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Abstract

Recent insights into the conceptual structure of localization in QFT
("modular localization") led to clari�cations of old unsolved problems.
The oldest one is the Einstein-Jordan conundrum which led Jordan in
1925 to the discovery of quantum �eld theory. This comparison of �uctu-
ations in subsystems of heat bath systems (Einstein) with those resulting
from the restriction of the QFT vacuum state to an open subvolume (Jor-
dan) leads to a perfect analogy; the globally pure vacuum state becomes
upon local restriction a strongly impure KMS state. This phenomenon of
localization-caused thermal behavior as well as the vacuum-polarization
clouds at the causal boundary of the localization region places localization
in QFT into a sharp contrast with quantum mechanics and justi�es the
attribute "holstic". In fact it positions the E-J Gedankenexperiment into
the same conceptual category as the cosmological constant problem and
the Unruh Gedankenexperiment. The holistic structure of QFT resulting
from "modular localization" also leads to a revision of the conceptual ori-
gin of the crucial crossing property which entered particle theory at the
time of the bootstrap S-matrix approach but su¤ered from incorrect use
in the S-matrix settings of the dual model and string theory.

The new holistic point of view, which strengthens the autonomous
aspect of QFT, also comes with new messages for gauge theory by exposing
the clash between Hilbert space structure and localization and presenting
alternative solutions based on the use of stringlocal �elds in Hilbert space.
Among other things this leads to a radical reformulation of the Englert-
Higgs symmetry breaking mechanism.

1 Preface

The subject of this paper grew out of many discussions about Jordan�s discovery
of quantum �eld theory (QFT) which I had with the late Jürgen Ehlers. They
focussed in particular on events between the publication of Jordan�s thesis on
quantum aspects of statistical quantum mechanics in 1924 [1], and his discovery
of QFT around 1925 which was published in one section of the famous 1926
"Dreimännerarbeit" [2] together with Born and Heisenberg. This paper was
in fact the second paper after Heisenberg�s discovery of quantum mechanics
(QM). The resistance of Born and Heisenberg against Jordan�s section has its
natural explanation in that these two authors felt that Jordan was burdening the
conceptual struggle to understand the new quantum mechanics with something
which may distract from this project.
I met Jürgen Ehlers the �rst time around 1957 at the University of Hamburg

when he was Jordan�s assistant and played the leading role in Jordan�s general
relativity seminar. Our paths split, after I wrote my diploma thesis on a topic of
particle theory at the time when particle physics moved away from the university
physics institute to the newly constructed high energy laboratory at DESY.
Contacts with Ehlers and the relativity group became less frequent and ended
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when both of us took up research associate positions at di¤erent universities in
the US.
Only 40 years later, when Ehlers moved to Potsdam/Golm in the 90s as

the founding director of the new Albert Einstein Institute (AEI), we met a
second time. After having done important research on problems of general
relativity and astrophysics he became increasingly interested to understand some
of Jordan�s famous early work on quantum �eld theory about which we knew
little at the time of Jordan�s weekly relativity seminar1 . Ehlers was in particular
interested to understand some subtle points in a dispute between Jordan and
Einstein concerning Einstein�s use of statistical mechanics �uctuation arguments
for black body radiation [3]. The ensuing dispute around this purely theoretical
argument in favor of the existence of photons has been more recently referred
to as the Einstein-Jordan conundrum [4].
As the terminology reveals, the E-J conundrum was a poorly understood

relation between �uctuations caused by restricting the vacuum state to the ob-
servables in a subvolume in Jordan�s newly discovered �eld quantization and
Einstein�s use of statistical mechanics within the old Bohr-Sommer�eld quan-
tum setting. This led him to identify a particle-like component in the �uctu-
ation spectrum of a black body radiation ensemble (which he termed "Nadel-
strahlung") with his 1905 interpretation of the photo-electric e¤ect as a mani-
festation of the corpuscular nature of light.
The E-J conundrum has sometimes been seen as an illustration of the particle-

wave dualism of quantum mechanics, but with the hindsight of modern QFT
its real signi�cance points into a much deeper level. This was certainly Ehler�s
view when he drew my attention to what he considered its real signi�cance.
Coming from general relativity and cosmology he thought that this problem is
analogous [5] to the problems related to vacuum polarization used to explain
the origin of the cosmological constant in terms of �uctuations of the quantum
�eld theoretic vacuum. He hoped that with my experience of 40 years of QFT
I could be of some help to obtain a better understanding.
I learned recently through John Stachel that conjectures about possible con-

nections between thermal aspects of the subvolume �uctuations in QFT as they
occur in the E-J conundrum and Hawking-Unruh problems already existed in
the 80s [6]. In fact it will become clear in the course of the present work that it
indeed can and should be viewed this way.
For some time this problem remained out of my range of interest; I did not

want to loose time on something which would draw me into opaque historical
problems away from my research on new foundational insights into to QFT via
"modular localization"2 [7]. During a two year stay (2002/2003) in Brazil, a
CNPq supported research project "The Modular Structure of Causal Quantum

1After wwII Jordan�s interest was mainly focussed on general relativity and philosophical
implications of quantum theory. Since he never mentioned his early work on QFT, we remained
quite ignorant about it.

2Here modular localization stands for an intrinsic formulation of causal localization which
is independent on what quantum �eld "coordinatization" one uses in order to describe the
particular model. of QFT.
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Physics" provided the chance to extend this research. Around 2007 I suddenly
realized that the complete understanding of the E-J conundrum can be obtained
with the help of precisely those newly gained insights. One just had to apply
the principle of modular localization, which assigns a certain number of unex-
pected properties to localized subalgebras. Whereas the global vacuum state
is pure, the restriction to a causally localized subalgebra renders it impure; in
fact its impurity can be described as a thermodynamic KMS state [8] with re-
spect to a "modular Hamiltonian". This is a general result of the application
of the so-called Tomita-Takesaki modular theory of local operator algebras to
the subalgebra which observables localized in a spacetime region (whose causal
completion remains smaller than Minkowski spacetime) generate.
This reduced vacuum state is entangled in a more radical sense than the

entanglement of particle states in Schrödinger�s QM of particle states under a
binary split of the system into spatial inside/outside subsystems. Entanglement
in quantum mechanics resulting from binary inside/outside splits of degrees of
freedom resulting from the reduction to the inside and the ensuing loss of of the
outside information is a well-known phenomenon; it has been observed in quan-
tum optical experiments and the results led to a Nobel prize. But the quantum
mechanical "vacuum" (the mathematical reference state which one needs for
the "second quantization" multiparticle description of QM) remains completely
inert against entanglement. In fact the singular vacuum entanglement caused
by localization in QFT is characteristic for the enormous conceptual distance
between the two quantum theories. The terminology E-J "conundrum" refers
to the fact that for a long time this aspect of the vacuum remained outside
theoretical comprehension.
In fact most theoretical physicists became for the �rst time aware of the

KMS nature of the QFT restricted vacuum state in connection with the Unruh�s
"Gedankenexperiment" in which the localization region is a spacetime wedge.
This aspect of vacuum entanglement also points at the "�eeting" nature of
this e¤ect; it remains many orders of magnitude below the measured quantum
optical entanglement of quantum mechanical particle states. But even if it
will always remain a "Gedanken" concept 3 , it is at the heart of QFT and
follows directly from the quantum adaptation of the Faraday-Maxwell "action
at the neighborhood" which Einstein converted into the Minkowski spacetime
causality principle. Its quantum counterpart is of a radically di¤erent nature
whose physical manifestations are somewhat unexpected. It will be referred to as
modular localization; a terminology which relates its mathematical formulation
with its physical implications. In the present work it will be shown that its
conceptual range is not limited to shed light into dark corners of QFT�s history
as the before mentioned E-J conundrum, but it also plays an important role
in an ongoing conceptual reformulation of QFT (which includes gauge theories
and the recently much discussed "Higgs mechanism").
The two components in Einstein�s statistical mechanics �uctuation proper-

3The situation becomes less "�eeting" if the horizon of the localization region is an (Unruh
observer-independent) black hole "event horizon".
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ties are indeed, as Jordan claimed, also present in the physical vacuum state
after restricting it to the ensemble of observables which are localized in a subvol-
ume. It is important to not impose boundary restrictions (box quantization) but
remain within the realm of "open systems". Here it is irrelevant whether Jor-
dan�s calculation treated this aspect correctly [4]; many important observations
in the history of quantum physics have been made within doubtful calculations.
When I was about to explain my �ndings [9][10][11] in 2008 to Ehlers, I

learned that he passed away shortly before my return to Berlin.
The main aim of this paper, which I dedicate to the memory of Jürgen

Ehlers, is to explain my �ndings and their relation to the ongoing research in
QFT in more details and a larger context as I did peviously in [9].
I remember that Ehlers, in his capacity as the founding director of the AEI

in Potsdam, took an interest in string theory (ST). He was however annoyed
by the fact that he was unable to bridge the gaps between his understanding of
spacetime properties of gravity and the (sometimes bizarre) claims of members
of the ST group at the AEI; notwithstanding the fact of the enormous amount
of mathematical sophistication and the professional reputation of some of the
protagonists of ST.
The work on modular localization also led me to string-localized �elds and

their improved short distance property which promised a radical extension of
renormalization theory to interaction between �elds with higher spins. The rea-
son why I mention this here is that this new concept of string-localized �elds
in Hilbert space also revealed that string theory (ST) and its derivatives (em-
beddings, dimensional reductions, the AdS-CFT isomorphism) has no relation
to causal localization in spacetime; it is rather the result of a fundamental
misunderstanding on these issues. Hence Ehlers� problems with the ancient
Einstein-Jordan conundrum and his new problems with ST were interconnected
in a curious way. His death in 2008 prevented me from conveying this insight.
It is the purpose of these notes to explain the constructive [9] as well as

critical [13] power in a historical context.
Usually a historical paper revisits the past about already closed subjects;

typical examples are research papers on the discovery and the conceptual devel-
opment of QM. In contrast to such subjects, which are closed from a foundational
physical point of view (but sometimes still lead to bitter philosophical feuds),
the situation of the problems addressed in this paper is very di¤erent. Most
of them, although some having been present in QFT from its historical begin-
nings, were only properly understood recently and have not yet been addressed
by philosophers; In contrast to QM, QFT is still far from its conceptual closure
not to mention its philosophical exploration. The present paper attempts to
give an account of the present situation.
The Einstein-Jordan conundrum was often misunderstood as a con�rma-

tion of the particle-wave duality which, since de Broglie�s matter-wave idea and
Schrödinger�s wave equation, was an integral part of QM. But the E-J dispute
addresses a much deeper issue which, before the appearance of modular local-
ization concept in QFT, had little chance to be properly understood.
My posthumous thanks for introducing me to a fascinating topic from the
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genesis of QFT which, far from being a closed part of history, exerts its concep-
tual spell over actual particle theory, naturally go to Jürgen Ehlers. The present
exploration of the foundational principle of modular localization did not only
change the view about hitherto incompletely understood problems at the dawn
of QFT [9], but also promises to have an important say about its future [13].

2 Introduction

A dispute between Einstein and Jordan (referred to as the E-J conundrum [4])
led Jordan to propose the �rst quantum �eld theoretical model with the purpose
to show that there exists a quantum analog of Einstein�s thermal subvolume �uc-
tuations in open subvolumes (intervalls) of two-dimensional quantized Maxwell
waves in a global vacuum state. For this pupose Jordan invented the simplest
QFT which in modern terminology is the model generated by a conformal chiral
current. A brief sketch of the pre-history which led to the E-J conundrum may
be helpful.

� Einstein 1917 in [12]: calculation of mean square �uctuations in an open
subvolume in statistical mechanics of the thermal black body radiation
shows presence of two components: wave- and particle-like ("Nadelstrahlung")
�uctuation structure which Einstein interpreted as a theoretical evidence
for photons (after his 1905 paper based on the observational support com-
ing from the photoelectric e¤ect).

� Jordan in his PhD thesis (1924, [14]) argued that the particle-like component �E� �
h� is not needed for attaining equilibrium.

� Einstein�s reaction [3] consisted in a publication in which Jordan�s argu-
ment is conceded to be mathematically correct but physically �awed (the
absorption is incorrectly described). However he praised Jordan�s statis-
tical innovations ("Stosszahlansatz").

� Einstein�s paper caused Jordan�s radical change of mind; he fully ac-
cepted Einstein�s view by demonstrating that he can obtain the same wave-
and particle-like �uctuation components by restricting a "two-dimensional
quantized Maxwell �eld" (modern terminology: d=1+1 chiral current
model) to a subinterval. In this way he discovered �eld quantization,
probably without understanding why a vacuum in QFT behaves radically
di¤erent from a quantum mechanical "no particle state", in particular
why the reduced vacuum shares the kind of impurity with that of a KMS
statistical mechanics state.

Shortly after this episode Jordan published his �rst �eld quantization in a
separate section in the famous 1926 "Dreimännerarbeit" [2]. Gaps in Jordan�s
computation and his somewhat artistic treatments of in�nities caused some
ru­ ing of feathers with his coauthors Born and Heisenberg [4]. From a modern
point of view the picture painted in some historical reviews, namely that this
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was a typical case of a young brainstorming innovator set against a scienti�c
establishment (represented by Born), is not quite correct. Born and Heisenberg
had valid reasons to consider Jordan�s �uctuation calculations as incomplete,
to put it mildly. Conceding this does however not lessen Jordan�s merits as the
protagonsist of QFT .
One reason why this discovery of QFT was not fully embraced at the time

was that, although a free �eld on its own (staying with its linear properties)
is a rather simple mathematical object, the problem of energy �uctuations in
open subvolumes is anything but simple. To understand why subvolume �uctu-
ations in the vacuum state of QFT are similar to Einstein�s statistical mechanics
thermal �uctuations is a deep conceptual problem which could not have been
solved solely by calculations; especially because before the arrival of the concept
of modular localization such calculations could only have been done in terms
of conceptually uncontrolled approximations. But now it can be satisfactory
answered with the help of a new view of QFT which generically relates the
restriction of the vacuum to the observables of a spacetime subvolume with
thermal properties and vacuum polarization ("split inclusions" of modular lo-
calized algebras [8]); this is precisely what "modular localization" achieves. One
may safely assume that Born and Heisenberg perceived that this new quantum
�eld model of Jordan with in�nitely many oscillator degrees of freedom did not
quite �t into their quantum mechanical project which Heisenberg started a short
time before; in particular Jordan�s nonchalant way of handling in�nities led to
critical comments [4].
Nevertheless Heisenberg, who in comparison to Jordan understood less about

statistical mechanics at the time of the E-J conundrum, later became aware of
vacuum polarization (which is absent in QM) probably still under the in�uence
of Jordan�s �uctuation problem. A letter he wrote to Jordan before he pub-
lished his famous vacuum polarization paper mentions a logarithmic divergence
lim"!1 log "; with " describing the "fuzziness" at the interval ends of Jordan�s
one dimensional model [4]. Indeed vacuum polarization and thermal manifesta-
tions of vacuum entanglement from causal localization are opposite sides of the
same coin.
One note of caution. Since the terminology "particles" and "waves" played

an important role in the Einstein-Jordan dispute, the reader may think that it
refers (as mentioned before) to the quantum mechanical particle-wave dualis-
mus (the two equivalent descriptions of QM); in this way its real signi�cance,
namely the thermal aspects of vacuum entanglement through causal localization
of quantum matter, is sometimes overlooked.
The important distinction between the global quantum mechanical nature of

in�nitely many oscillators and their holistic role in the implementation of causal
localization in a quantum theory of local �elds had to wait almost 5 decades
before being understood on a foundational level. For some time QFT was even
suspected to be a­ icted by internal inconsistencies which lead to ultraviolet di-
vergencies (the "ultraviolet catastrophe"). Even after discovering the covariant
renormalized perturbation theory for quantum electrodynamics (and �nding an
impressively successful agreement of low order perturbation with experimen-
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tal observations) some of these doubts lingered on. Renormalized perturbation
theory remained for a long time a collection of recipes about how to extract �-
nite time-ordered correlation functions from the quantization rules starting with
classical Lagrangians and what convinced people despite the shakyness of the
derivation but rather the internal consistency of the �nite results.
The quantization parallelism to the classical �eld theory of Faraday and

Maxwell as embodied in the Lagrangian or functional integral quantization pre-
vented for a long time an awareness about some radical di¤erences resulting from
quantum causal localization as compared to its classical counterpart. One man-
ifestation of such a di¤erence was that quantum �elds, in contrast to smooth
causally propagating classical functions, were rather singular operator-valued
Schwartz distributions. They require testfunction smearing in order to attain
the status of (generally) unbounded operators with which one then can con-
struct operator algebras of bounded operators which are causally localized in
spacetime regions. The other surprise was that these operator algebras have
properties which were somewhat unexpected from the conceptual viewpoint of
QM. Causal localization causes the global vacuum state to become impure upon
restriction to a local operator subalgebra A(O) generated by covariant �elds
A(x) smeared with O-supported test functions. These impure "partial" states
ful�ll the so-called KMS property [8] with respect to a modular Hamiltonian
which is intrinsically determined by the pair (A(O);
vac) of local algebra and
vacuum state vector. In fact all physical (i.e. �nite energy) states restricted to
a local algebra behave like statistical mechanics states.
The mathematical theory of operator algebras which highlights such prop-

erties is the Tomita-Takesaki modular operator theory which is omnipresent in
QFT thanks to its causal localization structure. The presentation of QFT in
terms of a net of operator algebras and their properties was proposed by Rudolf
Haag [15] shortly after Arthur Wightman published his characterization of co-
variant �elds in terms of properties of their correlation functions [16]. Haag�s
textbook [8] on "local quantum physics" (LQP), based on an operator-algebraic
approach to QFT, appeared only many decades after he gave a �rst account of
this new formulation [15]. The terminology LQP in the present article is used
whenever it is important to remind the reader that the arguments go beyond
the view about QFT which he meets in most textbooks (which are usually re-
stricted to a formulation of perturbation theory within the setting of Lagrangian
quantization and its functional integral formulation).
The mathematical property which guaranties the applicability of the T-T

modular operator theory, is the so-called standardness of the pair (A(O);
vac)
i.e. the property that the operator algebra acts on 
vac (more generally on all
�nite-energy state vectors) in a cyclic (A(O)
vac = H) and separating (A(O)
contains no annihilators of 
vac) manner. The cyclicity of the vacuum is closely
related to the positivity of the energy of the representation of the Poincaré
group, whereas the separating property results from spacelike commutativity of
observables and is equivalent to the fact that the commutant, which contains
the algebra of the causal complement A(O)0 � A(O0); acts also cyclic on 
vac as
long as the spacelike complement O0 is non-void. This physicists know under the

8



name of the the "Reeh-Schlieder property" [8], whereas the operator algebraists
call this the "standardness" of the pair (A(O);
). This property is not shared
by QM and accounts for the signi�cant di¤erences between these two QT [17].
For a structural comparison it is convenient to rewrite (the Schrödinger form

of) QM into the Fock space setting of "second quantization" which converts
wave functions into �elds. As mentioned before in this reformulation the newly
introduced vacuum remains, as opposed to its active role in QFT, completely
inert with respect to the action of the Schrödinger "quantum �eld" (no vacuum
entanglement leading to vacuum polarization). Instead of the cyclic action the
local algebra at a �xed time4 corresponding e.g. to a spatial region R �R3; one
obtains a subspace and a tensor factorization of H

H(R) = A(R)
QM � H = H(R)
H(R?) (1)

A(R) = B(H(R)); A � B(H) = A(R)
A(R?)

