which the calculating physicists uses to find a result which does not contradict
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the quantum causal localization principle is legitimate as long as he does not
confuse it with an intrinsic property of the object of his interest. The principles
of QFT are not compatible with ideas which distinguish between masses which
objects have from the beginning (intrinsic masses) and such which are the result
of an anthropomorphic idea as that of a mass-generating "God-particle" which
provides masses for all matter (including itself).

Sagredo: But does this not diminish the importance which is attributed to
the LHC result which is claimed to permit only one interpretation within QFT?

Simplicio: Not necessarily. This "Higgs or death to QFT" situation only
arose as a result of a more than 40 year stagnation from running against the same
wall in which no serious attempt concerning the foundational underpinnings of
the Standard Model were undertaken. Other mechanism, as the recent proposal
to apply the string-localized perturbation theory also to massive Y-M couplings,
are presently being tried out. But it is certainly true that the explanation of the
sophisticated and expensive LHC experiment in terms of an additional coupling
to a neutral scalar particle which does not fulfill any of QFT’s conceptual needs
is somewhat unsatisfactory.

Sagredo: Are you implying that the hype about "Gods particle" and its
role as a universal donor of mass may have been unfounded?

Simplicio: I only wanted to remind you that the reality underlying physics
does not exist to entertain physicists and the broader public with sexy stories
like that what happens when an antropomorphic copy of a Higgs particle enters
room in which many other antropomorphic particles are present.

Sagredo: I thank you dear friend for sharing your thoughts, but it will
take me a long time to digest and verify the content of what you said. In a
way it appears too simple, I am accustomed to connect conceptual depth with
complexity.

A paper being submitted to a journal dedicated to the history and philosophy
of physics should not be overloaded with mathematical-technical details. But
on the opposite side their looms the accusation of only using hollow words which
I will try to avoid by at least some indications about how adiabatic equivalence
works are in order.

Let us illustrate this in the simplest example of massive QED which, as a
result of the d=2 Hilbert space Proca fields, is a non-renormalizable theory in the
sense that it produces counterterms whose short distance dimensions increase
with the order of perturbation so that the resulting fields are not tempered
distribution. In the Bogoliubov-Shirkov perturbation setting the S-matrix and
the fields are obtained in terms of adiabatic limits from a generating operator
functional

S(gL) = Z;—!Tn(ﬁ,...7£)(g,...,g) (34)
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Here L is the interaction density (often referred to as the interaction Lagrangian,
but in causal perturbation theory free fields need not be solution of Euler-
Lagrange equations).

In the case of massive QED [67][68] we have two Ls (32)

LE (z) = j*(x) A (x), L5 (x,e) = j*(x) AL (x,¢) (35)
jH(x) = % s (x)0p(x) : +h.c., 0, — 0, —igA,
S(9L” + fo) =~ S(gL% + fv7)

) ~
Al () = A (x,€) — ud(x,€), PP (z) = 925 (1 ¢)

the first defines to the nonrenormalizable pointlike Proca interaction, whereas
the second is the new stringlike interaction which, as a result of dsd(Af ) =
1, stays within the power-counting limit; both Ls act in Hilbert space. The
second line defines the zero order current for scalar massive QED which, as a
result of its expected®” more interesting quadratic dependence on the massive
vectorpotential, it is chosen as an illustrative example for the new stringlike
renormalization theory. The third line expresses the adiabatic equivalence i.e.
the expected affiliation of both description to the same relatively local "field
class"; the formal expression of this expected local connection in terms of fields
is written in the last line. We now sketch how this idea is implemented up to
second order in g.
The first line in

LO=LV +0,VH, Vi(z,e) = j*(x)p(x, e) (36)
TL L' —8,T VFL — 8, TL VY + 08,0, TV*VY =1L £
de(TLW' — 8, TVFW')y =0, W' =L, V™

shows that the two interactions only differ by a surface term which does not
contribute to the first order S-matrix (the adiabatic limit g(x) — g). In second
oder the equality of adiabatic limit would follow from the second line. Hence
one must show that the various time-ordered products can be defined in such
a way that the equation in the second line holds. It is easy to see that the
e-independence i.e. the vanishing of the differential form in the third line is a
necessary and sufficient condition for the second line in which the individual
terms still depend on e and e’. According to the previous remark one only
has to check the e-independence in the tree approximation and the one-loop
contribution, its validity for the total Wick-ordering is trivial and the vacuum
contribution is unimportant.

The tree approximation leads up to a delta function contributions to the
desired result and the delta function term is precisely the term which is nec-
essary to convert the derivative in (35) into its covariant counterpart. The

37As in the pointlike case, one only needs to start with a zero order interaction; the full
interaction is obtained through renormalization.
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renormalization for the one loop terms in the Epstein-Glaser setting is an ex-
tension problem of distributions. For x # &’ the validity of the third line (36)
is easily verified. The extension is somewhat tricky since the so-called "central
extension" in the Epstein-Glaser setting is still e-dependent; but an e-dependent
finite counterterm establishes the validity of the third line (36); the remaining
freedom of counterterms is of the standard e-independent type. This proofs the
adiabatic extension of the second order S-matrix; the extension to the matter
dependent correlation functions does not require to address any new conceptual
problem.

The high consistency is also of great personal satisfaction; since the old
attempts at renormalized perturbation theory [69] there was an ununderstood
problem with the unitary gauge. It is also pleasing to see that the at that time
rather aimless game, with non-tempered models of QFT in the early 60s [65]
and its subsequent refinement Jaffe [58] which later became incorporated into
the theory of hyperfunctions, has found its application in massive abelian gauge
theories. If one reads carefully between the lines most of the articles on BRST
have viewed this method as a transitory device. The concluding remarks in [66]
already read like an anticipation of a more physical localization-based setting.

The derivation of a Callan-Symanzik equation and the computation of the
mass-independent beta function with the opposite sign would be the first calcu-
lation which does not rely on the dubious idea that the long distance behavior
is nonperturbative (just because the zero mass limit turned out to be infrared
divergent in the pointlike description).

The proposed method to construct stringlocal correlation functions in causal
perturbation theory does not solve the problem of what replaces the mass-shell
restriction and what is the substitute for particles and their scattering. In QED
there is no problem with photon scattering; the relevant scattering theory uses
the Huygens principle and its formulation was worked out a long time ago by
Buchholz [6]. He also introduces the concept of charge classes which discretizes
the superselection structure which otherwise would be continuous as a result
of the impossibility of changing the large distance aspects of infrared photon
clouds. These ideas where recently used in order to obtain a natural infrared
cutoff by using as the spacetime arena not the full Minkowski space but the (any)
forward lightcone V [70][71] The idea is that all massive objects eventually
enter a fixed V. whereas the large distance effects of soft photon clouds do not.
In this way the scattering in terms of partial states (states restricted to V)
becomes a scattering of usual particles since the restriction to V amounts to
a natural (geometric) infrared cutoff without having to refer to a hypothetical
photon resolution. Apparently the idea also works in the nonabelian case. It
would be interesting to start from the stringlike perturbative formulation in
Minkowski spacetime and pass to a perturbative description in V- which could
replace the present (non-covariant) photon-inclusive cross-section recipe by a
more natural prescription in which the equivalence classes of global states which
coincide on V serve to remove differences which are caused by infinite photon
clouds but retain those caused by Maxwell charges.

The interest in string-localized generating fields started with the problem
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to understand the localization of Wigner’s third class of quantum matter; this
was necessary in order to understand its physical properties. In the background
there was always the philosophical idea that Einstein’s "Dear Lord" does not
assign an important role to form the material content of the universe with the
third class just being there for mathematical completeness of positive energy
representations. The characteristic aspect which sets it apart from QED or YM
strings is that its strings cannot be represented as semiinfinite integrals over field
strength i.e. "infinite spin strings" are irreducible; they cannot be constructed
from compact pieces. This makes them ideal candidates for dark matter, an
issue to which I will return in a separate publication.

8 Misunderstandings about particle crossing

The bootstrap S-matriz approach prior to the dual model was based on the
particle crossing property, but since it soon ended in an unmanageable nonlinear
mixture of unitarity, Poincare invariance and some vague idea about crossing,
it did not reveal anything about the conceptual origin of crossing, let alone its
precise formulation. Some years later the solvable d=1+1 integrable models
showed that crossing was the result of a subtle analytic interplay between pole
contributions and cut contribution and that it was not possible to describe
particle crossing in terms of meromorphic functions in the Mandelstam s,t,u
variables.

The existence of infinitely many integrable models also undermined the naive
idea that general physical principles, as those on which the dream about a unique
solution of the unwieldy nonlinear bootstrap project was based (a precursor of
a theory of everything" except gravity), may by some magic only allow one
solution (just because nobody had been able to find any solution of these non-
linear structures). But messages coming from exactly solvable two-dimensional
(integrable) showed that the uniqueness was an illusion.

The second attempt to obtain a constructive computational access to particle
theory in terms of an on-shell project based on S-matrix properties was formu-
lated by Mandelstam. In analogy to the successful use of the Jost-Lehmann-
Dyson spectral representation which led to a rigorous proof of dispersion rela-
tion, Mandelstam postulated the validity of a double spectral representation for
the elastic scattering amplitude as a starting point for getting access to analytic
on-shell properties as the crossing property.

The area of misunderstanding of crossing started with Veneziano’s [72] con-
struction (based on properties Euler’s beta function) of a meromorphic function
of two variables which had an infinity of first order poles in the two variables
which were related by an analytic crossing relation. The difficulties in imple-
menting analytic crossing and the apparent uniqueness of Veneziano’s construc-
tion created a lot of excitement within which a critical view had little chance. A
comparison with exact particle crossing in integrable models could have revealed
that there is no approximation of an S-matrix which is meromorphic in the st
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Mandelstam variables®®; approximations of scattering amplitudes must always
retain certain aspects whereas others as unitarity may be lost; the dual model
function has none, and as will be seen in a noment, there is a good reason why.

As explained in section 5, particle crossing is derived from the KMS identities
for wedge-localization together with the emulation of incoming/outgoing particle
states within the interacting wedge algebra; there is no relation to Veneziano’s
dual model crossing. In order to be totally clear and explicit on this point
one needs to understand the conceptual origin of the Veneziano duality which
initially appeared as the magic result of a sophisticated mathematical game.