of with a factorizing vacuum 
QM : This inertness against entanglement of the
quantum mechanical vacuum is very di¤erent from the "vacuum polarizability"
of 
vac in QFT which is connected to the lack of tensor factorization (despite the
the fact that by de�ntion the commutant A(O)0 contains all operators which
commute with A(O)). In terms of structural properties of operator algebras
these remarkable di¤erences in the mathematical structure amount to the exis-
tence of two non-isomorphic factor algebras which are met in QFT: the global
B(H) algebra of all bounded operators on a Hilbert space (the unique type
I1 factor) and the local monad algebras A(O) which are all isomorphic to the
unique hyper�nite type III1 factor algebra in the Murray-von Neumann-Connes
classi�cation of factor algebras [8].
The choice of terminology reveals the intention to see the new local quantum

physical view of QFT in analogy to the way Leibnitz understood reality in terms
of relations between monads. In this extreme relational view, a monad by itself is
nearly structureless, similar to a point in geometry. Indeed in the local quantum
physical description of QFT, all properties of quantum matter, including the
Poincaré covariance of its localization in spacetime and its possible localization-
preserving inner symmetries, can be shown to arise from the abstract (non-
geometric) modular positioning of a �nite number of copies (depending on the
spacetime dimension) of the monad within a shared Hilbert space (section 3); the
Poincaré group can be extracted from the modular groups of the contributing
algebras and the concept of modular inclusions [18].
Together with the thermal KMS property of the locally restricted vacuum,

there is the formation of a vacuum polarization cloud at the causal boundary
of localization which accounts for a localization entropy, a special type of en-
tanglement entropy. By replacing the boundary by a thin shell of size " the
localization entropy can be described in terms of a function of the dimensionless
area � = area="2 which diverges in the limit " ! 0: This relation between the
increasing sharpness of localization and the increasing localization entropy is

4 In LQP such an algebra at a �xed time A(R) is de�ned as the intersection of all spacetime
algebras A(O) with R � O.
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the substitute of the lost quantum mechanical Heisenberg uncertainty relation.
The position operator xop is, as all quantum mechanical observables, of global
nature; it does not belong to the observables obeying the causal localization
principle of LQP but may be used in the (non-covariant) e¤ective description
of wave-function propagation. The divergence in the sharp localization limit
"! 0 shows another aspect in which QFT di¤ers from QM.
The entanglement between the wedge-localized algebra and its opposite (that

of the spacelike separated wedge) is always in�nite in the sense that it is not
possible to describe the associated state as density matrix (accounting for the
singular nature of vacuum entanglement); indeed there are no pure states nor
density matrix states on monad algebras; all states are impure in a very radical
way. This is not a disease of QFT (ultraviolet divergency of entropy at a sharpely
de�ned localization) but rather its conceptual heart; without it there would be
no relativistic QFT. In quantum statistical mechanics this kind of KMS state
is only met in the thermodynamic limit of density matrix Gibbs states diverge
and pass to KMS states on a monad algebra. In this case the QFT generated
by the commutant describes a "shadow world" outside the localization concept
[19]. Local algebras A(O) in QFT are monads and have no density matrix or
pure states5 at all; every global state restricted to such an algebra will be rather
singular. In fact all physical (i.e. �nite energy) states restrict to singular KMS
states (i.e. one which cannot be written as a density matrix state).
The reduced vacuum state assign a probability to the ensemble of local

observables contained in A(O); this is a consequence of the KMS (statistical
mechanics-like) nature of the impure reduced vacuum state. Unlike the prob-
ability interpretation, which Born added to QM and which Einstein rejected
("God does not throw dice"), the ensemble viewpoint of probability as in sta-
tistical mechanics (which Einstein accepted) is intrinsic to QFT. KMS states
on the ensembles of O-localized observables are like thermal states of statistical
mechanics and not "Gedanken-ensembles" as in case of Born�s assignement of
probabilities to individual mechanical systems of QM which refers to the sta-
tistics of repeated measurements. Einstein had no problems with probability
of real ensembles in statistical mechanics, but it is the at that time unknown
modular localization aspect which permits to recognise the ensemble aspect of
local observables.
There have been attempts to improve Jordan�s approximations [4] since the

subvolume �uctuation problem is not solvable in closed form. The characteri-
zation of the algebra of operators localized in a subvolume is a holistic problem;
the enclosure of the subsystem in a quantization box is not the same as re-
ducing the vacuum to the subvolume algebra. Dealing with open subsystems
is an "holistic" challenge in which the knowledge of the global oscillators is of
not much help. Standard QFT does not provide a clear mathematical concept
in order to characterize the ensemble of operators which is localized in a sub-
volume O. On way of doing this would be to smear the quantum �elds with

5A state is a normalized linear positive functional on an algebra and only if this algebra
consists of all bounded operators in a Hilbert space B(H), states can be represented by vectors
(modulo phase factors).
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O-supported testfunctions and use the algebra which they generate. Even then
one needs some knowledge about the "modular Hamiltonian" which is related to
the kind of statistical mechanics associated with the KMS state corresponding
to the restricted vacuum. In certain cases one can guess it in the form of a
geometric transformation which leaves O invariant. For a noncompact wedge
region in Minkowski spacetime e.g. W3 = fx;x3 > jx0jg this would be the
wedge-preserving Lorentz subgroup �W3(�); for Jordan�s model (a chiral subal-
gebra on a lightlike interval, see section 4) it is the interval-preserving dilation
subgroup of the Möbius group; but in the generic case on has to refer to modular
theory. What is important in the historical review is not whether Jordan got
this right, but rather that in his attempt to counter Einstein he invented QFT.
In order to avoid any misunderstandings it should be emphasized that in

saying that the concept of probability enters QFT in a more natural way than
in QM, one is not implying that this is changing the epistemic aspects of the
measurement theory in QT. All the conceptual aspects of entanglement (includ-
ing Bell�s inequality) remain valid. What QFT adds is a more radical realization
of these phenomena on a much smaller scale; as already mentioned the scale of
localization-caused vacuum entanglement is that of the Unruh e¤ect and Hawk-
ing radiation. The reality of entanglement of particle states with respect to
binary subdivisions in QM is experimentally accessible in terms of quantum
optical arrangements, whereas the KMS impurity of the spacetime-restricted
vacuum (e.g. the Unruh e¤ect) will presumably always remain experimentally
inaccessible (including even high energy nuclear experiments).
Part of the problem is that it is nearly impossible to describe precisely in

terms of existing hardware how a perfect causal localization can be realized; even
for noncompact spacetime regions as Unruh�s Rindler wedges, the e¤ect depends
on the state of uniform acceleration of the observer; observer-independent man-
ifestations appear only in the context of metric-induced event horizons of black
holes. Fortunately foundational principles do not need to permit direct obser-
vational veri�cation; they only have to be conceptually consistent, incorporate
the reality which existed before their inception, and lead to new observable con-
sequences. In this respect QFT, which only shares with QM the Hilbert space
and ~ but not the causal locality principle, has been and promises to continue
to be the most inclusive successful physical theory.
One can entertain wonderful dreams of what may have happened if important

concepts would have appeared decades earlier. But in the real world big concep-
tual jumps against the prevalent ideas of the time (the Zeitgeist) are virtually
impossible; even for getting from inertial systems in Minkowski spacetime to
General Relativity it took Einstein many years and the same can be said about
the development of QM out of the old semiclassical Bohr-Sommerfeld ideas. The
problem for the case at hand is aggravated by the fact that, up to the middle of
the 60s, there did not even exist a mathematical framework of operator algebras
in which ideas about localization could have been adequately formulated.
It is interesting to note that modular operator theory and its physical coun-

terpart of modular localization is the only theory to whose discovery and de-
velopment mathematicians (Tomita, Takesaki, Connes) and physicists (Haag,
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Hugenholz and Winnink) contributed on par. They �rst realized this at a 1965
conference in Baton Rouge6 , with statistical mechanics of open systems and
the role of the KMS property representing the physical side [8]. The study of
the relation between modular operator theory and causal localization in LQP
started a decade later [20], and its �rst application consisted in a more profound
understanding [21] of the Unruh Gedankenexperiment [22]. The terminology
"modular localization" is more recent and marks the beginning of a new con-
structive strategy in QFT based on the modular aspects of localization of states
and algebras [23][7]. In mathematics the theory was the decisive instrument
which led to Connes closure of the Murray-von Neumann project of classifying
von Neumann factor algebras.
The E-J conundrum represents in fact a precursor of the Unruh Gedanken-

experiment and, as the latter, can be fully resolved in terms of the principle
of modular localization. In fact in the special case of Jordan�s chiral current
model (the historically �rst and simplest model of a QFT), the solution of the
E-J conundrum amounts to a unitary isomorphism between a system de�ned
by the vacuum state restricted to the algebra A(I) localized in an interval I and
an associated global statistical mechanics system at �nite temperature. Such
isomorphic relations are referred to as describing an "inverse Unruh e¤ect", [19]
and the Jordan model is the only known illustration. However in both cases the
KMS temperature is not something which one can measure with a thermometer
or use for "egg-boiling" (and there is also no "boiling soup" of particle/anti-
particle pairs) [24].
The attribute "holistic" will be used quite frequently in connection with

modular localization. This terminology has been previously introduces by Hol-
lands and Wald [25] in connection with their critique of calculations of the
cosmological constant in terms of simply occupying global energy levels (with a
cuto¤ at the Planck mass). In previous papers [26], it refers to the intrinsicness
of localization which is connected with the cardinality of phase space degrees of
freedom and their subtle local interplay. This distinguishes physical localization
of quantum matter from mathematical/geometrical concepts. In fact it presents
a strong barrier against attempts of geometrization of QFT and explains why
the Atiyah-Witten attempt of the 70ies to "geometrize" QFT did not lead to
the breakthrough which many people (including the author) hoped for.
The simplest illustration of the meaning of holistic consists in the refutation

of the vernacular: "(free) quantum �elds are nothing more than a collection of
oscillators" which often students are told in courses of QM. Knowing continuous
families of oscillators in the form of creation and annihilation operators a#(p)
does not reveal anything about free quantum �elds and their associated local
operator algebras. The free Schrödinger �eld and a free scalar covariant �eld

6The mathematicians worked on the generalization of the modularity of Haar measures
("unimodular") in group representation theory whereas the physicists tried to understand
quantum statistical mechanics directly in the thermodynamic in�nite volume limit (open
system statistical mechanics) by using the KMS identity instead of approaching this limit by
tracial Gibbs states.
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share the same global oscillator creation/annihilation operators

aQM (x;t) =
1

(2�)
3
2

Z
eipx�

p2

2m a(p)d3p; [a(p); a�(p0)] = �3(p� p0) (2)

AQFT (x) =
1

(2�)
3
2

Z �
e�ipxa(p) + eipxa�(p)

� d3p

2
p
p2 +m2

; p = (p;
p
p2 +m2)

In both cases the global algebra is the irreducible algebra of all operators B(H);
generated by the shared creation/annihilation operators. But the local algebras7

generated by testfunction-smearing with �nitely supported Schwartz functions
suppf(x) � R of the �elds and its canonical conjugate at a �xed time in a spa-
tial region R are very di¤erent in both cases. In the relativistic covariant case
they are identical to the algebras A(OR); OR = R00 the causal spacetime com-
pletion of R (which is also generated by smearing with OR-supported spacetime
smearing functions). According to what was stated before, these algebras are of
"monad" type and the A(OR)-restricted vacuum state is a KMS state; in the
case of the Schrödinger �eld the associated subalgebra B(H(R)) is of the same
type as the global algebra; the QM vacuum continues to be an inert state in the
"smaller" factor Hilbert space H(R):
Whereas the global QM algebra is simply the tensor product of its factor

algebras, the relation of the net of local algebras to its A(O) "pieces" is a more
holistic relation; although together with its complement it generates the global
algebra A(O)_A(O)0 = B(H); the global algebra B(H) is not a tensor product
of the two. The most surprising property which underlines the terminology
"holistic" is the fact that the full net of local operator algebras which contains
all physical informations can be obtained by "modular tuning" of a �nite number
of copies of a monad in a shared Hilbert space8 ; the reader who is interested
in the precise formulation and its proof is referred to [18], see also [17]. The
fact that the global oscillator variables are the same in both cases (2) does
not reveal these fundamental holistic di¤erences of spacetime organization of
quantum matter which have very di¤erent physical consequences. The present
quantization formalism (Lagrangian, functional integral) does not shed light on
those properties of QFT which solve the Einstein-Jordan conundrum in a clear-
cut way. If it comes to ensemble properties of localized observables, the global
aspects of generating covariant �elds (which have no de�nite localization region)
on which covariant perturbation theory is founded are of lesser importance than
the local operator algebras A(O) which are generated by all smeared �elds A(f)
with sup pf � O. The emphasis changes from covariance properties of �elds to
properties of relative localization of operator algebras and this change �nds its
appropriate mathematical form in the LQP ("local quantum physics") setting
of QFT [8].

7Technical points as the connection between �elds and the algebras they generate are not
important in the present context and therefore will be omitted.

8This number n is two for the simplest case of a chiral algebra, whereas for a net in four
spacetime dimension the correct modular positioning can be achieved in terms of n=7 copies.
The emergence of the spacetime symmetries in Minkowski spacetime as well as possible inner
symmetries of quantum matter is a consequence of this holistic tuning.
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It is precisely this holistic aspect which renders any calculation of the sub-
volume �uctuation di¢ cult; the simplicity of global oscillators is of no help here.
A calculation in closed form is (even in the absence of interactions) not possible,
and the imposition of covariance, which was the important step for obtaining the
modern form of perturbation theory, also does not provide guidance. For renor-
malized perturbation theory one has clear recipes which were extracted from the
imposition of covariance, but this is of not much help when one wants to �nd
appropriate description of localized �uctuation in open subsystems. Saying that
the global aspects can be described in terms of oscillators is almost as useless
as trying to understand the holistic structure of a living body in terms of its
chemical composition (in this analogy the chemical substances correspond the
the global operators whereas the nature of live corresponds to the organization
of global oscillators into algebras of local observables).
Although modular localization theory asserts the existence of "modular

Hamiltonians", in its present state it does not provide a generic method to ex-
plicitly construct them. Jordan�s chiral model is an exceptional case for which,
similar to the Unruh Gedankenexperiment, an explicit identi�cation of the mod-
ular Hamiltonian in terms of the spacetime symmetries of the model is possible.
Actually one may view Jordan�s �uctuation problem as a predecessor of the
Unruh e¤ect in other words: QFT was born with the "thermal" localization
aspects of the E-J conundrum which includes a completely intrinsic pre-Born
notion of ensemble-probability; however the proximity of its date of birth to that
of QM prevented an in-depth understanding of di¤erences beyond the shared
~ and the Hilbert space.
This begs the question how, with the understanding of foundational proper-

ties of QFT still being that incomplete, it was possible to achieve the remarkable
progress in renormalized perturbation theory. To phrase it in a more provoca-
tive historical context: how could one arrive at the Standard Model without
having �rst solved the 1925 Einstein-Jordan conundrum? The answer is sur-
prisingly simple: to get from the old Wenzel-Heitler formulation of perturba-
tion theory, in which the vacuum polarization contributions were still missing,
to the Tomonage-Feynman-Schwinger- Dyson perturbation theory for quantum
electrodynamics (QED), one only needed to impose covariance and "exorcise"
some ultraviolet divergences by �nding plausible recipes. It was the internal
consistency of the result and not its derivation from Lagrangian quantization
which made renormalized perturbation theory successful.
Many years later there were also derivation of these renormalization rules by

starting from invariant free �eld polynomials (without using Lagangian quanti-
zation9) and invoking spacelike commutativity in an inductive way (the causal
perturbation setting of Epstein and Glaser [27]). But such conceptual re�ne-
ments (of reducing prescriptions to to an underlying principle) had little impact
on the Zeitgeist; in any case it would not have helped to obtain the founda-
tional insight into modular localization which is required in order to solve the
E-J conundrum.

9The free �elds do not have to ful�ll Euler-Lagrange equations.

14



This lucky situation of making progress by playfully pushing ahead and
working once way through a yet conceptual incomplete formalism with the help
of consistency checks did not extend much beyond Lagrangian quantization and
renormalized perturbation theory. As will be shown in section 6, it is precisely
this setting which determined the fate of QFT for more than half a century which
is now being replaced by a more general setting based on modular localization.
The latter has not only removed unnecessary restrictions from renormalization
theory, but also led to a di¤erent view about on-shell constructions (section 5).
When, in the aftermath of the Lehmann-Symanzik-Zimmermann (LSZ) scat-
tering theory and the successfull adaptation of the Kramers-Kronig dispersion
relations, the �rst attempts of S-matrix based on-shell construction were formu-
lated, the conceptual di¢ culties of analytic aspects of on-shell properties were
underestimated. As one knows through more recent progress about modular
localization, an important aspect of the S-matrix, namely its role as a relative
modular invariant of wedge-localization, was missing. As a result, the true na-
ture of the particle crossing property was misunderstood by identifying it with
Veneziano�s dual model crossing which was then passed to string theory (ST).
The correct formulation of the on-shell crossing property within a new S-

matrix-based construction project and the solution of the E-J conundrum are
interconnected via the principle of modular localization. It is the aim of this
paper to show the power of the latter by presenting the solution to these two
problems.
The �rst attempts to formulate particle physics and obtain an constructive

access outside of quantization and perturbation theory was the S-matrix in
Mandelstam�s project [28]. As we know nowadays, and as it will be explained in
detail in the present work, this failed as a result of the insu¢ cient understood on-
shell analytic properties. Their connection to the causality principle are much
more subtle than those to the o¤-shell correlation functions. In retrospect it is
clear that with the scant understanding of the central crossing property (and
more generally the conceptual origin of on-shell analyticity properties), there
was no chance in 70s for Mandelstam�s S-matrix based particle theory project
to succeed.
In retrospect it is also clear why this happened precisely when Veneziano�s

mathematical construction of a crossing symmetric meromorphic function in
two variables was accepted as a model realization of particle crossing for elastic
scattering amplitudes. It is appropriate in an article, whose intention is to shed
light on still ongoing misunderstandings, to explain their origin in a historical
context.
The importance of the E-J conundrum in the development of QFT can be

best highlighted by following Galileio�s example and imagine a dialog between
Einstein and Jordan about subvolume �uctuations but placing it in the year
1927, after Max Born added his probability interpretation to Heisenberg�s and
Schrödinger�s quantum mechanics.
Einstein: Dr. Jordan, I appreciate that you �nally accepted my invitation

to come to Berlin and I am very interested to understand why, after �rst criticiz-
ing my �uctuation calculations in my statistical mechanics thermal blackbody
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radiation model, you now claim that you �nd similar �uctuation components in
your new wave quantization at zero temperature.
Jordan: Thank you Professor Einstein for taking so much interest in my

work. The appearance of such a �uctuation spectrum in my new setting of
quantized waves in a vacuum state is indeed surprising. Although my wave
quantization of 2-dimensional Maxwell waves generalizes Heisenberg�s quantiza-
tion in some sense, the �uctuation properties obtained by restricting the vacuum
to a subinterval leads to a very di¤erent situation from that expected in of his
and Born�s formulation of QM. It seems that my quantized Maxwell waves can-
not be subsumed into a quantum mechanics of systems with an in�nite number
of oscillators.
Einstein: As you remember, I have some grave reservation against asso-

ciating a probability to an individual measurement on a quantized mechanical
system which I occasionally expressed in the formulation "the Dear Lord does
not throw dice". But I never had any problem with probability in statistical
mechanics, in fact my calculation of the Nadelstrahlung-component in the black
body �uctuation spectrum, which led me to the particle nature of light on pure
theoretical grounds, is based on the probability of quantum statistical mechan-
ics. Does the result of your subvolume �uctuation calculation in the pure ground
state of your �eld quantization mean that this state appears impure if analyzed
in the setting of an open subsysten?
Jordan: Professor Einstein, I am glad that you raised this question. I have

been breaking my head over these unexpected consequences of my new quantized
�eld theory and I would be dishonest with you, if I claim to understand these
conceptual implications. But since the main di¤erence to mechanics is the causal
propagation, (which was already implicit in the Nahewirkungsprinzip of Faraday
and Maxwell and which you then succeeded to generalize into your new relativity
principle in a Minkowski spacetime), I am inclined to suspect that the ensemble
aspect, which one needs in order to avoid the assignement of a probability to
an individual mechanical system (as proposed by my adviser Prof. Max Born),
has its origin in the quantum realization of causal localization. Somehow this
principle creates a natural ensemble associated with its causal completion of
a localization region, namely the ensemble of all local observables attached to
that spacetime region. This is in contrast to QM which deals with individual
mechanical systems for which the association to an ensemble is a useful mental
construct for the interpretation of QM. I tried to convince Prof. Born and my
colleague Werner Heisenberg, who despite their initial resistance �nally agreed
to permit me to present my idees in a separate section of a joint paper which
was published two years ago. But I was not able to remove their doubts. It
would be very helpful for me to obtain some support from your side.
Einstein: I need some time to think about this new situation. Your conjec-

ture seems to suggest that your new theory of quantum �elds, which is certainly
much more fundamental than Heisenberg�s and Schrödinger�s quantized me-
chanics, comes with an intrinsic notion of localized ensembles of observables
and an associated statistical mechanics type of probability. If one could better
understand how the less fundamental global quantum mechanics can be related
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as a limiting case to your new fundamental quantum �eld theory in such a way
that Born�s postulated probability is a relict of your local ensemble probabil-
ity, this may change my view and perhaps even in�uence my quantum physical
Weltanschauung. Let us remain in contact and please keep me informed about
future clari�cations on the points raised in our conversation.//
In this imagined dialog, which could have radically changed the history of