The clarification is due to Mack, and his construction is here referred to as
the "Mack-machine"; its input consists of conformal 4-point functions in arbi-
trary spacetime dimension, and its output are dual models i.e. meromorphic
functions of three variable s,t,u with the third variable being a linear combina-
tion of the two other variables. The function is meromorphic in each variable and
the meromorphic functions in the different variables are related by an analytic
crossing e.g. s < t. The construction uses conformal global operator expansions
for pairs of operators, which are known to converge and applies them inside the
4-point function

A@BWR =Y [ 2B o,(.0,2)Cu()0 (37)
k
(A1(z1)As(x2)As(x3)Ag(24)) — 3 dif ferent expansions (38)

Each pair of operators has a converging expansion on the vacuum in which
the resulting operators C}, stand for a list of composites which can be connected
with the given pair through nonvanishing 3 point functions A. Used inside the 4-
point function this leads to 3 different ways of decomposing the 4-point function
into a sum over two three-point functions connected by an integrated two-point-
function. Mack showed that the Mellin transform of this infinite sum over C’s
leads precisely to the pole representation of the meromorphic functions which
define dual models; the position of the first order poles is given in terms of the
spectrum of scale dimensions of the C’s which couple to the pairs. Veneziano’s
model corresponds to a certain chiral conformal model, but any conformal 4
point function in any spacetime dimension upon expansion of its 4-point function
and Mellin transformation of the resulting series always leads to a dual model
in the sense of defining a meromorphic function with first order poles which
fulfills the crossing relation. What looked so magic and unique in the hands of
Veneziano is "mass-produced" by the Mack-machine.

Graphically the relation is reminiscent of an identity between two types of in-
finite sums over Feynman graphs with particle exchanges either in Mandelstam’s
s or t variable. It is not surprising that in an age of particle physics in which,
starting with Dirac’s antiparticles in the inconsistent hole theory, many impor-
tant discoveries were made in terms of a playful "make an Ansatz and correct as

38 The meromorphy in d=1+41 elastic scattering is in the uniformaising rapidity variable and
not in s,t.
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you go along" attitude®?, an interpretation in terms of particles was irresistible
even though there is conceptual relation to Mandelstam’s S-matrix based on-
shell project. Conformal QFTs are interesting field theories from which one can
learn a lot about the inner workings of the modular localization properties, but
they certainly contain no information about particles and their scattering opera-
tors. Mellin transforms of 4-point functions are entirely different from scattering
amplitudes; it does not make sense to apply ideas of unitarization to them as
if they would define a kind of nonunitary approximation of the S-matrix. Last
not least, particle poles have no conceptual relation to scale dimensions which
appear in global operator expansions.

This could have been the end of a misunderstanding, and it probably would
have been if not an even stranger twist would have greatly increased the mys-
terious aspects and with it the attractiveness of the subject. This consisted in
the observation that the oscillator algebra resulting from the Fourier decom-
position of a certain chiral 10-component current algebra formally related to
supersymmetric version of the Polyakov action

/deT Z 0 X, (0,7)g" X, (0,7), o, T =t +a (39)
E=o,T

X = potential of conformal current j

permits the representation of a positive energy representation of the Poincare
group which decomposes into a discrete infinite sum of irreducible representation
(an (m,s) "tower" of unlimited height).

The construction of such a tower (an infinite component field equation) from
an irreducible algebraic structure was one of Majorana’s project which he formu-
lated in 1932 with the idea to achieve something similar to what the O(4,2) group
representation theory does for the hydrogen atom spectrum in QM. This project
was revived in the 60s where it acquired some popularity under the name "dy-
namic infinite group representation project" (Fronsdal, Barut, Kleinert,..[73]).
The representation of the Poincare group on the irreducible oscillator algebra of
the supersymmetric 10 component current algebra is the fist nontrivial solution
of the Majorana project. But this is a group theoretic fact which has no relation
to Mandelstam S-matrix based on-shell project.

To understand a bit better the prerequisites one need to encounter the rep-
resentation of a noncompact group as a kind of internal symmetry group on a
component space of a multicomponent chiral conformal algebra, it is helpful to
be reminded of same basic fact of LQP in which inner symmetries arise from
the (generally assumed without inner symmetries) the local net of observable
algebras in the vacuum representation. The other inequivalent local representa-
tion classes (superselection sectors) can in typical cases be combined with the
vacuum representation within a larger field algebra net. There are convincing
arguments why a continuous set of superselection sectors (in the presence of

39 A precursor of Tegmark’s later extreme "compute and shut up" maxime...
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zero mass particles as QED one must pass to charge-classes [70]) and noncom-

pact internal symmetries of the field algebras cannot occur in higher than two

dimensions. The superselection analysis is very different in d=141 dimensions.
As an illustration let us look at a n-component current algebra

x

08,() = (@), Wulae) = [ nle), Gn(@)ie(@) ~ S (@'~ i)
(40)
Qr = Pp(00), ¥(z,q) = " ¢id® @) . , carries ¢ — charge

Qk ~ Py, dim(e' ™)) ~ q-§~ pup", (dsa,s) ~ (m, s)

Here we have avoided the confusion notation X in favor of ® for the multi-
component current potential because we want to avoid a notation which may
suggest the wrong idea of an operator which embeds a chiral conformal theory
on a lightray (or on its compactified circle) into a n-dimensional Minkowski
spacetime so that its development in time it looks like a 2-dimensional surface
(a tube, in case of a chiral theory on a circle). This picture of a covariant
string sweeping through a tube-like world-sheet is incorrect inasmuch as it is
incorrect to think that the classical covariant particle Lagrangian Vds? leads
to a covariant quantum embedding described in terms of a covariant opera-
tor z¢P(7). In fact, ignoring Lagrangian quantization, there simply exists no
covariant operator whose projectors in the spectral decomposition fulfill the
requirements of covariant localization, a fact which certainly was already on
the mind of Wigner when he constructed relativistic particles by representation
theory and not by quantization.

In the book on string theory by Polchinski he used this classical relativistic
particle Lagrangian as a "trailer" for a relativistic quantum theory of a strings
based on the Nambu-Goto which is described by a replacing the ds? under the
square root by the corresponding covariant surface differential. But instead of
being helpful this analogy turns out to be a squid load. Indeed the quantization
of the Nambu-Goto Lagrangian according to the correct rules for quantization
in the presence of a parametrization invariance resembles that of quantizing the
Einstein-Hilbert action. It is certainly non-renormalizable and has no natural
relation to the Poincare group which acts on the embedding Minkowski space-
time [74]. There is another approach to the square root N-G Lagrangian which
is due to Pohlmeyer [75]; it is based on the observation that the classical system
is integrable. So instead of confronting the problem of quantization of reparame-
trization invariant actions which inevitably leads to renormalization problems,
he proposes to quantize the Poisson relations between the infinitely many con-
served "charges". The problem with this quantization is that one looses the
connection with localization in spacetime and Poincare covariance.

On the other hand the Polyakov Lagrangian has a direct relation to chiral
conformal QFT, so one believes to be on conceptually safe grounds. Here the
problem is that the representation of the irreducible oscillator algebra behind
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the operator formalism (40) which serves for the representation of the Poincare
group (and the ensuing intrinsic localization concept which comes with positive
energy representation of the Poincare group [43]) is not the same as the one
which localizes the chiral model on the lightray. With other words the Hilbert
space representations of the oscillator algebra are different in both cases. The
charge spectrum of the chiral theory is the whole R™ and the sigma-model fields
U in (40) are the charge carriers. On the other hand the spectrum of the
representation of the Poincare group is positive and has gaps (mass gaps). The
spectrum of the zero mode oscillator variable runs through the full spectrum of
the charge superselection structure, whereas in the use of this degree of freedom
for the representation theory of the Poincare group in the Majorana project its
spectrum has gaps. The treacherous nature of the analogy between the mass
spectrum and the conformal dimensional spectrum

P, Qu. P Q? (41)

2~
~m dscale

is overlooked by string theorists. These analogies get even more seductive if
one realizes that a particular discrete particle representation of the Poincare
group (the superstring representation) does appears on the oscillator algebra of
a 10 component supersymmetric current model (unique up to a finite discrete
"M-theoretic" variation). But what has this group theoretic coincidence which
represents the only known solution of the 1932 Majorana project to do with
Mandelstam’s on-shell S-matrix project? The answer is nothing, Majorana’s
projects is of a purely group theoretical kind, whereas Mandelstam aimed a dy-
namical particle theory which starts with the S-matrix and its analytic crossing
property. In distinction to the string-localization of matter fields interacting
with vectorpotentials in previous section, the representations occurring in the
superstring representation are all pointlike generated. This was also what the
calculations of the (graded) spacelike commutator of the putative string-fields
by string-theorists in the 90s showed [76][77] but unfortunately this is not what
they wrote, for them these points were located on a (presumably invisible) string.

The fact that the dimensional spectrum which appears in the Mellin trans-
form of global operator expansions of two sigma-model fields in a very special
chiral current model contains the spectrum of a discrete unitary representation
of the Poincaré group is quite amusing, but it has nothing to do with Mandel-
stam’s constructive on-shell project even if he himself still supports this unfor-
tunate turn. None of the critical remarks in this section should be construed
as diminishing the enormous importance of a correctly pursued constructive
on-shell project for the future of particle physics. Apart from the lack of any
connection between ST and an S-matrix approach, there is also no embedding of
an n-component chiral current source theory into its internal symmetry target
space; the localization concepts of the source theory cannot be realized simul-
taneously with that of the representation of the Poincare group on the target
theory. We are not living in a (dimensionally reduced) target space of a chiral
conformal QFT!
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In fact a lower dimensional QFT can never be imbedded into a larger dimen-
sional one, and neither is it possible to do the inverse (dimensional restriction).
The Kaluza-Klein reduction can be implemented on classical Lagrangians and
quasiclassical approximations of QFT, but the intrinsic modular localization
structure of QFT does not allow to do this on its solution in terms of correla-
tion functions or of nets of local algebras.

In most of the papers which were written under the influence of ST as those
dealing with the Maldacena conjecture and the idea of branes inside a higher
dimensional QFT, the "think as you computation moves along" attitude has
led to confusions and stagnation. Often the correct concepts which could have
prevented wrong conclusions existed but where lost in the maelstrom of time.
One such subject is the holistic connection between causal completeness and
cardinality of degrees of freedom in LQP. This and wrong conclusions which
result from ignoring it will be the topic of the next section.