QFT, I avoided the use of advanced mathematical concepts. of modular lo-
calization for which there was no mathematical support in the 20s. The E-J
conundrum is best understood as a progenitor of an Unruh-like Gedankenex-
periment.
The organization of this paper is as follows. In the next section the vacuum

polarization on the boundary of causal localization is derived for the "partial
charge", which is a modern formulation of Heisenberg�s original observation.
Section 3 sketches the issue of modular localization and its KMS property with
special emphasis on the di¤erence between a KMS ("Carnot") temperature and
that measured by a thermometer. In section 4 the KMS property is used for
the explicit construction of an isomorphism between the thermal subvolume
(interval in Jordan�s chiral model) �uctuations in Jordan�s model with a cor-
responding statistical mechanics model representing Einstein�s side. Section 5
explains modular localization and its relation with the Tomita-Takesaki mod-
ular operator theory. The ongoing impact of modular localization on on-shell
constructions of QFT, with particular emphasis on the connection of particle
crossing with the KMS identity, is addressed in section 7.
The most important consequence of modular localization for the ongoing

research in particle theory is the generalization of renormalized perturbation to
interactions involving arbitrarily high spin through the use of string-localized
�elds in section 6. In the case of spin s=1 it leads to a much deeper under-
standing of why gauge theory requires the inde�nite metric Krein space setting
and how modular localization allows a formulation which remains throughout
in Hilbert space.
The same ideas which lead to unexpected progress also permit to expose the

misunderstandings which led to the dual model and ST as presented in section
7. In contrast to the stringlocal �elds in higher spin QFT the localization
which string theorist attribute to it is that of a chain of quantum mechanical
oscillators (Born�s localization) which bears no relation to causal loxalization
in spacetime. Section 8 addresses some old and in the maelstrom of time lost
insights about the connection between the cardinality of phase space degrees of
freedom and causal localization. This includes problems concerning dimensional
changes which came from ST but which can also be formulated in the setting
of QFT. The critique of the Maldacena conjecture, concerning the nature of the
AdS-CFT correspondence, addresses one of those problems. The concluding
remarks in the last section attempt to position the present situation in particle
theory within the historical context and the expectations about its future.
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3 Vacuum polarization, area law

In 1934 Heisenberg [29] �nally published his �ndings about vacuum polarizations
(v. p.) in the context of conserved currents which are quadratic expressions in
free �elds. Whereas in QM they lead to well-de�ned partial charges associated
with a volume V,

@�j� = 0; Q
clas
V (t) =

Z
V

d3xjclas0 (t;x) (3)

QQMV (t) =

Z
V

d3xjQM0 (t;x); QQMV (t)
QM = 0

there are no such sharp de�ned "partial charges" QV in QFT, rather one �nds
(with gT a �nite support smooth interpolation of the delta function) [30]
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where the logarithmic divergence corresponds to n = 2.
The dimensionless partial charge Q(fR;�R; gT ) depends on the "thickness"

(fuzziness, roughness) �R = " of the boundary and becomes the f and g-
independent (and hence t-independent) conserved) global charge operator in
the large volume limit. The deviation from the case of QM are caused by
v. p.. Whereas the latter fade out in the R ! 1 limit, they grow with the
dimensionless area ( R�R )

n�2 for �R ! 0: The simplest calculation is in terms
of the two-point function of conserved current of a zero mass scalar free �eld. In
the massive case the leading term in the limit �R! 0 remains unchanged. We
leave the elementary calculations (not elementary at the time of Heisenberg) to
the reader.
The presence of v. p. causes relativistic quantum �elds to be more singu-

lar than Schrödinger �elds and requires the formulation in terms of Schwartz
distribution theory as used in the above smearing of the current with smooth
�nitely supported test function. The LQP setting on the other hand avoids the
direct use of such singular objects in favor of local operator algebras. In such a
description the singular nature of vacuum polarization is not directly perceived
in the individual operators but rather shows up in ensemble properties of op-
erator algebras. It turns out that under rather general conditions there exists
between two monad algebras a distinguished (by modular theory) intermediate
type I1 algebra N [8]

A(OR+�R) � N � A(OR); H
V! H(N)
H(N 0); � � V (

 
) (5)

V AB0
 = A

B
; A 2 A(OR); B
0 2 A(OR+�R); V NV

� = B(H)
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i.e. there exists a unitary operator V which permits to write the full Hilbert in
terms of a tensor product such that A(OR) � N; A(OR+�R)0 � N 0 where the
"split vacuum" � is a state in the original Hilbert space which corresponds to
the tensor product of vacua.
In QM the unitary V would be simply the identity operator expressing the

fact that the vacuum is a auxiliary mathematical state which remains physi-
cally inert under splitting, i.e. the QM vacuum is not entangled under spatial
subdivisions. In QFT it is a state which on N 
 N 0 is nontrivially entangled
in the sense of quantum information theory. However in the sharp localization
limit �R ! 0 the "quantum mechanical" type I1 converge towards the mon-
ads A(OR); A(O0R) which commute but do not tensor-factorize. The limiting
entanglement is of a very singular kind which has no counterpart in quantum
information theory and is characteristic for subalgebras which do not admit
density matrix states as the monad. The situation is analogous to that encoun-
tered in �nite temperature statistical mechanics in the thermodynamic in�nite
volume limit when the tracial nature (the Gibbs formula) of the state is lost
and only the KMS property remains10 .
The above described nontrivial behavior under splitting leads to a nontrivial

�R dependent localization entropy which is consistent with the KMS impurity
of the restricted vacuum. In fact, since the vacuum polarization happens in
a layer of size �R (the "fuzzy" boundary) the entropy is a function of the
dimensionless area

En(R;�R) = split localization entropy (6)

Enj�R!0 ' ca; a =
area

(�R)d�2
for d > 2

where the second line is the leading order in the sharp localization limit which
one expects if the "polarization clouds", which determine the singular behavior
of smeared �elds as Heisenberg�s partial charges (4), are the same as those which
appear in the above entropy argument.
Note that in contradistinction to the treatment in the literature where the

connection with the model of local QFT is lost by introducing an imagined and
ill-de�ned momentum space cuto¤11 , the implementation of the split property
is a construction within the QFT model.
The logarithmic behavior for d=2 split entropy can actually be rigorously

derived [31] and is well-known to condensed matter physicists. For Jordan�s
chiral current model used in the E-J conundrum, the entropy can be directly
obtained from the isometry with a chiral statistical mechanics model (section 4).
This situation is very special and has been termed "the inverse Unruh e¤ect [19].
For d=1+3 �t Hooft has obtaind the area behavior in terms of the "brickwall
picture" [32], but a rigorous derivation, solely based in the split property of
modular localization, is not yet available. Bekenstein�s area law results if one
relates �R with the Plank length.
10Whereas the thermodynamic limit monad is approximated from the inside, the split prop-

erty approximates the local monad from the outside.
11One can cut o¤ integrals but to cut o¤ a model of QFT is ill de�ned.
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There exists a conjecture that even in the general case there could remain
a weak form of the "inverse Unruh e¤ect" [19] in which the spatial volume
factor is replaced by the "volume factor" of a box with two spacelike and one
lightlike direction. In that case the two spacelike extensions would account for
the dimensionless area factor and the lightlike contribution would be (as in the
chiral Jordan model) logarithmic [31] so that the net result is a logarithmically
modi�ed area law.
Either behavior of localization-entropy shows that although there are gen-

uine in�nities in QFT; they are limited to sharp localization within a model and
not a predicate of QFT; in case of quantum �elds they are controlled in terms
of testfunction smearing. Unlike the misunderstood ultraviolet divergencies in
the old formulation of perturbation theory, they have no relation to the "ultra-
violet catastrophe" i.e. they threaten in no way the consistency of QFT; to the
contrary, they are a direct consequence of its most foundational modular local-
ization property. In a certain sense the divergence of thermodynamic in�nite
volume limit correspond to the in�nity obtained in the sharp boundary limit
(increasing sharpness of the boundary) "! 0:
With the notion of "localization temperature" and energy one has to be

much more careful than with the dimensionless localization entropy. When one
naively interprets the Unruh temperature as that measured by a thermometer,
one enters a conceptual mine �eld. The equality of the thermometer (local)
temperature (related to the zeroth thermodynamic law with the "Carnot tem-
perature" of the second fundamental law of an KMS equilibrium state is only
correct in an inertial system, but the "egg-boiling local temperature of the Unruh
e¤ect refers to an accelerated observer. In fact the thermometer temperature in
a vacuum state remains zero; it is a "local temperature" which does not depend
on the Unruh trajectory [24]. The same holds for other situations described by
modular theory (next section); although there is always a dimensionless modular
Hamiltonian and a dimensionless temperature � = 2� associated with modular
KMS states, The still ongoing hot topic about "�rewalls" [33] is dangerously
close to the Unruh "cooking temperature" and more investigations about pos-
sible di¤erences between causal horizons (Unruh) and event horizons of black
holes are necessary for clari�cation.
Another useful conceptual warning in passing from classical �elds to quan-

tum �elds is to avoid to attribute a direct physical meaning to �elds, but rather
to view them in a similar role as that which coordinates play in the description
of geometry. This is facilitated by the fact that quantum �elds are not directly
measured (no experimentalist has measured a nuclear �eld); rather the notion
of a quantum �eld serves as a device to describe particles which are related to a
particular subset of quantum �eld i.e. the same particles can be interpolated by
many di¤erent �elds. It has turned out that to view �elds in their role as coor-
dinatizing or generating local algebras is the most useful way of keeping track of
the di¤erences betweem description-dependent �elds from intrinsic particles. In
this way particles do not correspond to individual �elds but rather to local �eld
classes which carry the same superselection charges. All structural properties of
LQP and the resulting general theorems can be expressed in terms of local nets
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of operator algebras, but the present formulation of renormalized perturbation
theory still needs generating �elds.
Note that the well known entropy conjecture by Bekenstein, based on equat-

ing a certain area behavior in classical General Relativity with quantum entropy,
results formally from the above area law by equating�R with the Planck length.
Quantum Gravity is often thought of as that still elusive theory which explains
why and how the quanta of gravity can escape the consequences of modular
localization for sharp localization which are responsible for the singular short
distance aspects of causal localization. If Bekenstein�s conjecture really describes
quantum aspects of gravity (and not just quantum matter in curved spacetime),
then modular localization cannot be extended to Quantum Gravity.
As mentioned before the relation between �R and the entropy is reminis-

cent of Heisenberg�s quantum mechanical uncertainty relation in which the un-
certainty in the position is replaced by the split distance �R within which
the vacuum polarizations can attenuate, so that outside the vacuum returns to
play its usual role (if tested with local observables in the causal complement of
OR+�R).
It should be stressed again that the probability interpretation, which Born

had to add to Heisenberg�s and Schrödinger�s formulation of QM, is completely
intrinsic to LQP. It is a consequence of the "thermal" KMS property of ensem-
bles of operators contained in a localized algebra A(O) in O-restricted physical
(�nite energy states). As such it is not di¤erent from the statistical mechanics
probability, which Einstein used in his �uctuation arguments in terms of which
he challenged the physical content of Jordan�s thesis. It is only with the modern
concept of modular localization and the hindsight of more than eight decades of
QFT that one realizes how close the E-J conundrum came to the intrinsic prob-
ability coming from the quantum formulation of the Faraday-Maxwell-Einstein
causal locality principle in Minkowski spacetime. Einstein�s problem was the as-
signement of a probability to an individual mechanical system (which requires
to imagine it as a member of an ensemble for which the probabilistic nature is
seen in repeated measurements). The fact that probability is intrinsic to QFT
and that the vacuum entanglement of sharp localization is more singular than
that of quantum information theory in�uences the discussions around Bell�s in-
equalities but does not invalidate them. The e¤ects of the (more radical form
of) vacuum entanglement in QFT remain orders of magnitudes below the quan-
tum mechanical entanglement of particle state which can be directly measured
in terms of quantum optical methods.
A particular radical illustration of the conceptual di¤erences between QFT

and QM is the reconstruction of a net of operator algebras from the relative
modular position of a �nite number of copies of the monad [17]. For chiral
theories on the lightray one needs two monads in a shared Hilbert space in
the position of a modular inclusion, for d=1+2 this "modular GPS" construc-
tion needs three and in case of d=1+3 seven modular positioned monads are
su¢ cient to create the full reality of a causal quantum matter world, includ-
ing its Poincaré symmetry (and hence Minkowski spacetime) from the abstract
modular groups [18]. This possibility of obtaining concrete models by modular
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positioning of a �nite number of copies of an abstract monad (indecomposable
constructs without inner structure) in a shard Hilbert space is the strongest
"holistic outing" of QFT; the reader is encouraged to look at this application of
modular theory [18]. For d=1+1 chiral models the modular positioning leads to
a partial classi�cation of chiral theories as well as to their explicit construction
of large classes of models (section 5).
Apart from d=1+1 factorizing (integrable) models, where modular proper-

ties in the form of nuclear modularity were used for existence proofs of models
[34], QFT has not yet reached the state of maturity where such holistic proper-
ties can be applied for classi�cations and existence proofs of families of models
and their mathematically controlled approximation. An extension to curved
spacetime would be very interesting; the simplest question in this direction is
the modular construction of the local di¤eomorphism group on the circle in the
setting of chiral theories.

4 Modular localization and its thermal manifes-
tation

The aim of this section is to present the concept of modular localization which is
the backbone of LQP and represents the intrinsic formulation of causal quantum
localization. Since, as mentioned before, subalgebras A(O) localized in space-
time regions O with O00 ( R4 are known to act cyclic and separating on the
vacuum (the Reeh-Schlieder property [8]), the "standardness" condition for the
validity of the Tomita-Takesaki modular theory is always ful�lled for local sub-
algebras. This leads to a uniquely de�ned Tomita operator SO whose properties
will be the main subject of this section.
It has been known for a long time that the algebraic structure underlying

free �elds allows a functorial interpretation in which operator subalgebras of the
global algebra B(H) are the functorial images of subspaces of the Wigner wave
function spaces ("second quantization"12).
Before presenting some mathematical details, it is useful to recall some philo-

sophical points. LQP avoids the parallelism to classical �eld theory which chara-
terizes the Langrangian quantization approach of QFT and the closely related
functional integral representation. Accepting that QFT is more fundamental
than classical �eld theory, the content of QFT should reveal itself in terms of
its own principles without the detour of a "quantization parallelism" to classical
�eld theory.
In contrast to QM, the LQP setting of QFT de-emphasizes individual opera-

tors in QFT in favour of ensembles of operators which share the same spacetime
localization region. These ideas also follow more closely the situation in the
laboratory, where the experimentalist measures coincidences between events in
spacetime. All the measured particle properties, including the nature of spin

12Not to be confused with quantization; to quote a famous saying by Ed Nelson: "quanti-
zation is an art, but second quantization is a functor".
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and internal quantum numbers, were obtained by repetitions and re�nements of
observations based on counters which are placed in compact spatial region and
are maintained activated for a limited time. Their detailed internal structure
is generally not known, what matters is their localization in spacetime and the
sensitivity of their response. However without a precise mathematical backup
which matches these physical concepts, LQP remains in the philosophical realm.
The role of covariant quantum �elds in LQP is that of generators of a net

of local operator algebras fA(O)gO2R4 which act in a �xed Hilbert space. In
the Wightman setting a �eld is a covariant operator-valued distribution A(x)
which is globally de�ned for all x 2 R4: From its global de�nition one passes to
(unbounded) O-localized operators, formally written as A(f) =

R
A(x)f(x)d4x;

suppf � O, which according to Wightman�s axioms de�ne a system of poly-
nomial (generally unbounded) operator �-algebras P(O): Formally these un-
bounded operators can be associated with an aforementioned net of (mathe-
matically easier manageable) bounded operators forming von Neumann alge-
bras, which is the starting point of Haag�s LQP setting. The advantage is that
one obtains access to the well-developed mathematical theory of operator al-
gebras (omitting from now on "bounded"). Certain causality aspects allow a
more natural de�nition and more profound understanding in the LQP setting.
The mathematical details, which allow to pass between Wightman�s description
to the algebraic local nets of observables in the LQP setting and vice versa, are
tedious and still technically incomplete [8], but this had little e¤ect on progress.
Whereas both settings are di¤erent formulations of closely related physical

concepts, there is a signi�cant distinction between these settings and construc-
tions based on Lagrangian or (the closely related) functional integral based
quantization methods. Quantization is not a physical principle; whereas classi-
cal descriptions often help to �nd a perturbative description ("quantization") of
a QFT, there is no general correspondence. The fact that the less fundamental
QM which lacks causal localization and its holistic consequences, is capable to
maintain an almost (up to ordering prescriptions of operators) unique connection
to classical mechanics does not imply that such a close relation must continue
to hold in QFT. The strong link between classical mechanics and its quantum
counterpart �nds its best known expression in the fact that Lagrangian quan-
tization (canonical quantization) and functional quantization (path integrals)
enjoy solid mathematical support from measure theory but not in QFT.
All this breaks down in interacting QFT with realistic short distance be-

havior13 . Apart from d=1+1 integrable models (section 5), for which rigorous
methods of LQP led to existence proofs [34][35], there is of course renormalized
perturbation theory; but since perturbative expansions in the coupling strengths
(which are consistent on the level of polynomial relations) inevitably lead to di-
vergent series, they are not the right objects for a mathematically controlled
approach to QFT. In fact there exists not even a mathematical argument that
they de�ne an asymptotic approximation in the limit of vanishing coupling to an