9 Localization and phase-space degrees of free-
dom

In a course on QM one learns that the number of "degrees of freedom" (quan-
tum states) per unit cell in phase space is finite. Already in the beginning of
the 60s it became clear that this not compatible with the causal localization in
QFT for which the cardinality cannot be finite . The first computation revealed
that the infinity is not worse than that of a compact set [78] which later be-
came sharpened to the cardinality of a nuclear set [6]; together with modular
localization theory it led to the important concept of modular nuclearity [6].

The physical motivation of these investigations consisted in the desire to
understand the connection between field localization and the presence of parti-
cles. The ultimate aim to understand under what circumstances fields connect
to particles with discrete masses and the validity of scattering theory including
the important property of asymptotic completeness, remained an only partially
achieved project up to this date. Among one of the derived results, whose im-
portance should be seen in the context of more than 8 decades lasting attempts
to verify the existence of models with interactions, is the before-mentioned re-
cent existence proof for certain strictly renormalizable models (i.e. with realistic
short distance behavior?) with the help of modular nuclearity.

Another important use of these ideas consists in the exclusion of models
with properties which formally do not occur in a Lagrangian/functional quan-
tization setting, but which one must be aware of in any attempt to formulate
QFT in terms of intrinsic requirements, starting from modular localization. It
is very easy to write down noninteracting models which fulfill Einstein causality
but violate the causal completeness property as e.g. certain generalized free
fields [35] as e.g. the conformal covariant generalized free field which results

40The d=1+1 superrenormalizable theory can still be treated within a measure-theoretic
functional quantization setting [32].

96



from a free field on a AdS spacetime through the AdS,,;1-CFT,, correspon-
dence. The physical defect of such Einstein-causal fields is that they produce
a "poltergeist effect" in the causal shadow region i.e. there are more degrees
of freedom in O” than there were in the smaller spacetime region O of which
0" is the causal completion. An investigation within LQP revealed that this
effect is of a general nature and persists in the presence of interactions. Starting
from a physical AdS theory one obtains an "overpopulated" CFT model; the
correspondence preserves the cardinality of degrees of freedom, which in the
lower dimensional conformal model causes an overpopulation which then leads
to the "poltergeist" effect. Vice versa, the start from a physical CFT ends in an
"anemic" AdS theory in which in order to encounter any degree of freedom at
all one has to look at subalgebras localized in noncompact regions. The change
of localization, involved in changing the spacetime dimensions of the abstract
quantum matter, simply does not follow the naive picture. The latter is only
supported in quasiclassical approximations or in QT without an intrinsic notion
of quantum localization as QM.

A similar phenomenon happens in case one passes to a "brane" by fixing
one spatial variable; as Mack showed [79] the overpopulation in a brane causes
problems to distinguish spacetime- from inner- symmetries. As previously men-
tioned the embedding lower dimensional QFTs into higher dimensional ones
and its Kaluza-Klein inverse are also not possible in QFT. Arguments based on
quasiclassical approximations or manipulations with Lagrangians do not count,
and an explicit argument in terms of correlation functions or nets of algebras
does not exist; it would violate the holistic nature of QFT.

What is however consistent within modular localization is a degrees of free-
dom reducing holographic projection onto null-hypersurfaces (which is respon-
sible for the area behavior of localization-entropy). It is also conceivable that
the concept of compactifying a spacetime dimension while maintaining the same
quantum matter (i.e. within a given model) can be achieved by converting the
time into temperature by applying the rules of "thermalization" which intro-
duce a compactification through periodicity and by afterwards converting one
of the remaining noncompact spatial coordinats into time using the Euclidean-
Minkowski relation which special QFTs offer. But strictly speaking, the holis-
tic aspect of quantum matter in QFT does not support a clearcut separation
between quantum matter and its appearance in spacetime; Kaluza-Klein re-
ductions and embeddings are only possible in quasiclassical approximations to
which the holistic relation between localization and degrees of freedom does not
apply. QFT models were not around at the time of Kaluza and Klein.

These insights into the connection between the cardinality of degrees of free-
dom and localization immediately disproves the Maldacena conjecture which
claims that both sides of the AdS;-CFT, represent physical theories. It also del-
egates "brane physics" "extra dimensions", "dimensional reduction" and many
other ideas which originated in the same frame of mind about particle physics
as ST (shut up and compute) to the dustbin of history, except that in this case
history is often still very present.

Returning again to Galileo’s method of avoiding ideological attacks with the
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use of the artifice of an imagined dialog, the conversation between Sagredo and
Simplicio may have taken the following path:

Sagredo: Simplicio is it true what some of our friends tell me namely that
you claim that the dual model and ST led to a derailment of an important part
of particle theory?