13Free �eld short distance behavior of polynomially coupled scalar �elds is still in the reach
of measure-theoretical functional methodes [36].
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existing model of QFT, although the use of low order perturbative results led in
many cases to quite spectacular agreements with observations. Whereas the set-
ting of QM has reached its closure a long time ago, the conceptual/mathematical
�anks remain open.
The causal perturbation setting of Epstein and Glaser [27] avoids the ultravi-

olet divergencies of the Lagrangian or functional setting by implementing causal
locality in terms of time-ordered products in an inductive way. A speci�c model
is de�ned in terms of its free �eld content and the starting point is a �rst or-
der interaction density in form of a Lorentz-invariant (scalar) Wick-polynomial.
The scaling degree of the interaction density is determined in terms of the scal-
ing degrees of the participating �elds and their derivatives. If the scaling degree
of the interaction de�ning �rst order polynomial in terms of free �elds does not
surpass dints:d: = 4 one obtains a renormalizable model in which the short distance
dimensions of quantum �elds remain bounded, independent of the number of
iterative steps (order of perturbation).
The problem with this setting is its limitation with respect to the spin of

pointlike free �elds in a Hilbert space setting. The short distance dimension of
massive pointlike free �elds in Hilbert space increases with spin as ds:d: = s+1:
Hence a m > 0; s = 1 Proca potential with ds:d: = 2 does not admit any renor-
malizable interaction in Hilbert space and the infrared divergencies of its m=0
limit are well-known additional obstacles of perturbation theory. Wigner�s 1939
classi�cation of particles in terms of positive energy representations led to a clear
statement about the �eld content of covariant (m = 0; s � 1) representations:
there are covariant �eld pointlike �eld strengths14 but no covariant pointlike po-
tentials. This is the famous clash between Hilbert space positivity and pointlike
localization. The conventional way out is that of keeping the pointlike structure
and allowing inde�nite metric so-called Krein spaces instead of Hilbert spaces.
This problem is not present in classical Maxwell theory; in that case the

use of vectorpotentials contains a redundancy which a¤ects the connection of
Cauchy data and their causal propagation and is conveniently taken care of in
terms of the concept of gauge transformations and gauge invariance (the re-
turn to �eld strengths and currents). Lagrangian quantization and functional
integral presriptions for gauge theories lead out of the Hilbert space; in fact
pointlike interaction-free massless vector potentials are well known to require a
Krein space formulation (the Gupta-Bleuler formalism and its BRST extension).
Since the Hilbert space setting is the foundational pillar of QT, quantum gauge
theory in the presence of interactions of massive or massless vectormesons is an
undesired but inevitable compromise which is suggested by Lagrangian quanti-
zation. Since classical �eld theory does not not know anything about Hilbert
space positivity, there is a serious obstacle to quantization for interacting s � 1
interactions and gauge theory is a compromise which only describes the vacuum
sector (obtained by applying the subalgebra of gauge invariant pointlike local
�elds to the vacuum states) and leaving the important charge-creating operators

14Massive pointlike potentials and their associated �eld strengths have the same ds:d: = s+1;
but whereas the zero mass limit of �eld strengths exists, that of potentials does not.
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and the physical particle-like states they create from the vacuum outside the
physical range of the quantum gauge setting.
This makes it desirable to turn to another description which the previously

mentioned alternative suggests: abandon pointlike localization and keep instead
the Hilbert space. Since this is inconsistent with the quantization of pointlike
classical gauge theory, it is not surprising that such an alternative requires a
radical change of the Epstein-Glaser causal perturbative setting [27]. Although
this formalism does not depend on quantization of a classical �eld structure15 ,
it still uses pointlike generating �elds in an essential way. The safest procedure
is to try to extract an information from the foundational localization princi-
ples of LQP by asking the following structural questions: what is the tightest
localization which can be derived solely from the mass gap property?
The type of models for which such a question could be relevant are interacting

massive vectormesons. As mentioned before pointlike interactions of such �elds
are nonrenormalizable, and since the new Hilbert space setting shows that the
concept of renormalizability is intimately related to the short distance aspects
of localization, The weakening from point- to string- localization is the result of
the restrictive Hilbert space positivity which is absent in the Krein space setting
of gauge theory.
Interestingly it is not necessary to use weaker than string-localized �elds in

order to describe a QFT; this is part of a theorem by Buchholz-Fredenhagen
[8]: all LQP with a mass-gap (which are known to admit scattering theory) can
be generated by spacelike semi-in�nite stringlocal �elds16 . Covariant generating
stringlocal �elds 	(x; e); e2 = �1 are localized on x + R+e and commute for
spacelike separated strings (appropriately modi�ed for Fermions). In section
6 the string-extended E-G perturbation theory will be exempli�ed in massive
gauge theories. Whereas the local observables (�eld strengths, currents) remain
pointlocal and the interacting physical matter �elds are stringlocal, the S-matrix
turns out to be e-independent. Massive vectormesons also permit a coupling to
neutral matter (scalar Hermitian �elds H).
These couplings reveal what was known to some researchers for a long time:

the Higgs mechanism about a mass-creating symmetry breaking is not supported
by QFT; the intrinsic property of all couplings of massive vectormesons to mat-
ter (independent of whether the latter is charged or neutral) is the "Schwinger-
Higgs screening" of the Maxwell charge which is directly related to to the �eld
strength of the massive vectormeson.. Although this is consistent with the BRST
gauge setting, the new Hilbert space setting using renormalizable couplings of
stringlocal massive vectormesons lead to these results without having to rely on
unphysical Krein space methods (section 6). Computations need not any more
be based on sucessful but (from the quantum viewpoint) somewhat miraculous
descriptions. A surprising new structure which results from the Hilbert space

15 In particular it does not depend on whether the quantum �elds are solutions of Euler-
Lagrange equations.
16Since LQP avoids generating �elds in favor of localized alsgebras, the localization regions

in the theorem are "arbitray narrow spacelike cones" (whose cores are strings). Pointlke
localization is a special case. .
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positivity for renormalizable interactions of massive s � 1 stringlocal �elds is
the appearance of lower spin "escort" �elds. In the case of massive vectormesons
this is a stringlocal neutral scalar � �elds which share many properties with the
Hermitian H �elds of the Higgs model apart from the fact that they have no
relation to any alleged mass-generating symmetry breaking (section 6).
The fundamental idea which is behind the ongoing radical changes for interaction involving

is a much deeper understanding of quantum causal locality in the algebraic op-
erator setting of modular localization. Individual quantum �elds never played
a similar distinguished physical role as they do in classical �eld theory. As
mentioned before they are not directly measured (measuring a hadronic �eld ?)
and the particles which are identi�ed with counter events are always associated
with an in�nite class of (composite) �elds which carry the same superselected
charge and are relatively local with respect to each other. Whereas in QM it
makes sense to distinguish in terms of elementary particles and their bound
states, such a hierarchy is rather meaningless in QFT; the omnipresence of vac-
uum �uctuations only respects the superselected charges but couples all states
which have the same such charge. The �elds within one superselected class are
distinguished by their short distance scale dimensions, and the renormalizable
Lagrangian couplings highlight �elds with low ds:d:: but the particle �eld rela-
tion is based on in�nite timelike separations (time-dependent scattering theory)
for which low ds:d: values are irrelevant. QFT is a quantum theory in which
everything which according to the superselection rules can be coupled is actually
coupled (there is always a process in which this coupling is activated). This
explains why methods of quantum mechanics are rather useless in QFT but at
the same time this is the prize to be paid for a fundamental theory. Modular
localization theory brings all these foundational properties (which still remain
somewhat hidden in the perturbation theory in terms of individual �elds) into
the forefront.
The central issue in LQP refers to two physically motivated requirements on

the local net of operator algebras

[A(O1);A(O2)] = 0; O1 >< O2; Einstein causality (7)

A(O) = A(O00); causal completeness
A(O0) = A(O)0; Haag duality

The �rst line is a condensed notation for the commutativity of operators from
spacelike separated regions; it is only required for observable �elds. The commu-
tation property for non-observable operators, as those coming from spinor �elds
or �elds carrying superselected charges, are determined by the local representa-
tion properties of the observables (the superselection theory to their associated
observable subalgebras [8]).
The causal completeness property (7) is a local adaptation of the old time-

slice property [37]. In classical relativistic �eld theory the �eld values in the
relativistic "causal shadow" (causal completion) V 00 (the two-fold causal com-
plement of a region V ) is the region in which the classical �eld values are uniquely
determined in terms of the (properly de�ned) initial values of �elds in a �nite
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volume V at �xed time. Its quantum adaptation in the LQP setting is the
algebraic causal completeness property. Often particle theoreticians only con-
sider the simpler Einstein causality property and ignore causal completeness.
But there are situations which are consistent with Einstein causality but violate
causal completness17 . In fact in [37] the simplest model, a so-called generalized
free �eld with a suitable continuous mass distribution was used as an illustrative
example for a physically unacceptable Einstein-causal �eld. Whereas in the set-
ting of Lagrangian quantization causal completeness is the formal consequence
of the quantization of causally propagating relativistic �elds, this property needs
special attention in situations in which classical analogs are not available as e.g.
ideas coming from string theory.
This a¤ects in particular relations between QFTs in di¤erent spacetime di-

mensions. The fact that in some cases they are backed up by a mathematical
isomorphism does not imply that they are physically acceptable. One such
trend-setting case is the Maldacene conjecture which originally arose in string
theory. Its mathematical basis is an algebraic isomorphism [49] which extends
the well-known equality of the spacetime conformal symmetry of a conformal
�eld theory (CFTn) in n spacetime dimensions with the spacetime symmetry
of an anti de-Sitter space in n+1 dimensions (AdSn+1) to a mathematical iso-
morphism which between suitably chosen local subalgebras on both sides. But
it turns out that this relation only preserves Einstein causality but violates the
causal completeness requirement; if one starts from an AdS theory which ful�lls
both, the resulting conformal �eld theory ful�lls Einstein causality but violates
causal completeness and a similar problem exists if one uses the isomorphism in
the opposite direction; a physical correspondence requires more than a mathe-
matical isomorphism between certain localized subalgebras.
Unfortunately the knowledge about these important properties (the rele-

vance of causal completeness) which was attained in the early 60s [37] has
been lost within the string-theory community, otherwise Maldacena would not
have been able to convince a world-wide community that the mathematical
AdSn+1  ! CFTn isomorphism can be lifted to a physical correspondence.
Only holographic projections onto a n-1 null-surface lead to a right "thinning
out" of degrees of freedom (loss of information). As a consequence of a loss of
some informations one cannot return to the original theory; nevertheless most
informations are in the holographic projection.
There exist however situations in certain quantum �eld theories, which con-

tain massless s � 1 in which for multiply connected spacetime regions the Haag
duality is violated in a speci�c way; the prototype is the quantum Aharonov-
Bohm e¤ect for the net of algebras generated by the quantum electromagnetic
�eld strength [38]. In the case of zero mass �eld strengths for s � 1 this is
directly related to the clash between pointlike localization of potentials and the
positivity of Hilbert space and its resolution in terms of stringlocal potentials
[39].
17 In quantum physical terms a completeness violating situation exhibits a "poltergeist"

behavior: new degrees of freedom (which were not present in A(O)) enter A(O00) from
"nowhere".
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Mathematically it is very easy to construct Einstein-causal theories which vi-
olate causal completeness and as a consequence (apart from the aforementioned
topological exceptions) lead to pathological physical properties with respect to
their "degrees of freedom" behavior18 . Well known cases in addition to the men-
tioned Maldacena conjecture arise from embedding lower dimensional quantum
�eld theories and its reverse: Kaluza-Klein dimensional reductions.
As a result of a subtle relation between the cardinality of phase-space de-

grees of freedom with localization (split property, causal completeness,..), the
nuclearity property (introduced by Buchholz and Wichmann [8]) in conjunction
with modular theory ("modular nuclearity") became an important concept for
the classi�cation and nonperturbative construction of models of QFT [34] [26].
After having presented some of the physical requirements of the LQP for-

mulation of QFT, we now pass to a brief description of its main mathematical
support: the Tomita-Takesaki modular operator theory. This theory has its
origin in the operator-algebraic aspects of group representation algebras from
which Tomita took the terminology "modular" (originally referring to proper-
ties of Haar measures). A conference in the US (Baton Rouge, 1967), which was
attended by mathematicians (Tomita, Takesaki, Kadison,..) and mathemati-
cal physicists (Haag, Hugenholz, Winnink, Borchers,..), is marks the beginning
of the Tomita-Takesaki modular operator theory as a joint project [40]. The
participating physicists had already obtained important partial results of that
theory through their project of formulating quantum statistical mechanics di-
rectly in the thermodynamic limit (statistical mechanics of open systems) [8]. In
their new way of thinking, the Kubo-Martin-Schwinger property (originally an
analytic shortcut for computing Gibbs traces) assumed a conceptual role in the
new formulation of thermal equilibrium states for open quantum systems. Al-
though these ideas originated independently, this conference united them; there
is hardly any area in which the contribution of mathematicians and physicists
have been that much on par as in modular operator theory/modular localization.
One reason for this perfect match was that the area of physical application of

modular theory widened the scope of statistical mechanics and, combined with
causal localization, became the most important mathematical/conceptual tool
of LQP. The basic fact which led to this new connection was the Reeh-Schlieder
theorem [8] which secures the validity of the "standardness" requirement for
the applicability of the Tomita-Takesaki theory. Standardness of a pair (A;
)
(algebra and state) means that the action of the operator algebra A on the
state vector 
 generates the Hilbert space (cyclicity of 
) and that there are no
annihilators of 
 in A (
 is separating)

cycl: : A
 = H; separ: : A
 = 0y A = 0; A 2 A

The Reeh-Schlieder theorem guaranties the validity of this property for any pair
(A(O);
); O00 � R4; in fact this even holds if the vacuum is replaced by any
�nite energy state. The importance of the relation between localization and the

18The breakdown of causal completeness leads to a "poltergeist" e¤ect where degrees of
freedom apparently enter from "nowhere"; one �nds them in O00 but they were not in O.
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T-T theory was noted a decade after then Baton Rouge conference by Bisognano
and Wichmann [8]; these authors found that in the context of localization in a
wedge region O = W the Tomita-Takesaki theory makes contact with known
geometrical/physical objects.
The general T-T theory is based on the existence of an unbounded antilinear

closable involution S with a dense domain domS in H which contains all states
of the form A
; in case of a standard pair [41] [42]: Whereas the cyclicity
secures the existence of its dense domain, the absence of annihilators of 
 in A
guaranties its uniqueness.

SOA
 = A�
; A 2 A �B(H); S = J�
1
2 = ��

1
2 J (8)

J antiunit:; �it mod: unitary; �t(A) = Ad�itA

The existence of a polar decomposition in terms of a antiunitary J and a pos-
itive generally unbounded operator � follows from the closability of S (in the
following S stands for the closure): The modular unitary gives rise to a modular
automorphism group of the localized algebra A.
The physical interpretation in massive theories is only known only for O =

W = wedge regions, which are Poincaré transforms of the standard t-z wedge
W0 =

�
z > jtj ;x 2R2

	
: In that case the modular objects are the unitary trans-

formation representing the W-preserving Lorentz ("boost") subgroup �itW =
U(�W (��t)) and the re�ection on the edge of the wedge J which is, up to a
�-rotation within the edge, equal to the TCP operator. Since in a theory with
a complete particle interpretation (to which the considerations of this paper
are restricted, unless stated otherwise) the interacting TCP operator and its
incoming (free) counterpart are known to be related by the scattering operator
Sscat [44]; we obtain for all J for arbitrary W [7]

JW = SscatJW;in for all W

This expresses a property of Sscat which turns out to be indispensable for the
constructive use of modular localization in QFT, namely Sscat is a relative mod-
ular invariant between the interacting and the associated free (particle) wedge
algebra. This property was recently used within a more physical derivation [45]
of the Bisognano-Wichmann theorem which reduces the interacting case in the-
ories with mass gaps and a complete particle interpretation to that of free �elds
(see below).
The relative modular invariance of Sscat is the crucial property which ac-

counts for the analyticity of on-shell objects as Sscat and the related formfactors.
These on-shell analytic properties �nd their important manifestation in the par-
ticle crossing property. It is also the starting point of the algebraic construction
of integrable QFT [7]. The connection between algebraic and analytic proper-
ties is much more subtle for on-shell objects as the S-matrix and formfactors
than for o¤-shell correlation function. Since most of these properties were not
understood in the 60s, it is not surprising that Mandelstam�s project of formu-
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lating particle physics as a quantization-free on-shell project failed on the lack
of understanding of the relevant on-shell analytic properties.
The misunderstandings about the particle crossing property in the construc-

tion of the dual model, which later entered string theory, have their origin in
confusions about the meaning of localization in QFT as opposed to QM. In sec-
tion 7 these misunderstandings will be analyzed in the light of recent progress.
Since it is not possible to present a self-consistent complete account of the

mathematical aspects of modular localization and its physical consequences in a
history-motivated setting as the present one, the aim in the rest of this section
will be to raise awareness about their physical origin.
It has been known for a long time that the algebraic structure associated

to free �elds allows a functorial interpretation in which operator subalgebras of
the global algebra B(H) are the functorial images of certain real subspaces of
the Wigner space of one-particle wave functions (the famous so-called "second
quantization"19), in particular the spacetime localized algebras are the images
of localized real subspaces. This means that the issue of localization to some
extend can be studied in the simpler form of localized subspaces of the Wigner
particle representation space (unitary positive energy representations of the P-
group).
These localized subspaces can be de�ned in a intrinsic way [23] i.e. without

quantization, only using operators from the positive energy representation U of
the proper Poincaré group P+ (det = +1) on the direct sum of two copies of
the Wigner representation u of the connected component (proper orthochronous
P"+) on the one-particle space H1: For simplicity of notation the transformation
formulas are limited to the case of a spinless charged particle:

H1 : ('1; '2) =

Z
�'1(p)'2(p)

d3p

2p0
; '̂(x) =

1

(2�)
3
2

Z
eipx'(p)

d3p

2p0
(9)

U(g)('1 � '2) = u(g)'1 � u(g)'2; u(a;�)'(p) = eipau(��1p)

� � TCP; �('1 � '2) = C'2 � C'1; C'(p) = '(p) (10)

Any P+ transformation can be generated from U(g) and �: For representations
with s > 0 the Lorentz group acts through Wigner rotations (Wigner�s "lit-
tle group") on the little Hilbert space which in the massive case is the 2s+1
component representation space of rotations. The massless case leads to a
2-dimensional Euclidean "little space" whose degenerate representation (with
trivially represented "little translations") form a two-component little helicity
space, whereas faithful representation acts in an in�nite dimensional Hilbert
space ("in�nite spin") [46]. The Lorentz transformations as well as � act also
(through representations of the little group) on the little Hilbert space.
It is precisely through the appearance of this little Hilbert space that the

problem of causal localization of states (wave functions) cannot be simply solved

19Not to be confused with quantization; to quote a famous saying by Ed Nelson: "quanti-
zation is an art, but second quantization is a functor".
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by Fourier transformation and adding positive frequency contributions of par-
ticles with those of negative frequency from antiparticles. Whereas in the case
of the two classes of �nite little spaces (the massive and zero mass �nite he-
licity class) of positive energy Wigner representation, their "covariantization"
was easily achieved in terms of group theoretic methods [47] and led to local
pointlike generating wave functions and �elds, this third in�nite spin class posed
a series obstacle. Attempt to convert its members into covariant pointlike wave
functions and corresponding �elds remained unsuccessful and there was no un-
derstanding of the origin of this failure20 . Weinberg dismissed this large positive
energy representation class by stating that nature does not make use out of it
[47]. Since all important physical properties are connected to aspects of local-
ization which are precisely those properties which at that time remained poorly
understood, such a dismissal could be premature, in particular in times of dark
matter.
The localization problems of the in�nite spin class were �nally solved [23]

with the help of modular localization which for di¤erent problems was already
used in [7]. In fact the main theorem in that paper states [23] that all posi-
tive energy wave functions are localizable in noncompact spacelike cones and
only the �rst two classes permit the sharper localization in double cones (the
causal shadow of a 3-dim. sphere). Since the (topological) core of arbitrarily
small double cones is a point and that of arbitrary narrow spacelike cones is
a semiin�nite spacelike string, the remaining problem consisted in the actual
construction of the generating �elds of these representation; this was achieved
in [46]. The result can be described in terms of operator-valued distributions
	(x; e) which depend in addition to the start x of the semiin�nite string also
on the the spacelike string direction e; e2 = �1: They are covariant under
simultaneous transformations of x and e and ful�ll Einstein causality