Simplicio: Well, although my attitude has been critical, I have good reasons
to avoid expressing my critique in this way. What prevents me is the fact that a
mass shell based alternative to the quantization approach to QFT is a project in
particle physics second in importance and sublety only to the successful project
of renormalized perturbation theory started by Tomonaga, Schwinger, Feynman
and Dyson. Indeed, after the successful closure of the dispersion relation project
it was natural to look for a "from top to bottom on-shell setting" which on
the one hand is closer to scattering observables (especially in case of strong
interactions), and on the other hand avoids the handicaps of perturbative series
which as a consequence of their divergence do not contain informations with
respect to existence problems. But it was clear, in particular to its protagonists
as Stanley Mandelstam, that a foundational understanding of on-shell analytic
properties of the S-matrix and formfactors was much more difficult since their
relation to spectral properties and causal locality is of a more hidden kind. This
applies in particular to the particle crossing relation. Saying that a project has
been derailed may be misunderstood as saying that particle theory would have
been better off without it.

Sagredo: Are you suggesting that this problem was too subtle for the gen-
erally extremely successful conduct of research which consisted of starting calcu-
lations built on educated guesses and correcting as the computations progress?
A method which in its extreme form led Dirac to the discovery of antiparticles
on the basis of an inconsistent hole theory?

Simplicio: Yes, especially when mathematical sophistication imposed on
calculations is not controlled by conceptual guidance, one may arrive at math-
ematically consistent theories which are incorrect from a physical-conceptual
viewpoint. It does not help to adopt Einstein’s viewpoint about physical reality
being governed by principles (Einstein’s Dear Lord) and leave it to mathematics
to decide what can be accepted as a principle.

Sagredo: Are you implying that this is what happened in ST and could
explain why this theory, although being considered by some mathematicians
as an extremely useful construct, has within by now 5 decades not led to a
trustworthy physical prediction?

Simplicio: One has to be careful on this issue; there are of cause no time
limits on when a theory, which is claimed to generalise our most successful
QFT, has to deliver observationally verifiable results. In retrospect it is clear
that the project of an S-matrix based on-shell approach was started at a time
when no trustworthy knowledge about the conceptual origin of analytic and
algebraic properties about on-shell properties in QFT were available beyond
those which led to the dispersion relations. The dual model and ST resulted
from an unhealthy mix of phenomenological beliefs with subtle mathematical
observations outside any foundational conceptual guidance on the side of QFT.
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The latter could have revealed that one became the victim of a picture puzzle
in which insuffiently understood aspects of chiral QFT were misred as new deep
properties of on-shell particle theory.

Sagredo: Do you want to suggest that ST, quite independent of its lack of
observational success, has serious conceptual flaws?

Simplicio: ST addressed problems for which one has no chance to navi-
gate around the the insufficiently understood foundational modular localization
principle since the days of the E-J conundrum; a conceptual clash was for the
first time unavoidable. The precise point of impact is clear in retrospect: it was
the insuffient understanding of the crossing property which is the most subtle
result from the interplay between fields (the carriers of causal localization) and
particles.

Sagredo: Does this mean that ST has no relation to particle theory at all ?

Simplicio: Not quite, the theorem that on the irreducible oscillator algebra
of a 10 component supersymmetric abelian chiral current model one can find
a positve energy representation of the Poincaré group namely the superstring
representation in which the (m, s) particle spectrum is a subset of the dimen-
sional (d, s) spectrum of the conformal model) is certainly a theorem obtained by
string theorists whose veracity is not disputed by anybody. But particle physics
deals with interactions as embodied in the S-matrix and formfactors, and this
theorem contains no informations on those issues. The afore-mentioned con-
struction of the superstring representation from a particular irreducible algebra
of oscillators is a (the only known) solution of Majorana’s project of an infi-
nite component field equation. Majorana was inspirerd by the analogy with the
0(4,2) hydrogen spectrum, but even the most hardened string theorist would
not think that such project is relevant for our present understanding of mod-
ern particle theory. The irony is that when some people in th 60s looked for
dynamic infinite component relativistic field equations in terms of extensions
of the Lorentz group, they did not become aware that string theorist found an
irreducible algebraic structure (the irreducible oscillator algebra associated to
a 10-dimensional current algebra) which admits a representation which solves
their problem (= Majorana’s project).

Sagredo: But doesn’t this show that at least there exists a close relation
between the Moebius covariant chiral "source" representation which can be lo-
calized on the lightray, with the target representation of the 10-dimensional
Poincaré group?

Simplicio: It depends what you mean by close; certainly the chiral repre-
sentation and the representation on the index space of inner symmetries of the
chiral model (which is probably what you mean by target representation) are
representations of the same algebra, but they are not unitarily equivalent, which
makes it impossible to interpret this situation as an embedding even before one
gets to the geometric meaning of such a terminology.

Sagredo: ST led to many extremely popular derivatives; besides embed-
dings people associated with the ST community like to talk about extra dimen-
sions, dimensional reductions, branes and holographic projections.

Simplicio: The obstacle against most of these ideas is that in QFT the index
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space of charge-carrying quantum fields for d > 1 + 1 can only carry represen-
tations of compact groups which does not permit spacetime target embeddings.
Classical field theories which indirectly inherited this concepts by reading back
quantum internal symmetry (a consequence of localized representation theory
[6]) into the classical setting, do not suffer from this restriction, see the covari-
ant solutions of the Euler-Lagrange equations of L™v/ds2. But in QFT the only
"noncompact indices" are the tensor/spinor indices of what you call the source
space. The reason why chiral model come close to such a situation is because
they admit a continuum of superselected charges (more precisely nonrational
chiral theories). In QM the "Born localization" (related to the spectral decom-
position of the position operator) has no intrinsic significance; a linear oscillator
chain can be pictured in any desired dimension, but this is not possible in QF'T;
even in Wigner’s representation theory the concept of spin (little group) depends
essentially on spacetime dimensions.

Wilson used his idea of an analytic continuation in spacetime dimensionality
only for scalar particles (critical phenomena) and the Kaluza-Klein reduction
is at most a quasiclassical idea; the relation between cardinality of phase space
degrees of freedom and modular localization which is responsible for the holistic
properties of QFT destroys such ideas as it also prevents the two QFTs being
mathematically related by the AdS-CFT correspondence to represent physical
theories on both sides; similar reasons prevent the brane projection to result
in a physical model; only ’t Hooft’s holographic projection leads to a QFT
on a null-space whose phase space density is adjusted to the lower spacetime
dimensionality [46]. My dear friend Sagredo, I propose to leave this and other
subjects to our future dialog.

10 Concluding remarks

Particle physics is presently in the midst of a deep crisis. After more than
three decades of amazing progress starting at the end of wwll which lasted for
more than 3 decades, the signs of stagnation are highly visible. Despite an ever
increasing effort in manpower and number of publications over almost 5 decades,
the hopes to arrive at a new foundational insight into particle theory through
string theory have evaporated; a theory, which after such a long time (longer
than the Maxwell-Einstein period) has not come up with an observable result
and is still in doubt about what it really represents, cannot create faith in the
future of particle physics.

The problem with the Standard model is different. It certainly is a successful
theory, but its present formulation, in particular the quasiclassical Higgs mech-
anism (which is presently the widespread accepted explanation for an highly
acclaimed most complex and costly LHC experimental new particle discovery)
has been around since the 70s. During all these years there has never been an
attempt to get from the quasiclassical description to a more foundational in-
sight. As a result the metaphors around this mechanism have led to ideas which
are incompatible with the foundational properties of QFT as e.g. the existence
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of a mass creating process (the "God particle") to be distinguishable from one
were particles are massive from the start.

In the present work an attempt is made to overcome this stagnation by new
foundational insights which came from the solution of a problem which was
around since the dawn of QFT: the E-J conundrum. The key to its solution is a
recent completely intrinsic formulation (independent of field-coordinatizations)
of causal localization which (as a result of its deep relation with modular op-
erator theory) has been termed "modular localization". It explains why the
restriction of the vacuum to the ensemble of spacetime-localized observables de-
scribed in terms of an operator algebra A(O) is indistinguishable from the KMS
equilibrium state of a statistical mechanics system, including the occurance of a
"localization entropy". It became also clear why QF T, in contrast to QM, does
not need Born’s interpretive addition of a probability in terms of a "Gedanken-
ensemble". For the reader who rubs his eyes in disbelief and wonders why
this was not noticed together with renormalized perturbation theory, we argued
that the letter can and has been derived by imposing covariance and finding
consistent prescriptions for eliminating infinities.

Following "Murphy’s law", at the first instance this incomplete understand-
ing of causal localization had a chance to cause serious damage, it did so. This
affected the first on-shell attempts as formulated by Mandelstam. On-shell ana-
lytic properties of the S-matrix and formfactors, of which the crossing property
is the most prominent are, in contrast to off-shell analyticity, notoriously diffi-
cult to derive from the basic localization principles; the recent derivation of the
particle crossing property with the help of modular localization [9][25] shows
why in the 60s there was not much of a chance. The conduct of research based
on guesswork and concistency checks failed and led to misunderstandings when
it was applied to subtle properties connected to causal localization and particle
crossing is perhaps the most subtle property of the particle-field connection.

The crossing property of the meromorphic function constructed by Veneziano
which is the defining property of what was then called the "dual model" and
led to ST, has no connection with the particle crossing property. The lack of in-
sight into the origin of on-shell analytic properties from the foundational causal
localization impeded a correction for many decades during which the misun-
derstanding solidified. With the recent conceptual progress around modular
localization the origin of the misunderstanding was finally understood at least
among some members within the small community of LQP, but this was too
late and too low key to prevent a schism in particle theory; almost 5 decades of
incomplete understanding of the consequences of causal localization have led to
this schism and there is yet no end in sight. Fortunately the new ideas do not
only reveal what went wrong, but also indicate how to reformulate the Mandel-
stam project which already led to a foundational understanding of integrability
and a new strategy of how to go about the general case. Hopefully they will
also break the schism.

Modular localization also led to a new way of looking at the problem of
renormalizability by incorporating string-localized fields for s > 1, in particular
stringlike vectorpotentials, in a new setting of gauge theory. In section 6 it
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was shown that the idea that in this new setting the coupling of a massive vec-
tormesons with scalar neutral fields is as renormalizable as massive QED; one
does not need a quasiclassical idea as the Higgs mechanism for its renormaliz-
ability thus confirming what has been observed before in the BRST indefinite
metric setting [61]. These new ideas concerning string-localized fields in Hilbert
space are superior to Krein space methods which run into problems with phys-
ical matter fields. There is no need for a mass-generation for vectormesons
a la Higgs, string localization renders these models renormalizable including
the abelian Higgs model of a coupling of to a neutral scalar matter field (the
Higgs field). There are indications that this states of affairs also prevails in YM
couplings. The fact that the intrinsic Stiickelberg field couples to the vectorpo-
tential like an external Higgs field nourishes the hope that the LHC event may
have a more profound explanation than that in terms of a scalar particle which
only exist for the consistency of a Krein-space formulation.