[	1(x1; e1);	2(x2; e2)]gr = 0; x1 + R+e >< x2 + R+e2 (11)

where gr stands for graded (fermionic strings anticommute).
The modular localization of states uses the following construction. With

a wedge W = (x j x3 > jx0j) there comes a wedge preserving one-parametric
group of Lorentz-transformation �W (� = �2��) where � is the hyperbolic
boost parameter and �W denotes the x0-x3 re�ection. The latter di¤ers from
the total re�ection � by a � rotation rW around the x3 axis (in the x1-x2
plane ) and therefore acts on the wave functions as JW = U(rW )�. Both
transformations �W and JW commute. Since the generators of one-parametric
strongly continuous unitary groups are selfadjoint operators, there exists an
"analytic continuation" in terms of positive unbounded operators with dense
domains which decrease with the increase of distance from the real axis. This
forces the W-localized wave functions to have certain analyticity properties in
the momentum space rapidity �; (p0; p3) =

p
m2 + p2?(ch�; sh�) which relate

the analytic continuation of particle wave function to the complex conjugate of

20Reference [48] is an exception in that certain aspects of the localization problem were
already noted.
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the antiparticle wave function21 Using the notation �i�W � U(�W (�2��)); the
commutation with the antiunitary JW leads to

SW = JW �
1
2

W = �
� 1
2

W JW ; S
2
W � 1; acts on H1 �H1 (12)

SW = � ; KW � f' 2 domSW ;SW' = +'g; SW i' = �i'
KW "is standard" : KW \ iKW = 0; KW + iKW dense in H1 �H1

where � denotes the localization-independent S-conjugate wave function (the
complex conjugate for the case at hand)22 : The properties are straightforward
consequences of the commutation between the boost and the associated re�ec-
tion [23]. The important point here is that S relates wave functions to their
conjugates in a way which involves analytic continuation where the analyticity
came from spacetime W -localization.
The properties in (12) result simply from the commutativity of �W (�) with

the re�ection J on the edge of the wedge; since J is anti-unitary it commutes
with the unitary boost, there will be a change of sign in its action on the analytic
continuation of u: Hence it has all the properties of a modular Tomita operator.
The K-spaces K(O) for causally closed subspaces localized in O can be obtained
by intersections i.e. \W�OK(W ); this intersection may however turn out to be
trivial (see below) if the region is "too small".
The surprise resides in the fact that the transformation of wave functions

to their S-conjugate (12, second line) does not only encode the information
about two geometric objects: a one-parametric modular group leaving a wedge
invariant and a re�ection on that wedge into its opposite, but (and at this point
the positive energy property of the Wigner representation becomes relevant [23])
it also contains the information about the spacetime localization of the wave
function. This is certainly something which has no counterpart in QM; it points
to an incomplete understanding of the foundations of QFT which becomes fully
revealed in the relation between localized subalgebras and modular operator
theory in the presence of interactions.
The connection with causal localization is of course a property which only

appears in the physical context. The general setting of modular real subspaces
is a Hilbert space which contains a real subspace K � H which is standard in
the sense of (12). The abstract S-operator is then de�ned in terms of K and
iK:
The above application to the Wigner representation theory of positive energy

representations23 also includes the in�nite spin representations which lead to
semiin�nite string-localized wave functions. In this case there are no pointlike
covariant wave function-valued distributions which generate these representa-
tions; they are genuinely string-localized (which the superstring representation
21 If there exists an operator creating a partice, the negative frequency part associated with

the antiparticle annihilation must be related to the positive frequency part of the antiparticle
creation in its hermitian adjoint.
22Although the action of SW is diagonal, the de�nition of the JW needs the antiparticle

doubling of the Wigner space.
23The positive energy condition is absolutely crucial for obtaining the prerequisites (12) of

modular localization.
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of the Poincaré group is not; so beware of misleading terminology!). The appli-
cation of the above mentioned second quantized functor converts the modular
localized subspaces into a net of O-indexed interaction-free subalgebras A(O):
Interacting �eld theories can clearly not be obtained in this way. The rela-
tion between particles and �elds becomes much more subtle in the presence of
interactions and this applies even to models which have a complete particle in-
terpretation i.e. in which the particles related to �elds via the LSZ large time
behavior of �elds (the LSZ scattering formalism [8]) lead to the identi�cation of
the Hilbert space as a WignerFock particle space (section 7).
The algebraic setting in terms of modular localization also gives rise to a

physically extremely informative type of inclusion of two algebras which share
the vacuum state, the so-calledmodular inclusions (A � B;
vac) where modular
means that the modular group of the bigger �itB compresses (or extends) the
smaller algebra [18]. A modular inclusion automatically forces the two algebras
to be of the monad type. The above mentioned "GPS construction of a QFT"
from a �nite number of monads positioned in a common Hilbert space uses this
concept in an essential way. It is perhaps the most forceful illustration of the
holistic nature of QFT.
There are two properties which always accompany modular localization and

which are interesting in their own right. Both are related to the statistical
mechanics nature of impure A(O)-restricted vacuum

� KMS property. By ignoring the world outside O one gains in�nitely many
KMS modi�ed commutation properties with modular Hamiltonians K̂ as-
sociated to the bO restricted vacuum.
hABi =



Be�KA

�
; � = e�K ; A;B 2 A(O); infinitly many bK for bO � O

In contrast to the inert factorizing vacuum of QM in the Fock space ("2nd
quantization") description, the spatially restricted QFT vacuum ful�lls in�nitely
many KMS relations associated with modular Hamiltonians of larger spacetime
regions.

� Area law for localization-entropy, see (6)

Entr = f(
area

"2
); " = split size

As mentioned in the previous section, one needs to invoke the so-called split
property in order to approximate the singular KMS state by a sequence of den-
sity matrix states; this is similar to the construction of the thermodynamic limit
state in statistical mechanics. In contrast to the approximation of the latter in
terms of box-quantized �nite volume Gibbs states, the split formalism for open
subsystems is a part of the (presently computational rather inaccessible) mod-
ular localization theory. It is in particular not clear whether the density matrix
from the split property leads to a plain dimensionless area law f ' area="2 24

24This is suggested by the vacuum polarization clouds of smeared �elds in the limit of a
aharply cut-o¤ smearing function (see previous section).
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as in (6) or to a logarithmically modi�ed area law [31]. For chiral conformal
theories on the lightray there is a rigorous derivation of the localization entropy
for an interval with vacuum attenuation length " (surface fuzziness) from the
well-known linear length l ! 1 behavior (the "one-dimensional volume fac-
tor" l). They are related as ln"�1 � l � kT: This inverse Unruh e¤ect plays
an important role in the full understanding of the E-J conundrum and will be
presented in the next section.
Great care needs to be taken in identifying the modular localization "tem-

perature" with that measured with a thermometer. This is because the notion
of thermometer temperature is based on the zeroth thermodynamic law (the
local temperature in [24]), whereas the KMS temperature refers to the second
law according to which it is impossible to gain energy from equilibrium states
by running a Carnot cycle (the absolute temperature). In inertial systems those
two de�nitions coalesce (after proper normalization), whereas in a accelerated
systems (used e.g. in the Unruh Gedankenexperiment to achieve the Rindler-
wedge localization) this is not the case.
A closer examination shows [24] that the conclusion about "egg-boiling"

and particle radiation claimed to be observed by an accelerated observer are
incorrect, a fact which has been ignored in the literature on the Unruh e¤ect.
The correct local temperature, di¤erent from the Carnot temperature, does not
depend on the acceleration and since it vanishes at spacelike in�nity, it vanishes
everywhere. Although the black hole situation is di¤erent, the application of
Einstein�s equivalence principle suggests caution about the relation of a rescaled
modular temperature with that measured by a thermometer. This includes also
the presently very popular ideas about �rewalls which are allegedly created by
restricting generically locally normal states to a causal/event hotizon.
In order to facilitate the reader�s accessibility to philosophical and historical

aspects, and also to maintain a lighthearted touch in dealing with issues which
by some are considered to be controversial, the following will be presented in
the form of Galileio�s famous dialogs between Sagredo and Simplicio. Since
fundamental properties of nature are expected to be based on simple physical
principles, the role of the presenter of foundational viewpoints in this dialog is
Simplicio.
Sagredo: Dear friend Simplicio, I noticed that you have some critical opin-

ions about the topic of extra dimensions and dimensional reductions. Can you
explain your arguments against these extremely popular ideas?
Simplicio: Kaluza and Klein observed that in classical �eld theories and

quasiclassical approximations one may relate models in di¤erent spacetime di-
mensions by appropriately reinterpreting the �eld content. In this way the com-
bined gravitation+electromagnetism may be obtained by dimensional reduction
from a �ve dimensional pure gravity theory. However the recent more foun-
dational understanding of the issue of causal localization in its precise form of
modular localization of quantum matter reveals that the localization aspects are
a characteristic part of quantum matter and one confronts grave problems if one
tries to reduce spacetime dimensions. A �rst indication comes from Wigner�s
theory of positive energy representations of the Poincaré group which has a
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functorial relation to quantum matter in the absence of interactions. The lat-
ter depend in an essential way on the representation theory of Wigner�s "little
group" which changes with spacetime dimension. The fact that dimensional
regularization can be used as a technical trick in renormalization theory and
that in case of spinless matter Wilson�s dimensional "-expansion led to reason-
able approximate results for critical indices should not be taken as an indication
that causal quantum matter can be "transplanted" by an imagined dimensional
reduction.
Sagedo: But there are rigorous relations between theories in di¤erent space-

time dimensions, as the famous AdS � CFT correspondence.
Simplicio: The AdSn+1 � CFTn correspondence is indeed a mathematical

isomorphism between the algebraic structure of QFT on two di¤erent space-
times which extends the prior known equality of their symmetry groups; in
fact it is the only known case in which two spacetime manifolds in di¤erent
dimensions share the same symmetry group. What prevents this mathematical
isomorphism from de�ning a physical correspondence is that it does not pre-
serve an important aspect of causality. Starting from a causal AdS theory the
corresponding CFT maintains the spacelike Einstein causality but violates the
causal completeness property. There are more degrees of freedom in the algebra
of the causal closure A(O00) than there are in A(O): For an observer living in
such a world there are degrees of freedom in O00 which according to the causal
completeness property should have been already present in O. A QFT in which
new degrees of freedom come apparently from nowhere is physically not accept-
able. In the opposite direction, i.e. started from a causal CFT, it was shown
by Rehren [49] that the resulting AdS theory does not have enough degrees of
freedom in order to support the existence of nontrivial algebras of observables
for compact localization regions; in such situations nontrivial algebras only exist
for noncompact spacetime localization regions in the AdS spacetime.
The intuitive picture behind this violation of causal completeness is that

the cardinality of degrees of freedom of causal quantum matter depends on
the spacetime dimensionality and hence the concept of causal quantum mat-
ter cannot be separated from spacetime. The algebraic stu¤ which the above
isomorphism generates from physical matter is not the expected causal quan-
tum matter after having applied the isomorphism. This shows that Maldacena�s
conjecture, claiming that the isomorphism connects two physical theories, is not
correct. This failure of causal completeness is symptomatic for all attempts of
relating QFTs via dimensional reduction.
The AdS-CFT isomorphism shown that even under optimal mathematical

conditions such ideas run into serious problems with causal localization. It is
worthwhile to mention that there is only one relation between QFTs to which
the present critique does not apply; this is the holographic projection onto null-
surfaces [31]. The important point here is that in an projection (instead of an
isomorphism) the cardinality of degrees of freedom is reduced to that which is
appropriate for the lower dimensional null-surface.
Sagredo: The Kaluza-Klein dimensional reduction idea returned when it

became clear that the high dimensional solutions of string theory remain aca-
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demic unless one �nds a way to extract properties which are relevant for the
real world. The attempts to adjust the dimensional reduction in classical �eld
theory to the requirements of QFT led to the idea to compactify a spacetime
coordinate and "curl it up" to a tiny circle so that the resulting QFT appears
as one which lives on a reduced spacetime. Therefore my question: is a such a
dimensional curling up also �awed?
Simplicio: It is correct that for QFTs which permit a Euclidean descrip-

tion one can formally compactify a coordinate. Physically this means that one
passes from the vacuum expectation values to expectation values in a thermal
state whose inverse temperature is proportional to the radius of the circular
compacti�ed coordinate. What is however not correct is to relate this thermal
QFT with increasing temperature to a Klein-Kaluza reduction. There is sim-
ply no classical analog of increasing thermal �uctuations; passing to a thermal
state with a high temperature has little to do with a dimensional reduction a la
Kaluza-Klein.
The continued uncritical use of the dimensional reduction idea is more of a

sociological problem; as long as the protagonists and leading defenders of string
theory accept dimensional reduction as a way which allows to obtain properties
of real particle theory from theories with extra dimensions, the members of
the string theory community will continue to use it with the result that the
understanding of local quantum physics will becomes increasingly metaphoric.
Of course particle physics at its foundational frontiers was always speculative

and errors are sometimes unavoidable, but the old "Streitkultur" between equals
at the time of Pauli, Landau, Feynman, Schwinger Jost, Källen and many others
prevented a long term solidi�cation of incorrect ideas.
Sagredo: Thank you my dear friend for your enlightening comments.//

5 The E-J conundrum, Jordan�s model

With the locally restricted vacuum representing a highly impure state with
respect to all modular Hamiltonians Hmod( �O); �O � O on local observables
A 2 A(O) = A(O00); a fundamental conceptual di¤erence between QFT and
QM has been identi�ed. QM (type I1 factors) is the conceptual home of quan-
tum information theory25 , whereas in case of localized subalgebras of QFT a
direct assignment of entropy and information content to a monad, if possible
at all, can only be done in a limiting sense. The present work shows that QFT
started with this conceptual antagonism in the E-J conundrum, but its founda-
tional understanding only began more than half a century later and is still far
from its closure.
For this reason it is more than a historical retrospection to re-analyze the

E-J conundrum from a contemporary viewpoint. In a modern setting Jordan�s

25Another subject which would have taken di¤erent turn with a better appreciation of the
problems in transfering notions of quantum information theory to QFT is the decades lasting
con�ict about the problem of "black hole information loss".
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two-dimensional photon26 model is a chiral current model. As a two-dimensional
zero mass �eld which solves the wave equation it can be decomposed into its
two u,v lightray components

@�@
��(t; x) = 0; �(t; x) = V (u) + V (v); u = t+ x; v = t� x (13)

j(u) = @uV (u); j(v) = @vV (v); hj(u); j(u0)i �
1

(u� u0 + i")2

T (u) =: j2(u) :; T (v) =: j2(v) :; [j(u); j(v)] = 0

The scale dimension of the chiral current is d(j) = 1, whereas the energy-
momentum tensor (the Wick-square of j) has d(T ) = 2; the u and v world are
completely independent and it su¢ ces to consider the �uctuation problem for
one chiral component. The logarithmic infrared divergence problems of zero
dimensional chiral d(V ) = 0 �elds arise from the fact that the zero mass �eld V ,
di¤erent from what happens in higher dimensions27 , are really stringlike instead
of pointlike localized. In fact the V is best pictured as a semiin�nite line integral
(a string) over the current [10]; this underlines that the connection between in-
frared behavior and string-localized quantum matter also holds for chiral models
on the lightray. It contrasts with QM where the infrared aspects are not related
to the in�nite extension of quantum matter but rather with the range of forces
between particles. Exponentials of string-localized quantum �elds involving in-
tegration over zero mass string localized d=1+3 vectorpotentials share with the
exponentials of integrals over d=1+1 currents expi�V the property that their
infrared behavior requires a representation which is inequivalent to the vacuum
representation of the �eld strength or currents; the emergence of superselection
rules ("Maxwell charges") is one of the more radical consequences of string-
localization.
The E-J �uctuation problem can be formulated in terms of j (charge �uctua-

tions) or T (energy �uctuations). It is useful to recall that vacuum expectations
of chiral operators are invariant under the fractionally acting 3-parametric act-
ing Möbius group (x stands for u,v)

U(a)j(x)U(a)� = j(x+ a); U(�)j(x)U(�)� = �j(�x) dilation (14)

U(�)j(x)U(�)� =
1

(�sin��+ cos��)2 j(
cos��x+ sin�

�sin��x+ cos�� ) rotation

The next step consists in identifying the KMS property of the locally re-
stricted vacuum with that of a global system in a thermodynamic limit state.

26This terminology was quite common in the early days of �eld quantization before it was
understood that that in contrast to QM the physical properties depend in an essential way on
the spacetime dimension. Jordan�s photons and his later neutrinos (in his "neutrino theory of
light" [10]) do not have properties which permits to interprete the real 4-dimensional objects
as higher dimensional versions in the same sense that a chain of oscillators is independent
embedding space..
27The V are semiin�nite integrals over the pointlike j0s; just as the stringlike vectorpoten-

tials in QED are semi-in�nite integrals over pointlike �eld strength [38].
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For evident reasons it is referred to as the inverse Unruh e¤ect, i.e. �nding
a localization-caused thermal system which corresponds (after adjusting para-
meters) to a heat bath thermal system. In the strong form of an isomorphism
this is only possible under special circumstances which are met in the Einstein-
Jordan conundrum, but not in the actual Unruh Gedankenexperiment for which
the localization region is the Rindler wedge.

Theorem 1 ([9]) The global chiral operator algebra A(R) associated with the
heat bath representation at temperature � = 2� is isomorphic to the vacuum
representation restricted to the half-line chiral algebra such that

(A(R);
2�) �= (A(R+);
vac) (15)

(A(R)0;
2�) �= (A(R�);
vac)

The isomorphism intertwines the translations of R with the dilations of R+,
such that the isomorphism extends to the local algebras:

(A((a; b));
2�) �= (A((ea; eb));
vac) (16)

This can be shown by modular theory. The proof extends prior work by
Borchers and Yngvason [50]. : Let A denote the C� algebra associated to the
chiral current j28 . Consider a thermal state ! at the (for convenience) Hawking
temperature 2� associated with the translation on the line. Let M be the
operator algebra obtained by the GNS representation and 
2� the state vector
associated to !:We denote by N the half-space algebra ofM and by N 0\M the
relative commutant of N inM: The main point is now that one can show that
the modular groups M; N and N 0\M g generate a "hidden" positive energy
representation of the Möbius group SL(2; R)=Z2 where hidden means that the
actions have no geometric interpretation on the thermal net. The positive energy
representation acts on a hidden vacuum representation for which the thermal
state is now the vacuum state 
:The relation of the previous 3 thermal algebras
to their vacuum counterpart is as follows:

N = A(1;1); N 0\M = A(0; 1); M = A(0;1) (17)

M0= A(�1; 0); A(�1;1) =M_M0

M(a; b) = A(e2�a; e2�b) (18)

HereM0 is the "thermal shadow world" which is hidden in the standard Gibbs
state formalism but makes its explicit appearance in the so called thermo-�eld
setting i.e. the result of the GNS description in which Gibbs states described by
density matrices or the KMS stated resulting from their thermodynamic limits
are described in a vector formalism. The last line expresses that the interval
algebras are exponentially related.

28One can either obtain the bounded operator algebras from the spectral decomposition of
the smeared free �elds j(f) or from a Weyl algebra construction.
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In the theorem we used the more explicit notation

M(a; b) = (A(a; b);
th) = (A(e2�a; e2�b);
vac)

Moreover we see, that there is a natural space-time structure also on the
shadow world i.e. on the thermal commutant to the quasilocal algebra on which
this hidden symmetry naturally acts. Expressing this observation a more ver-
nacular way: the thermal shadow world is converted into virgin living space29 .
In conclusion, we have encountered a rich hidden symmetry lying behind the
tip of an iceberg, of which the tip was �rst seen by Borchers and Yngvason.
Although we have assumed the temperature to have the Hawking value

� = 2�; the reader convinces himself that the derivation may easily be gen-
eralized to arbitrary positive � as in the Borchers-Yngvason work. A more
detailed exposition of these arguments is contained in a paper Looking beyond
the Thermal Horizon: Hidden Symmetries in Chiral Models [19].
In this way an interval of length L (one-dimensional box) passes to the size

of the split distance " which plays the role of Heisenberg�s vacuum polarization
cloud " � e�l: Equating the thermodynamic l ! 1 with the the limit of a
fuzzy localization converging against a sharp localization on the vacuum side in
(e�2�l; e2�l) for l ! 1 with the fuzziness e�2�l � " ! 0; the thermodynamic
limit of the thermal entropy passes to that of the localization entropy in the
limit of vanishing "

En jkT=2�' � ln " (19)

where the left hand side is proportional to the (dimensionless) heat bath entropy
and the right hand side is proportional to the localization entropy.
Although it is unlikely that a localization-caused thermal system is isomor-

phic to a heat bath thermal situation in higher dimensions, there may exist a
"weak" inverse Unruh situation in which the volume factor corresponds to a
logarithmically modi�ed dimensionless area law i.e. ( R�R )

n�2ln( R�R ) where R
is the radius of a double cone and �R

R = " its dimensionless surface roughness;
the volume in this case is that of a box with two transverse- and one lightlike-
directions is the counterpart of the spatial box so that the volume factor V cor-
responds to a box where one direction, the one responsible for the logarithmic
factor, is lightlike. But the analogy with the area proportionality of vacuum �uc-
tuations in Heisenberg�s partial charges Q(R;�R) favours the area law which
also agrees with the result from �t Hooft�s proposal of a brickwall picture [32].
Although the thermal aspect of a restricted vacuum in QFT is a structural

consequence of causal localization, the general identi�cation of the dimensionless
modular temperature with an actual temperature of a heat bath system, or,
which is equivalent, the modular "time" with the physical time is not correct;
the modular Hamiltonian does not describe the inertial time for which the local
temperature de�ned in terms of the zeroth thermodynamic law agrees with the
"Carnot temperature" of the second law [24].

29 In [8] it is shown how to extract the shadow world description from the density matrix
(Gibbs states) formalism with the help of the canonical GNS construction.
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Properties of states in QFT depend on the nature of the algebra: a monad
does not have pure states nor density matrices, but only admits rather singu-
lar impure states as singular (non Gibbs) KMS states. The identi�cation of
states with vectors in a Hilbert space up to phase factors becomes highly am-
biguous and physically impractical outside of QM. The state in form of a linear
expectation functional on an algebra and the unique vector (always modulo a
phase factor) obtained by the intrinsic GNS construction [8] leads always to
a vector representation, but this depends on the particular state used for the
GNS construction. In QM the algebras are always of the B(H) type where this
distinction between vector states and state vectors is not necessary.

6 Particle crossing, on-shell constructions from
modular setting

An important new insight into "particles & �elds" comes from a derivation of
the crossing property of particle physics from the modular properties of wedge-
localization. The formfactor crossing states that the n-particle-to-vacuum ma-
trixelement of a local operator B is analytically related to to the connected part
of the formfactors of B between k incoming and n-k outgoing particles in terms
of the following identity

h0 jBj p1; ::pniin = out h��pk+1::;��pn jBj p1; ::pkiincon (20)

B 2 A(O); O �W; �p = antiparticle of p

Here the momenta ��p on the backward mass-shell refer to the anti-particles
of the n-k crossed particles of the original n-particle state where the tran-
sition to the negative momenta involves an analytic continuation within the
complex mass-shell. The analyticity following from principle of modular wedge-
localization is however not in the s; t; u Mandelstam invariants associated to
the momenta, but rather in the rapidity � variables. It turns out that the
better-known crossing properties of the S-matrix do not have to be considered
separately, they can be related to those of formfactors by the use of the LSZ
reduction formalism. The nontrivial aspect is the posssibility to relate a scat-
tering amplitude to that of its crossed form by an analytic continiation which
remains on the complex mass shell.
The physical content of formfactor crossing is that the di¤erent k to n-k

formfactors are analyticlly related to one master formfactor which may be taken
to be the n-particle to vacuum formfactor. The only known non-perturbative
general derivation of formfactor crossing uses modular theory30 , to be more pre-
cise the modular theory of a wedge-localized subalgebra. Before a sketch of its
derivation will be given, some remarks about its conceptual relation to other
consequences of modular localization of wedge regions may be helpful. The
conceptual proximity of the particle crossing propertx to the Unruh [22] e¤ect

30For a special case (elastic scattering) Bros, Epstein and Glaser [51] derived crossing of the
S-matrix within the rather involved setting of functions of several analytic variables.
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through the shared wedge localization is somewhat unexpected. Whereas the
latter together with the Einstein-Jordan subvolume �uctuations will probably
remain a "Gedankenexperiment" which illustrates consequences of vacuum en-
tanglement, the particle crossing is observational accessible [43] and constitutes
an important concept of high energy particle physics. This changes the concep-
tual setting of crossing from that attributed to it in the dual model and ST, a
topic which will be taken up in section 7.
The modern conceptual understanding of crossing came from the recognition

that in models of QFT with a mass gap and a complete particle interpretation
the S-matrix is not only the global observable coming from LSZ scattering theory
but it also has also a less conspicuous local property namely it is a relative mod-
ular invariant which intertwines between the interacting wedge algebra A(W )
and its interaction-free incoming counterpart constructed from the incoming free
�elds A(W )in. Namely the two modular re�ections are related through [7][26]

JW = JW;inSscat; or SW = SW;inSscat using S = J�1=2 (21)

a relation which can be traced back to Jost�s proof [44] of the TCP theorem and
the fact that JW is only di¤erent from Jost�s TCP by a �-rotation within the
edge of the wedge (which commutes with the Poincaré invariant Sscat).
Another idea from modular wedge-localization which is used in the derivation

of formfactor crossing is emulation of interacting wedge-localized states (state
vectors obtained by applying interacting smeared �elds B(f) with suppf �
W to the vacuum 
) in terms of free wedge-localized interaction-free states
obtained by applying operators Ain(f) to the vacuum [26] [11]. Emulation
involves di¤erent algebras acting in the same Hilbert space and sharing the
same P-goup representation.
To get some technicalities out of the way, let us �rst formulate the free �eld

KMS relation in the way we need it for later purpose. With B a W-smeared
composite of a free �eld, and the modular KMS relation for wedge-localized free
�elds reads D

BA(1)A(2)
E
=
D
A(2)�BA(1)

E
; �it = U(�(�2�t)) (22)

A(1) =: A(f1)::A(fk) :; A(2) =: A(fk+1)::A(fn) :

�A(2)� j0i = �SA(2) j0i = �1=2JA(2) j0i

A smeared free �eld can be written in terms of creation/annihilation operators
integrated with wavefunctions which are the mass-shell restriction of the Fourier
transforms of W-supported test functions (for economy of notation f will also
be used for the Fourier transform)

A(f) =

Z
(f(p)a�(p) + �fa(p)b(p))

d3p

2p0
; p 2 Hm (23)

A(f)� =

Z
(fa(p)b

�(p) + �f(p)a(p))
d3p

2p0
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where fa is the wavefunction of the b-antiparticle. We take the wedgeW in the 0-
3 directions, so that it is left invariant by �0-3 Lorentz boosts, and parametrize
the mass-shell momenta in terms of W-a¢ liated rapidities. It is well-known
that the Fourier transforms of W -supported testfunctions lead to wavefunctions
f(p) which are boundary values of functions holomorphic functions f(p(z));
holomorphic in the rapidity strip in such a way that the analytic continuation
of the particle wave function to the other side of the strip is equal to the complex
conjugate of the antiparticle wavefunction.

p(z) = (mshz;mchz; p?); 0 < Im z < � (24)

f(p(� + i�)) = �fa(p(�))

Rewriting the KMS relation (22) in terms of particle states we obtainZ
::

Z
h0 jBj p1; ::pni f1(p1)::fn(pn)

d3p1
2p0;1

::
d3pn
2p0;n

+ contr: = (25)Z
::

Z
(�1=2J j�pk+1::�pni ; B jp1; ::pki)f(p1)::f(pn)

d3p1
2p0;1

::
d3pn
2p0;n

+ contr:

where the round bracket in the second line denotes the scalar product between
the bra and ket vectors and contr: stands for the contraction terms between
two Wick-products. They contain a lower number of particles and hence do not
contribute to the n-particle terms. The third line in (22) was used inside the
inner product in order to rewrite the right hand side of the KMS relation as a
matrix element of B between particle states.
To pass to the crossing relation (20) we must show that one can omit the

integration with the dense set of strip-analytic wavefunction. Since formfac-
tors in interacting models are generally distributions, this is not possible with-
out knowing that the formfactors are locally square integrable; in this case
the relation on a dense set of wave functions implies its validity on all locally
L2 integrable functions and hence (20) follows. Here B is any composite of a
free �eld.
In the presence of interactions the extraction of the particle crossing from the

KMS relation is more demanding. Particles are related to (incoming/outgoing)
free �elds, whereas the �elds in the KMS relation are interacting. The cross-
ing relation (20) which we want to derive contains in and outgoing particles
which are associated with in/out free �elds. We need to know a relation be-
tween incoming and interacting wedge localized states. Using the notation:
A(W ); Ain(W ) for the interacting and incoming free �eld wedge-local algebra
and recalling that both algebras share the same representation of the Poincaré
group, one obtains from the equality of the W-preserving Lorentz boosts the
equality of the domains of their Tomita operators domSA(W ) = domSAin(W ):
This means that for a vector state created by applying a wedge-local operator
from Ain(W ) to the vacuum there will be a corresponding uniquely de�ned op-
erator in A(W ) operator which, applied to the vacuum creates the same vector.
Existence and uniqueness is secured by modular theory applied to the wedge
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region [52]. We refer to this bijection between wedge local operators as emu-
lation of wedge localized free �elds within the interacting wedge algebra [11][26]
and denote the emulated image by a subscript A(W )

: Ain(f1):::Ain(fk) :�! (: Ain(f1):::Ain(fk) :)A(W ); suppf �W; A(fi) 2 Ain(W )
(26)

: Ain(f1)::Ain(fk) : j0i = (: Ain(f1)::Ain(fk) :)A(W ) j0i = jf1; ::fkiin

where, as before, the f inside the bracket state vectors are the wave functions
associated with the W-supported testfunctions.
The KMS relation for interacting �elds, from which the particle crossing is

to be derived, reads now [54]D
B(A

(1)
in )A(W )(A

(2)
in )A(W )

E
=


(A2in)A(W )�B(A

1
in)A(W )

�
(27)

�(A
(2)
in )

�
A(W ) j0i = �

1
2 JA

(2)
out j0i ; J = SscatJin

The identi�cation of the right hand side with a (analytically continued) particle
formfactors is similar to the free case; the di¤erence is the presence of the
scattering matrix which converts an incoming bra-state into an outgoing stateD

BjA(1)in (p1; ::pk)A(W )jpk+1; ::pn
Ein
' out h��pk+1; ::� �pn jBj p1; ::pkiin (28)

The equivalence sign expresses the fact that the equality according to (27) only
holds after integration with wavefunctions from a dense set of W -localized wave
functions, and the 	 stands for a state obtained by applying an emulated k-
particle operator to an n-k incoming state. It depends on n on-shell particle
momenta but is not an incoming n-particle state (+ contributions from contrac-
tions)31 ; the product of emulations of free �eld states is not the emulation of
the product of the latter. In order to relate the action of an "k emulat" on a
n-k particle state one needs an additional idea.
There exists a concept which achieves this: the analytic on-shell order change.

It arose in the setting of integrable models [53] and consists in an analytic in-
terchange of particle momenta within formfactors which, in the presence of
interactions, is di¤erent from the kinematical interchange in terms of statistics.
For simplicity of notation we restrict to d=1+1 in which case on-shell formfac-
tors are fully described by rapidities �: We de�ne a new object (denoted by a
superscript an) in a special con�guration

hBj�1::�nian � hBj�1; ::; �niin for �1 > :::: > �n (29)

Using (bosonic) particle statistics, formfactors can always be written in this
naturally ordered form. An analytic ordering change along a certain path leads

31A outgoing free creation operator applied on a n-1 incoming state is not an n-particle
state. Similarly the action of emulated incoming �elds on an incoming state is an in�nite
superposition of incoming particle states even though the emulated momenta are on-shell.
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from the natural order to a di¤erent formfactor function which depends not only
on the new order but also on the path of the analytic continuation which was
used to achieve it. The resulting object is still on-shell, but one generally does
not know its interpretations (or representation) in terms of particle states.
Fortunately for the derivation of the momentum space crossing one does not

have to know the particle content after the analytic changes. If the formfactors
are locally square integrable one can, by using wave functions with ordered �-
supports, always "�lter out" the natural order. This is achieved by passing from
wedge-local wave functions, which are spread (27) over all the whole �-line, to
wave functions supported in naturally ordered �-intervals. In other words the on-
shell analytic ordering property permits to reduce the derivation of the crossing
property in the presence of interactions to that of the interaction-free case; the
presence of interactions would only show up in the unknown contributions from
di¤erent orders. Before we attempt to algebraize the analytic ordering idea it
is helpful to take a look at the simpler case of integrable models.
Integrable models permit an explicit illustration of the previous arguments,

including an operator-encoding of analytic ordering changes into a representa-
tion of the permutation group (with the analytic transpositions being de�ned
in terms of the 2-particle elastic scattering matrix). In fact the emulated free
�elds32 turn out to be identical to the Fourier transforms of the Zamolodchikov
operators which obey the Zamolodchikov-Faddeev algebra (see 30 below).
This simplicity has its mathematical origin in restrictive domain properties

of emulats which characterize integrability [52]. Emulats in general QFT only
inherit the invariance property of their domains under the wedge-preserving
subgroup. The requirement that the domain is also invariant under transla-
tions turns out to be extremely restrictive [52]. In d > 1 + 1 the de�nition of
integrability in terms of domain properties of PFG�s forces the S-matrix to be
trivial Sscat = 1; whereas in d = 1 + 1 it allows nontrivial S-matrices which are
suitable combinatorial products of elastic 2-particle S-matrices which ful�ll the
bootstrap properties (matrix-valued scattering functions)33 . In other words the
connected higher particle scattering contributions vanish, which is the standard
de�nition of integrability in terms of properties of the S-matrix (the in�nite
number of conservation laws is a consequence). The elastic S-matrices are given
in terms of (possibly matrix-valued) scattering functions which have to obey
certain analytic properties in order to come from a �eld theory; these scattering
functions permit a classi�cation.
Using these scattering functions as structure functions in a Zamolodchikov-

Faddeev algebra [55] one obtains the creation/annihilation components of wedge-
localized temperate PFGs. At this point one realizes that the above abstract
de�nition in terms of domain properties of PFGs coalesces with the standard
de�nition of d=1+1 integrability. Such models are susceptible to solutions in
closed form and are therefore called "integrable". Compared with the classical

32 In earlier publications the special case of an emulated incoming �eld was referred to as a
vacuum-polarization-free-generators (PFG) [52].
33 In d=1+1 the cluster factorization does not distinguish a nontrivial elestic scattering

amplitude from Sscat = 1:
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integrability which requires to �nd a complete set of "conservation laws in in-
volution" (and where integrable systems exist in every dimension), integrability
in QFT is limited to d=1+1 and appears simpler.
The so-called "bootstrap-formfactor construction program" relates the scat-

tering functions to explicitly computed formfactors [53]. The last step consists
in showing that these formfactors really belong to an existing model of LQP. In
order to achieve this on has to establish the nontriviality of double cone localized
intersections of wedge-local algebras. This is a very nontrivial step which has
been accomplished with the use of modular nuclearity in the work of Lechner
[34]. The same author also showed how (in the absence of bound-states ) one
can construct the wedge-algebra generating PFG�s in terms of deformations of
free �elds [35]. The existence proof for some integrable models is considered to
represent a progress compared to the old existence proofs which were limited to
unrealistic short distance restrictions in the form of superrenormalizability [36].
This simplicity of integrable S- matrices (the absence of connected parts for

n > 2) keep integrable models in the proximity of interaction-free models. Hence
it is not so surprising that their wedge-generators (the Zamolodchikov-Faddeev
algebra generators) can be obtained by deformations of free �elds instead of the
more complicated emulation [35].
For the convenience of the reader and for later use we add some details on

the algebraic structure of emulated free �elds for integrable models.

(Ain(f))A(W ) =

Z
C

f(�)Z�(�)d�; C = @strip; p = m(ch�; sh�) (30)

strip = fz j 0 < Imz < �g ; Z(�) � Z�(� +�{�)
Z�(z1)Z

�(z2) = S(z1 � z2)Z�(z2)Z�(z1); z 2 C

Since integrable models preserve the particle number in scattering processes,
the n-fold application of the creation parts Z�(�) to the vacuum are n-particle
states. Identifying the velocity-ordered particle state with the incoming states

Z�(�1)Z
�(�2)::Z

�(�n) j0i = j�1; �2; :; �niin ; �1 > �2 > :: > �n (31)

anal: transpos: h0 jBj �2; �1; ::�niin = S(�1 � �2) h0 jBj �1; �2; ::�niin

the old degenerate representation related to (bosonic) statistics has been "dumped"
into the incoming con�guration which frees the notation on the left hand side to
encode another nontrivial representation in of the permutation group in which
the transposition of two neighboring �0s involves the scattering function. This
nontrivial representation takes care of the analytic exchange of �0s inside a form-
factor (second line in (31)) in a completely algebraic way. Besides the statistics
representation of the permutation group, there is also one which is generated
from transpositions in terms of the two-particle S-matrix.
It follows from repeated application of (31) that the analytic change of a �

through a k-cluster of � on its right hand side will be a product of of scattering
functions which rewritten in terms of the full k+1 S-matrix corresponds to a
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grazing shot S-matrix de�ned as [13]

Sg:s:(�; �1; ::�k) = Sk(�1; ::�k)
�1Sk+1(�; �1; ::�k) (32)

This grazing shot concept has been used to generalize the properties of integrable
emulations to the generic situation [11][26] by converting the idea of analytic
changes of ordering into an algebraic structure; in this sense it tries to generalize
the structure of the Zamolodchikov-Faddeev algebra. This is according to my
best knowledge the �rst attempt to �nd a model-independent constructive on-
shell access to nonperturbative generic (non-integrable) QFT; it is probably not
correct in this form, but the importance of such a �rst step outweighs the risk
of failure.
The �rst attempt of an on-shell construction of particle theory after the

failure of the S-matrix bootstrap was that by Mandelstam. It ignored the sub-
tlety of analytic on-shell properties by trying to guess their structure based
on a postulated double spectral representation for elastic scattering amplitudes
(the Mandelstam representation) instead of a derivation from the foundational
causal locality principles of QFT. It �nally failed when Mandelstam supported
the incorrect idea of identifying the meromorphic function of Veneziano�s dual
model with the particle crossing of scattering amplitudes (more in section 7).
The idea of the present work is suggested from properties of the modular

wedge localization and consists in relating on-shell analytic order changes to
the action of emulats. For two relatively naturally ordered clusters, the analytic
ordering idea for the left hand side in (28) reads

D
BjA(1)in (�1; ::�k)A(W )j�k+1; ::�n

Ein
= hBj�1; �2; ::�niin + contr: (33)

(�1; ::�k) > (�k+1; ::�n); all � in left hand cluster are larger than right hand �0s
(34)

and the ordering within each cluster is arbitrary. The contractions result from
the incoming Wick product A(1)in (�1; ::�k) acting on the n-k particle state; they
are delta function contact terms in rapidity space and hence do not contribute
if all � are di¤erent. Fortunately the other orders are not needed for the cross-
ing relation, but they contain the dynamic information which is important for
the full understanding of crossing and enter any constructive approach which
generalizes what has been learned from integrable models.
That the ordering prescription is crucial for the derivation of the standard

form of the LSZ property is corroborated by the derivation of the time-dependent
LSZ reduction formula from the foundational properties of QFT [57]. In that
derivation overlapping wave functions have to be avoided because through such
overlaps threshold singularities enter into the problem. This result supports the
picture of analytic changes of moving through new threshold singularities at
points of coalescence of two �: It is an indication that ordering changes of two
� lead to nontrivial changes which a¤ect the derivation of the LSZ formula and
the crossing relation. The present arguments suggest that both these changes
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should have their explanation in a better understanding of the consequences of
modular localization for wedge-local algebras in QFT. From a modern viewpoint
it is clear that the conceptual tools for its solution were simply not available at
the time of its proposal.
The ideas about PFGs and of wedge-localized particle states in terms of

emulated �elds can (and in my opinion should) be viewed as an extension of
Wigner�s representation-theoretical approach for noninteracting particles and
its functorial relation ("second" quantization) with quantum �elds but now
in the presence of interactions. The conceptual distance between the functo-
rial particle-free �eld relation and emulation in the presence of interactions is
immense. Modular localization, as a mathematical precise formulation of the
causal locality principle of LQP is the only intrinsic property which has the
necessary conceptual pugnancy to eventually solve this �eld-particle problem.