The root cause of the present schism in particle theory is probably much
deeper and would not simply disappear even if ST falls out of popularity. It
may be more related to the way in which research is done than to the substance
of the results. The most successful conduct which led to almost all important
results since the inception of QFT in the middle 20s up to the formulation
of the Standard Model of the 70s is that of starting a computation using the
available tools and correcting if necessary as the ideas develop together with the
calculation. Sometimes the new concept which emerged from a calculation was
more convincing than the setting in which it was obtained. An illustration of this
conduct is Dirac’s discovery of the concept of antiparticle in the setting of his
hole theory whose inconsistency (missing vacuum polarization processes) led to
its later abandonment. This "correct as you go" way of conducting research led
occasionally to incorrect results, but it was very successful up to the discovery
of the Standard Model and ST in the 70s when its success began to wane.

There were always individuals who where convinced that this conduct of
research in QFT, at least in the long run, cannot be sustained without a foun-
dational support. This is evidenced by Jordan’s talk at the first big international
conference on particle theory 1929 in Charkov when he expressed his hope that
a future QFT will not have to use the quantization "crutches" of the less fun-
damental classical field theory. One big step into this direction was achieved 10
years later in Wigner’s famous particle classification based on positive energy
representations of the Poincaré group. Even though Wigner (together with Jor-
dan) was one of the pioneers of QFT, he always maintained a critical distance
to it after his work on representation theory. His disappointment was that the
Born localization, after adjusting it to the relativistic invariant inner product,
did not give him the kind of intrinsic entrance into QFT he may have hoped
for. The more intrinsic modular localization principle remained out of reach
during his lifetime and even decades thereafter. The reason was obviously not
its mathematical complexity, but rather the fact that the intuition about quan-
tum theory of most theoreticians was formed in QM. QFT in this view was
just a relativistic extension, and the idea that the quantum realization of causal
localization may change the rules of the game had not yet entered.
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It was Arthur Wightman and in a more radical way Rudolf Haag*!, who
took up the challenge and gave the first formulations in which the umbilical
quantization cord to classical theories was finally cut. The prize was a sepa-
ration from the very successful observation-oriented research in QFT. Marvin
Goldberger’s dictum "the contribution of axiomatic QFT has been smaller than
any pre-assigned epsilon" was not far off the general opinion. But during the
last two decades this picture has changed. On the one hand the rapid progress
obtained in the first three decades after wwll has slowed down; measured in
terms of the number of publications the years since the beginning of the eighties
are marked by stagnation even in the previously most innovative and physically
relevant areas. For a long time the "compute, think, and correct if necessary"
attitude was extremely successful for the perturbative quantization-based ap-
proach leading already during the 70s to the Standard Model as we know it
now. But this attitude was not appropriate for the S-matrix-based on-shell
attempts to obtain a nonperturbative entrance into particle theory. On-shell
analytic properties and their algebraic formulation are simply too subtle for
being understood in terms of the above traditional manner of conducting re-
search; mathematical sophistication without physical conceptual control is no
guaranty for success, as the misunderstanding of particle crossing in the dual
model and ST shows.

The experimental findings at the LHC are presented as the vindication of
quasiclassical metaphors about mass-generating "God particles" which already
existed with lesser metaphoric ornamentations in the 70s. No reasonable theo-
retical alternatives to those pictures were developed which placed the experimen-
tal physicists under unhealthy pressure to decide a "Higgs or death" (of QFT)
situation (the claim that massive vectormesons can only arise in this way). The
realization that what has been elevated to the status of a foundational mecha-
nism to generate masses of particles was in reality nothing more than defining
renormalizable interactions of massive vectormesons with neutral scalar parti-
cles on par with massive QED may lead to a sobering disillusionment and kindle
a new interest in conceptual investments into foundational unexplored aspects
of QFT. This would not only be important for the future of QFT, but also
help to understand some dark corners in its history as the solution of the E-J
conundrum demonstrates.

In fact that process has already started (section 6). It led to corrections
about the observable consequences of the Unruh effect [47], a foundational un-
derstanding of the origin and the preciseformulation of the particle crossing
property which in turn gave rise to a reformulation of the S-matrix-based on-
shell approach to particle theory and a radically new view [71] about "infrared
problems" which started in the 30s with the famous Bloch-Nordsiek work.

Whether all these new findings are also capable to overcome the schism
within particle theory remains to be seen.

Acknowledgements: Since the author is neither a historian nor a philoso-

41Haag’s gratitude to Wigner is expressed in the dedication of his book on local quantum
physics [6].
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pher of science, but rather was led to a situation in which his expertise in
quantum field theory could shed some light on dark corners of its past by the
late Jiirgen Ehlers, my foremost but sadly posthumous thanks go to him. I also
acknowledge some more recent advice from John Stachel.
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