7 Impact of modular localization on gauge the-
ories

It is well-known that the Hilbert space formulation for renormalizable couplings
of pointlike �elds is limited to spin s < 1. For s = 1 vectorpotentials, one
is forced to use a Krein space formulation, either in the form of the Gupta-
Bleuler formalism, or for massive gauge theories in terms of the ghost �eld
formalism of the Becchi-Rouet-Stora-Tyutin (BRST) operator gauge setting.
Usually textbooks on QED do not explain that this deviation from the Hilbert
space setting of quantum theory comes from an incompatibility of pointlike
zero mass vectorpotentials with the positivity of Hilbert space (closely related
to quantum probability) which leads to limitations of viewing models of QFT as
obtained by quantizing classical gauge theories. In fact this problem arises for all
massless s � 1 tensor potentials; only their associated pointlike �eld strengths
are �elds acting in a Hilbert space. This problem of loss of the Hilbert space
setting for interactions which use pointlike vectorpotentials is the origin of gauge
theory.
For our aim to present a new formulation which permits to describe the full

theory in Hilbert space, it is helpful to recall �rst some facts about the BRST
gauge setting. We will use the so-called BRST operator formalism as it can
be found in Scharf�s book "Gauge theory, a true ghost story" [58], but present
it in a form which highlights analogies between the nilpotent cohomological
BRST s-formalism in Krein space and the d-operation on di¤erential forms of
the new Hilbert space setting which requires the use of stringlocal �eld (the SLF
formalism).
The BRST description of massive vectormesons relates the physical Proca

�eld AP� with @
�AP� = 0 with short distance dimension dP = 2 to an unphysical

�eld in Krein space AK� with dK = 1 and a negative metric scalar Stückelberg
�eld �K with dsd = 1: The idea is to compensate the highest short distance sin-
gularity in terms of the d = 2 derivative @��K ; for this compensation one needs
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the opposite sign of the �K two-point-function; this just uses the well-known
(already before gauge theory) short-distance softening e¤ect of inde�nite metric
which is of cause inconsistent with quantum physics but helpful for renormal-
ization; the idea of gauge-invariance is to formulate a restriction which permits
at least to return to a "smaller" physical setting. The relation which intuitively
achieves this is of the form

AK� (x) ' AP� (x) + @��K ; y @�AK� (x) +m
2�K ' 0 (35)

The equivalence sign is meant to indicate that relation between the Krein space
vectorpotential and its physical Proca counterpart is not yet an operator equality
but rather a relation which requires a cohomological interpretation. The reader
recognizes in the second relation the Lorentz condition; by relating physical
states with suitably de�ned equivalence classes of Krein states these relations
represent cohomological equivalences. In the following we restrict the formalism
to massive vectormesons; in this case the space is a Fock-Krein particle space
and the BRST formalism can be formulated in terms of inde�nite metric free
�elds.
The BRST formalism extends the Krein space setting by additional inde�nite

metric free �elds: the ghost and anti-ghost �elds u; ~u �elds; this permits the
reformulation of the content of (35) in terms of an operator equalities in terms
of a nilpotent ghost charge Q which in turn allows the de�nition of a nilpotent
s-operation

sAK� = @�u; s�
K = u; s~u = �(@AK +m2�K) (36)

sBK = [Q;BK ]grad; Q ghost charge; Q2 = 0y s2 = 0

where the graded commutator is really an anti-commutator if B contains an
odd number of ghost �elds u; ~u: The �rst line leads to s(AK� �@��K) = 0 which
according to (35) is consistent with the physical nature of the Proca �eld. As
shown in [58] [59] [60] this leads to an operator formulation of renormalizable
gauge theories for massive34 vectormesons coupled to charge-carrying- or neu-
tral matter �elds. The S-matrix in such a setting is characterized by sS = 0;
for details we refer to the cited papers.
The action of the s via the graded commutator with the ghost charge de�nes

the quantum gauge symmetry transformation so that gauge-invariant operators
are annihilated by the action of s. As mentioned the limitation of the operator
gauge formalism shows up in the attempt to construct physical matter �elds35

which couple to vectormesons. The well-known nonrenormalizability of point-
like massive vectormeson interactions in a Hilbert space indicates that pointlike

34The free �eld transformation rules (36) refer to the incoming free �elds of scattering
theory. In massless gauge theories as QED the ghost charges depend on the coupling [61].
35The gauge.variant matter �elds have no physical content and it is also not possible to

extract physical matter �elds in a perturbative setting.
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physical �elds are more singular than Wightman �elds (operator-valued tem-
pered distributions). The literature on the BRST formalism contains no infor-
mations about their construction. An illustration can be found in [62] where
its was shown that the use of unphysical matter �elds leads to the wrong re-
sult that the Maxwell charge (associated to the identically conserved Maxwell
current j� = @�F��) of the gauge-variant matter �eld vanishes which contra-
dicts rigorous results about states created by physical matter �elds acting on
the vacuum. Buchholz [63] has used an appropriated formulation of the quan-
tum Gauss law in order to prove that physical charge-carrying operators cannot
be better localized than in arbitrarily narrow spacelike cones whose cores are
semiin�nite spacelike strings.
Some more comments on the BRST operator gauge formalism and its relation

to classical gauge theory may be helpful. The terminology gauge "principle" is
sometimes misunderstood as a special physical property of s = 1 �elds. Its role
is however of a pure technical kind; working with a formulation in a Krein space,
one needs to extract from such an unphysical description physical data referring
to objects which act in a Hilbert space; in the past there has been simply no
renormalizable formalism in terms of pointlike �elds in a Hilbert space setting.
The BRST gauge formalism in Krein space achieves its limited validity in

the vacuum sector (generated by the local gauge-invariant �elds) by construct-
ing a "symmetry" which involves in addition to the Krein space counterparts of
matter �elds also "ghost" and anti-gost operators (36). This formal symmetry
(sometimes referred to as a local gauge symmetry) is by itself not a physical
symmetry in the usual sense; even though its formal invariants are the physical
local observables whose application to the vacuum state generate the vacuum
sector in Hilbert space. Important physical �elds, as those which transfer electric
charge, remain outside the quantum gauge formalism. Neither does one know
a physically useful generalization of gauge symmetry to higher spin. Inde�nite
metric spaces entered QFT through quantization of QED (the Gupta-Bleuler
formalism), and the BRST setting resulted from generalizing the gauge formal-
ism to interactions involving massive vectormesons.
Before describing some of the conceptual-mathematical details of the new

setting it is helpful to recall how physical stringlocal charge-carrying matter
�elds have been formally envisaged in the BRST gauge setting. The formal
expressions in the Krein space setting are well known

'(x; e) = 'K(x)expig

Z 1

x

AK� (x+ �e)e
�d�; e�e� = �1; (37)

they already appeared in publications of Jordan and Dirac during the 30s. But
anybody who (besides playing formal games) tried to obtain a perturbative com-
putational control on the basis of such nonlocal composite formal expressions
within renormalized perturbation theory knows that this is an impossible task.
The new SLF formalism solves this problem by converting it from its head

to its feet; instead of trying to represent physical charge-carrying �elds in terms
of pointlike gauge-variant �elds in a Krein space setting, it bases renormalized
perturbation theory direct on stringlocal �elds in Hilbert space. In this way the
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stringlocal physical �elds become the basic �elds in terms of which renormalized
perturbation theory is formulated [38] [39]. For free massive pointlike potentials
(Proca potentials) the short distance dimension dPr oca = 2 poses no problems.
The problems start if such �elds interact, since it is impossible to de�ne an
interaction density which stays within the power-counting limit dint = 4; all
interactions of Proca �elds are nonrenormalizable.
In classical �eld theories Hilbert space positivity plays no role; the vectorpo-

tential is a perfectly legitimate and useful classical object; the fact that many
di¤erent vectorpotentials correspond to the same �eld strength and the for-
malization of this observation in terms of the introduction of a classical gauge
group does not change this. However the quantum Hilbert space structure and
in particular its positivity property (related to the quantum probability) has no
classic analog from which it could arise by the quantization parallelism, This
changes the whole game; for zero mass quantum vectorpotentials there is a clash
between covariant pointlike zero mass vectorpotentials and the Hilbert space pos-
itivity; this clash extends to s > 1 tensorpotentials36 , whereas the associated
observable pointlike quantum �eld strengths remain pointlike �elds in Hilbert
space. In fact stringlike potentials A�(x; e) arise by integrating pointlike �eld
strengths over semi-in�nite spacelike lines in the direction e (see below) starting
at the spacetime point x. This process can be repeated with the higher spin �eld
strengths (for s=2 the linearized Riemann tensor); each time the short distance
dimension improves by one unit until the process ends at a covariant (e is a
Lorentz vector) stringlocal sibling of dimension dstring = 1 of pointlocal tensor
potential which has dpont = s+ 1; some details will be presented later on.
Whereas the clash in the zero mass case already occurs for free tensorpo-

tentials37 (i.e. is of a kinematic nature), the weakening of pointlike localization
in the massive case is a dynamic phenomenon which manifests itself in a subtle
connection between renormalization and locality in the sense that nonrenormal-
izability of certain �elds implies that they do not exist as pointlike Wightman
�elds but that their perturbative interactions becomes renormalizable if formu-
lated in terms of stringlike Wightman �elds.
Whereas the inde�nite metric gauge formalism for pointlike massless tensor-

potentials can be related via quantization to the classical pointlike formalism,
it is not immediately clear what is the tightest localization which is consistent
with the Hilbert space positivity. The before mentioned structural theorem for
localization in QED suggests that it should be semi-in�nite stringlike. There
is a powerful general theorem which states that in theories with mass gaps
and pointlike observable algebras the generating �elds (�elds act always act in
Hilbert space unless otherwise stated) which carry superselection charges, are
generically stringlocal [64]; in other words, in order to generate the operator al-
gebras of QFT, one does not need generating �elds which live e.g. on spacelike

36Example: for s=2 the tensorpotential is the g�� and the associated �eld strength is a
tensor �eld with 4 indices (the linearized Riemann tensor).
37The counterpart of vectorpotentials to higher spin. E.g. for s = 2 the �eld.strength is

a 4-index tensor (the linearized Riemann tensor) and the associated tensorpotential is the
2-index g�� tensor.
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hypersurfaces. Stringlike 	(x; e) �elds are covariantly localized on a semiin�nite
spacelike string: x+ R+e; e � e = �1: In this new setting pointlike �elds 	(x)
are considered as special e-independent cases. By de�nition local observables
are always pointlike generated (currents, �eld strength,..).
It is the main point of this section to abandon the gauge description in favour

of a Hilbert space formulation; for s � 1 this requires to replace pointlocal vec-
tormesons by their stringlike counterpart. The Krein space gauge setting and
the SLF Hilbert space formulation meet on the level of local observables where
the property of gauge invariance corresponds to e-independence, whereas the
Hilbert space setting provides the missing higher sectors beyond the vacuum
sector which cannot be generated by local observables but need stringlike gen-
erating operators (e.g. the physical electron �elds). The gauge setting arises
naturally from the Langrangian quantization of the classical electromagnetism,
whereas stringlocal vectorpotential have no Euler-Lagrange description.
Fortunately perturbative QFT does not depend on a Euler-Lagrange descrip-

tion. The Epstein-Glaser (E-G) formulation [27] of perturbation theory ("causal
perturbation theory") accepts Lorentz-invariant interaction densities in terms
of covariant �elds independent of whether these �elds are of Lagrangian origin
or results of representation-theoretic (Wigner) local quantum physical construc-
tions. However the use of covariant stringlocal �elds requires a nontrivial ex-
tension of the E-G inductive construction from pointlike to stringlike crossings;
such an extension has been achieved in recent but yet unpublished work by
Mund [65].
The Hilbert space positivity restricts the existing pointlike formulation to

s < 1. According to the aforementioned theorem [64] generating �elds of LQP
in theories with a mass gap are at most string-localized. In the following it
will be shown that nonrenormalizable couplings involving massive s � 1 �elds
can be generated in terms of stringlocal (but not with pointlocal) Wightman
�elds. We believe that perturbative nonrenormalizable pointlike couplings which
cannot be converted into stringlike renormalizable couplings (see next section)
do not de�ne models consistent with principles of QFT.
Our SLF setting requires to describe interactions of zero mass vectormesons

(QED, QCD) as limiting cases of massive interactions; in the limit only the
stringlocal Wightman �elds survive; their presence is essential for the under-
standing of physical consequences of infrared divergencies and they are the only
physical �elds which carry a nontrivial Maxwell charge. As already mentioned
a nonperturbative proof of string-localization as the tightest possible localiza-
tion of charged �elds which carry a nontrivial Maxwell charge is based on the
quantum Gauss law [63]. In contradistinction to massive strings in di¤erent
directions which are unitarily equivalent, charged QED strings or strings of self-
interacting Y-M potentials are "rigid"; in particular they lead to a spontaneous
breaking of Lorentz covariance [66].
The new SLF setting bases renormalized perturbation theory direct on stringlo-

cal physical �elds [38] [39]. For free massive pointlike potentials (Proca poten-
tials) the short distance dimension dProca = 2 poses no problems. They start if
such �elds interact since it is impossible to de�ne an interaction density which
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stays within the power-counting limit dint = 4; i.e. all interactions of Proca
�elds are nonrenormalizable.
The �rst hint into which direction to look comes from the observation that

there are two other �elds which belong to the localization class of the Proca
�eld (i.e. which are stringlocal also relative to each other and have the short
distance dimension d = 1 instead of 2). They are constructed from the Proca
potential in terms of the following de�nitions

F��(x) := @�A
P
� (x)� @�AP� (x); A�(x; e) :=

Z 1

0

F��(x+ �e)e
�d� (38)

�(x; e) :=

Z 1

0

AP� (x+ �e)e
�d�; e2 = �1

All three covariant free �elds are written in terms of the same basic Wigner
s = 1 creation/annihilation operators a#(p; s3); s3 = �1; 0; 1; unlike in the
BRST setting no additional Stückelberg degrees of freedom are introduced, so
that the Hilbert space remains identical to that which the Proca �eld generates
from the vacuum38 . In the presence of interactions the stringlocal scalar � may
potentially interpolate particles of any integer spin [46], including s = 0

hp; s3 j�j 0i 6= 0; � s � s3 � s (39)

Which boundstate particles actually appear in addition to the "elementary"
s = 1 vectormeson and the matter �eld with which it interacts depend on the
interactions of massive vectormesons with other matter or among themselves.
The important point here is that the covariant string-local nature of � permits

a linear interpolation, whereas covariant pointlike �elds achieve this only by
forming (nonlinear) composite �elds [46]. Solely zero mass stringlocal �elds
maintain the standard connection between spinorial indices and physical spin39

s = jhj which is the same as that for pointlike massive �elds; in particular they
have no � escorts. The semiin�nite line integrals in (38) lowers the dimension by
one unit, so that the stringlocal potential and the stringlocal Stückelberg �eld
permit to de�ne formal interaction polynomials within the power-counting re-
striction. The string-localization shows up in the commutation relation; bosonic
strings commute if and only if the entire strings x+ R+e are spacelike relative
to each other.
Between the pointlocal Proca �eld and its stringlike relatives there exists a

(easy veri�ed) linear relation

A�(x; e) = AP� (x) + @��(x; e); dsd(A�) = 1; dsd(�) = 1; dsd(A
P
� ) = 2 (40)

In contrast to the equivalence relations (35) in Krein space, these relations are
bona �de operator equations in Hilbert space which (in case of free �elds) are

38This renders the SLF setting more similar to the Ginsberg-Landau phenomenological
theory of superconductivity tnan the relation of the latter to the Higgs mechanism for which
the "fattened" vectormeson need the presence of the Higgs particle.
39For massless pointlike �elds the relation is more restricted
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direct consequences of the above de�nitions. They are similar to the Stückelberg
�elds in the BRST gauge setting (35) but in contrast to the letter they are phys-
ical i.e. they interpolate physical states. In the free �eld case these escort �elds
(of stringlocal vectorpotentials) � generates the same s = 1 Wigner particle as
A�; but in the presence of interactions they may potentially interpolate any
integer spin particle, including a scalar bound state. The compensation of the
most singular part (in the present case of the Proca �eld) by the derivative of
a lower dimensional �eld (40) is the mechanism by which later on the singular
nonrenormalizable pointlike interaction density will be converted into its less
singular renormalizable stringlocal counterpart.
In contrast to the role of the scalar Higgs �eld, which must be added to the

zero order �eld content, the Hermitian stringlocal scalar �0s are inexorable com-
panions ("intrinsic escorts") of renormalizable massive vectormesons. Together
with the Proca �eld they disappear in the massless limit in which the relation
(40) breaks down and only stringlocal vectorpotentials remain.
Before presenting illustrative second order perturbative model calculations

in the new SLF Hilbert space formulation, it is helpful to know how the local
equivalence class relation between point- and string-local �elds can be extended
to the matter �elds. Looking at the "gauge theoretic appearance"40 of (40) it
is not surprising that this relation takes the form of a gauge transformation

 (x) = e�ig�(x;e) (x; e) (41)

The g-dependent exponential dependence on the physical � �eld changes the
renormalizable stringlocal matter �eld; the result is a very singular pointlike �eld
with unbounded short distance dimensions (non-polynomial increase in momen-
tum space). Such �elds have been introduced in [68]; they are more singular41

than operator-valued Schwartz distributions ("Wightman �elds") and indicate
their presence in terms of a breakdown of renormalizability. Any attempt to
calculate them directly (i.e. without using the relation to their stringlocal renor-
malizable siblings) will lead to the well-known problems of nonrenormalizable
perturbation theory with in�nitely many counterterm parameters, whereas their
calculations as objects within the renormalizable stringlocal perturbation the-
ory will maintain the same number of parameter as those appearing in the
stringlike formulation; in fact they provide a very singular "coordinatization"
of the same physical situation. In particular they do not allow the construction
of localized operator algebras by smearing with arbitrary compact spacetime
supported smooth testfunctions.
The intrinsic nature of the stringlocal physical � �elds strengthens the anal-

ogy with the massive gauge �elds in the Ginsberg-Landau theory of supercon-
ductivity. In contradistinction to the Higgs mechanism, which adds additional
degrees of freedom (namely the extrinsic Higgs �elds) in the belief that vec-
tormesons need them in order to be massive, the SLF setting describes massive

40This is not a gauge transformations between �elds of the same kind, but rather an equation
which connects string-and point-like �elds which are members of the same localization class.
41 In fact they only allow smearing with a dense class of localized testfunctions.
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vectorpotentials coupled to charged matter without adding degrees of freedom,
just as the quantum mechanical theory of superconductivity describes short
range vectorpotential without requiring additional degrees of freedom. What is
not clear at this point but will become evident in the following subsections, is
that these scalar stringlocal �elds, which together with the other two �elds (40)
are members of the same relative localization class, play a crucial role in the
interaction of massive vectormesons with matter.
It is interesting to note that the local equivalence class picture permits a

generalization in which the linear relation between s = 1 free �elds is a special
case a more general relation for integer spin s > 1 �elds

A�1::�n(x; e) = AP�1::�n(x) + @�1��2::�n + @�1@�2��3::�n + :::+ @�1 :::@�nn�

The left hand side represents a stringlocal spin s = n tensor potential associated
to a pointlike tensor potential with the same spin. The �0s s = n� i; i = 1; ::; n
tensorial stringlocal �elds of dimension d = n� i+1. Each � "peels o¤" a unit
of dimension so that at the end one is left with the desired spin s stringlocal
d = 1 counterpart of the tensor analog of the Proca �eld. The main problem
of using such generalizations is to identify those couplings which guaranty the
existence of su¢ ciently many (generally composite) local observables generated
by pointlike Wightman �elds (operator-valued Schwartz distributions). This
may be important in attempts to generalize the idea of gauge theories in terms
of SLF couplings involving massive s > 1 �elds.
The two-point functions of the above s = 1 stringlocal �elds are e-dependent

h�1(x; e)�2(x0; e0)i =
1

(2�)3=2

Z
e�ip(x�x

0)M�1;�2(p; e; e
0)
d3p

2p0
(42)

MAP
� ;A

P
�
= �g�� +

p�p�
m2

; M�;� =
1

m2
� ee0

(pe� i")(pe0 + i")

MA�;A�
= �g�� +

p�p�
(pe� i")(pe0 + i") +

p�e�
pe� i" +

p�e
0
�

pe0 + i"

Besides these three diagonal expectations there are also mixed e-dependent two-
point functions of which only

MA�;� = �i(
e0�

pe0 + i"
� p�ee

0

(pe� i")(pe0 + i") ) (43)

will be needed later on. The "-prescription de�nes the distributions as bound-
ary values of analytic functions. A systematic derivation of such relations in
the context of the intertwiner formalism for stringlike �elds [46] will appear in
[69].The appearance of e-dependent time-ordered correlations complicates ana-
lytic perturbative calculations as compared to the BRST setting.
But the extra computational e¤ort is unavoidable, because it is the only

possibility to construct correlation function involving physical zero mass matter
�elds since the latter exclusively exist as stringlocal objects42 and the massive
42Even the singular pointlike �elds of the massive case disappear in the massless limit.
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vectormeson theories o¤er a natural covariant way (without ad hoc cuto¤s) to
analyze the infrared behavior. Such constructions are necessary if one wants
to show that con�nement is a property of zero mass gluon-matter interactions.
In fact the expected result is that m ! 0 limiting correlations vanish if be-
sides pointlike observable (composite) �elds they also contain stringlocal glu-
ons/quarks; the only expected exception are quark-antiquark pairs with an e
which matches the direction of the spacelike separation between the pair (a
stringlike bridge). One knows from infrared problems in QED that the lead-
ing logarithmically divergent contributions must be re-summed before one takes
zero mass limits [74].
One should also note that the apparent simplicity of the pointlike BRST

perturbation theory as compared to the Hilbert space setting is deceiving; the
di¢ cult part in the gauge setting is not the perturbation theory itself, but rather
the extraction of the physical results. Physical operators, as the S-matrix, in-
evitably contain unphysical �elds, and to compute their matrixelements between
physical particle states is a nontrivial and even ill-de�ned task since the physical
space is not simply a subspace but rather results from a cohomological construc-
tion. The s-invariant BRST S-operator in the Bogoliubov formulation depends
not only on the physical matter operators but also on the unphysical AK� and
�K free �elds and even if one �nds a way to compute scattering amplitudes by
"sandwiching" S between physical Wigner particle states it is not clear whether
it would agree with the scattering amplitudes which are calculated by doing
the same with Sphys obtained from the Hilbert space formulation where such
problems do not occur. The only secure result of the gauge approach is the
physical nature of the gauge-invariant local observables, but from those alone it
is not possible to derive the S-matrix.

7.1 SLF perturbation theory involving massive vectormesons

For the perturbative study of interactions of massive vectorpotentials with
charged matter, one needs to establish the validity of relations as (4041) in
every order of perturbation theory. The zero order matter �elds are pointlike
but, as a result of their interaction with the stringlocal vectorpotential, they be-
come stringlike in higher orders, in fact they turn out to be even "more stringy"
than the vectorpotentials which mediate the interactions. The important idea
which permits to establish these relation in every order within the Stückelberg-
Bogoliubov-Epstein-Glaser (SBEG) setting of renormalized perturbation theory
will be referred to as "adiabatic equivalence" (AE) since it involves the adiabatic
limit in which the spacetime-dependent compact supported coupling g(x) of the
SBEG functional formalism approaches the spacetime-independent everywhere
constant physical coupling strength g; this will be explained in the sequel.
Before we turn to concrete model illustrations of perturbation theory in

terms of stringlike �elds, a historical remark about the origin of these ideas may
be appropriate. It had been known for a long time that Wigner�s in�nite spin
representations of the Poincaré group cannot be generated by pointlike wave
functions [48]. Further progress had to await the concept of modular localiza-
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tion, which �rst appeared in the context of integrable models [7]. Of signi�cant
importance was the systematic application of modular localization to positive
energy Wigner representations in [23]. In that paper it was shown that all
such representations permit a causal localization in (arbitrary narrow) spacelike
cones. Since the core of such a conic region is a semi-in�nite spacelike string, the
only remaining computational problem was the construction of covariant �elds
	(x; e) which are causally localized on x+R+e; e2 = �1 and generate operator
localized in (arbitrary narrow) spacelike cones [46]: This �nally led to a solution
of the age-old problem concerning the �eld content of Wigner�s "in�nite spin"
representation class.
It then turned out that the construction of stringlocal �elds is also useful

for the pointlike localizable representations since it resolves the clash between
pointlike localization and the Hilbert space positivity for zero mass s � 1 �elds
which one encounters in passing from pointlike �eld strength to their associated
potentials43 .
The use of stringlike potentials also lowers the short distance dimension;

instead of dsd = s + 1 for pointlike spin s �elds, one can always construct a
free stringlike �eld with dsd = 1 for all s:This allows to convert interactions
between massive nonrenormalizable pointlike �elds into renormalizable interac-
tion involving their stringlocal analog. It also shows that the this conversion can
be used in the opposite direction; the stringlike renormalization theory permits
to construct well-de�ned (but more singular) higher order pointlike interac-
tion densities via the detour of renormalizable stringlike Wightman �elds; this
roundabout way cannot prevent the singular (non-Wightman) nature known
from direct use of pointlike perturbation theory with �rst order interaction den-
sities beyond the power-counting limit dint � 4; but at least the number of
parameters stays the same as in its stringlike counterpart44 .
Although modular localization was important for the understanding of the

role of stringlocal �elds and their role in the reformulation of gauge theory,
their renormalization theory can nowadays be carried out without direct use of
modular methods. The latter remain present in the background; they furnish
the conceptual-mathematical fundament for the ongoing changes in QFT. It
shows in particular, that the perturbative use of SLF in Hilbert space is more
than a computational substitute of the BRST gauge formulation; in fact It is
the only perturbative formulation in which the full �eld content (and not just
the local observables of the gauge-invariant vacuum representation) complies
with the physical principle of causal localization in a Hilbert space.
After having explained the philosophy behind SLF, we will now illustrate

these ideas in three di¤erent models. As a preparatory step the reader is �rst
reminded of the SBEG setting of perturbation theory. Its central object is Bo-
goliubov�s perturbative operator-S-functional which generates the time-ordered
products associated with the scalar interaction density L(x). The scattering

43A corresponding result holds for massless higher hal�nteger integer spin �elds.with s �
3=2:
44The growth of the number of independent counterterms parameters wizh the perturbative

oder in the direct pointlike setting renders nonrenormaliable interactions rather useless.
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matrix Sscat and the quantum �elds are then de�ned in terms of the adiabatic
limit of the following de�nitions

S(gL) �
X
n

in

n!
Tn(L; : : : ; L)(g; : : : ; g) =: Te

i
R
L(x)g(x); Sscat = lim

g(x)!g
S(gL)

(44)

 g(f) := S(gL)�1
X
n

in

n!
Tn+1(L; : : : ; L;  )(g; : : : ; g; f);  (f) = lim

g(x)!g
 g(f)

Here g(x) ! g is the adiabatic limit in which the spacetime dependent cou-
pling approaches the coupling constant and the S-matrix and the �elds become
covariant. A su¢ cient condition is the existence of mass-gaps, which is satis-
�ed if all �elds in the Lorentz-invariant interaction density are massive[8]. Since
quantum �elds are not operator-valued functions but rather operator-valued dis-
tributions, the de�nitions of the S-matrix and quantum �elds must be subjected
to renormalization which has to be carried out order by order.
In the case of massive scalar QED [70] [39] we have two L0s, a pointlike

interaction LP and its stringlike counterpart L

LP (x) = j�(x)AP� (x) = L(x; e)� @�V� (45)

L(x; e) = j�(x)AS�(x; e); V� = j�(x)�(x; e); j�(x) =: '
�(x)i

 !
@ �'(x) :

S(gLP + f ) ' S(gL+ f S)
AP� (x) = AS�(x; e)� @��(x; e);  P (x) = e�ig(x)�(x;e) S(x; e)

The LP is the singular pointlike Proca interaction, whereas L is the new string-
like interaction which, as a result of dsd(AS�) = 1; stays within the power-
counting limit of renormalizable couplings; both L0s act in the Hilbert of the free
�elds which were used in the de�nition of LP . The vector V� contains the pre-
viously introduced intrinsic escort �eld � of AS ; and @�V� with dsd(@�V�) = 5
plays a similar role with respect to LP as @�� in (40) with respect to AP� , namely
it "peels o¤" the highest short distance dimension from LP and converts it into
the renormalizable dsd = 4 interaction density L45 . The highest divergence is
now carried by the derivative @�V� term which, integrated with g(x); becomes
a boundary term and hence vanishes (in massive theories) in the adiabatic limit
g(x)! g: In this way one arrives at the equality (up to problems of normaliza-
tion) of the �rst order pointlike scattering matrix with its string counterpartZ

LP d4x =

Z
Ld4x or LP

AE' L (46)

which de�nes the concept of "adiabatic equivalence" of the two interactions.
For notational conveniences, and also in order to maintain formal analogy

to the BRST formalism, one views A�(x; e) and �(x; e) as zero forms in e; with

45For convenience of notation we omit the superscript S for stringlocal objects.

57



de denoting the di¤erential operator which maps n-forms into n + 1 forms so
that d2e = 0: Then the basic relation of string-independence (40) reads

de(A�(x; e)� @��(x; e)) = 0; u := de� (47)

y de(L(x; e)� @�V �(x; e)) = 0
and the second line, in which the de acts on composites, is a consequence of the
de action on the basic free �elds. For all interactions of massive vectormesons
with matter such pairs L, V� exist. The content of the bracket in the second line
is simply the lowest order nonrenormalizable pointlike interaction; for massive
QED see (45).
The di¤erential form calculus is formally similar to the nilpotent s-operation

of the cohomological BRST gauge formalism (see below). Its conceptual role
remains however quite di¤erent; in the case at hand the di¤erential formalism
separates pointlocal observables from stringlocal �elds in Hilbert space, whereas
the main purpose of the BRST s-operation is to allow the return from an un-
physical Krein space to a quantum theoretical Hilbert space in which (only)
gauge invariant observables act. Operators as (37), which in the BRST ter-
minology may be called "gauge invariant nonlocal matter �elds", are outside
the range of the perturbative gauge formalism, whereas in the SLF setting they
de�ne the basic renormalizable matter �elds of perturbation theory. In contrast
to the nilpotent s-operation, which is needed for the construction of a Hilbert
space, the de acting on classical di¤erential zero forms is directly related to the
physical localization properties.
If the T -products would not involve distributions with singularities at coin-

ciding points as well at string crossings which impede to pull the @� through
the T , higher order string independence relations as

(de + de0)(TL L0 � @�T V �L
0
� @0�TL V �0 + @�@

0
vTV

�V �0) = 0 (48)

would be an automatic consequence. This relation may be somewhat simpli�ed
by splitting it (using the symmetry in x; e$ x0; e0) into:

de(TLX
0 � @�TV �X 0) = 0; X 0 = L0; V �0 (49)

The ambiguities of time-ordering at point or string-crossings make the ful�ll-
ment of these relations a nontrivial renormalization problem. Their validity
as distributional relations, including coalescent x0s and string crossings; would
imply the string-independence of the second order scattering matrix, since all
derivative terms lead to vanishing boundary terms in the AE limit.
The vanishing of the bracket in (48) also provides a second order de�nition

of a T-product of singular "pointlike"46 interactions TLP (x)LP (x0); which in
the standard pointlike setting would be outside the range of renormalization
theory.

TLPLP 0
AE' TL L0; TLPLP 0 � TL L0� @�T V �L

0
� @0�TL V �0+ @�@

0
vTV

�V �0

(50)
46The TLPLP 0 is generally not pointlike as an interaction density, since there remain e-

dependent contact terms which only vanish after integration (i.e. in the AE limit).
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The derivative terms, which in massive theories lead to vanishing surface contri-
butions after integration over spacetime, account for the fact that this e; e0 independent
de�nition of a second order pointlike interaction leads to the same scattering
matrix as its stringlike counterpart. Renormalization means the construction of
a time-ordering which ful�lls e-independence in the sense of (50).
This is conveniently done by decomposing the time-ordered products in

terms of Wick-ordered products. The resulting operator contributions can be
ordered according the number of contractions. The term with no contraction
obviously ful�lls the above identity. The so-called tree-contribution contains
one contraction; for contractions containing the time-ordering of derivative of
�elds this leads to a renormalization problem. The only massive vectormeson
coupling in which this problem is absent is massive spinor QED [70]. Loop
contributions are as usual absorbed in mass- and coupling- renormalization.
The interesting new phenomena of SLF in Hilbert space happen in the "tree"-

component. In the following this problem and its solution will be sketched for
three models: scalar massive QED, its chargeless counterpart (coupling to a
Hermitian �eld H) and some comments on the massive Yang-Mills coupling
(interacting massive gluons). In the following three subsection we will be content
with the calculation of the second order S-matrix. The calculation of o¤-shell
correlation of quantum �elds and the relation between singular pointlike and
renormalizable stringlike matter �elds (41) will be left to a separate publication.
For new interesting problems of mathematical physics arising from stringlo-

cal perturbation theory, in particular problems related to the extension of Epstein-
Glaser causal renormalization theory to string-crossings, we refer to forthcoming
work by Mund [65].

7.2 Scalar massive QED

According to the traditional view, massless scalar QED is a pointlike model with
two coupling parameter47 ; it is known to be renormalizable in the unphysical
pointlike BRST Krein space setting. Unlike its classical counterpart, this quan-
tum gauge description is severely restricted; the positivity requirements of the
Hilbert space clash with the pointlike localization and quantum gauge theory is
the result of a compromise; the description is limited to local observables which
constitute the gauge invariant part, physical matter �elds remain outside.
As a consequence, quantum gauge theory is not capable to provide a space-

time description of collisions between electrically charged particles; however
there exist calculational successful infrared regularized momentum space recipes
for photon-inclusive cross sections. There is presently no spacetime understand-
ing of collision theory analogous to that provided by the LSZ scattering theory48

in case of models with mass gaps. The traditional point of view is that zero
mass interactions are simpler than their massive counterparts; but this refers

47The electromagnetic coupling and a parameter related to a quadrilinear scalar �eld cou-
pling.
48The large-time LSZ limits vanish for infraparticle �elds [39].
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to purely formal aspects of renormalization theory and ignores the physical-
conceptual problems. The latter point into the opposite direction.
The problems of infraparticles in QED [71] and con�nement in QCD still be-

long to the conceptual demanding unsolved problems of particle theory, whereas
the incorporation of renormalization problems of their massive counterparts can
be achieved by extension of the renormalization theory to the new SLF setting
in Hilbert space. Apart from some remarks at the end of the next section, the
construction of massless limits and new ideas to tackle the before mentioned
infrared problems will be left to a separate publication.
The de�ning �rst order stringlocal interaction density of massive scalar QED

L(x; e) = gA�(x; e)j
�(x) = LP + @�V� (51)

j� = '�
 !
@�'; V� = �j�

is according to (48) de-equivalent to its pointlocal counterpart LP . This secures
the e-independence of the �rst order S-matrix in the AE limit. In these equiv-
alences the stringlocal intrinsic escort �elds � which appears explicitly in V�
play an essential role. Whereas the �rst order relation is a result of the de�ni-
tion of a "stringlocal" interaction, the second order relation (48) is a nontrivial
restriction on the renormalization.
One de�nes a reference time-ordering T0 of two-pointfunctions of derivatives

of the complex scalar �eld ' by taking the derivatives outside the two-point
function e.g.

hT0@�'�(x)@0�'(x0)i = i
@�@

0
�

(2�)
4

Z
d4pe�ipx

1

p2 �m2 + i"

On the other hand the time ordering in Epstein and Glaser�s renormalization
approach permits delta function counterterms of the same scaling degree as the
integrand, for the present case

hT@�'�(x)@0�'(x0)i = hT0@�'�(x)@0�'(x0)i � aig���(x� x0) (52)

where a is a free parameter.
If we were to treat the de�ning �rst order interaction A�j� as involving a

pointlike A� �eld in the Krein space of pointlike massless vectorpotentials, the
interaction is renormalizable in the perturbative inductive Epstein-Glaser renor-
malization setting where it leads to two counterterms. The �rst counterterm
(52) appears in the second order tree approximation and amounts to a mod-
i�cation of the interaction through a second order contact term (all operator
products are meant to be Wick-ordered)

aA�(x)A
�(x)'�(x)'(x) (53)

with an independent coupling parameter a: There is an additional quadrilinear
counterterm with a coupling parameter of the form

b ('�(x)'(x))
2 (54)
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which appears for the �rst time in 4th order; these two counterterm exhaust
the possibilities of counterterm structures (primitively divergent contributions
in the Feynman graph setting), which means that the renormalized theory is
3-parametric.
To recuperate local oberservables acting in a Hilbert space (at the expense

of charge-carrying matter �elds which remain unphysical �elds in Krein space)
one has to extend the Krein space formulation by ghost operators as explained
in the previous section; in this way one arrives at the BRST gauge formula-
tion which �xes the parameter a in (53) to a numerical value a = 1 according
to the rules of a formal "gauge symmetry". By itself this term has no direct
physical interpretation apart from its role in the extraction of local observables
from an unphysical description. For the formal description and the perturbative
calculations of the two-parametric massive scalar QED one needs the full BRST
"ghost program", even though the physics is only contained in the small subal-
gebra generated by "gauge invariant" local observables. The gauge symmetry
is a technical trick and not a physical symmetry; in particular its spontaneous
breaking is physically meaningless.
In the SLF Hilbert space setting on the other hand, the second order with

the correct value of a is "induced" from the model-de�ning �rst order A �
j interaction; it is simply the result of the implementation of locality in Hilbert
space setting. No additional principle as gauge symmetry has to be invoked
in order to �x a to its correct numerical value; models QFT are realizations
of the foundational causal localization principle. The di¢ cult task is to trace
the richness of models back to di¤erent physical manifestations of this principle.
The induction mechanism exists only for higher spins s � 1; for lower spins the
renormalization theory is the well-known counterterm formalism of pointlike
interactions.
For the case at hand this is done as follows. From the results in the previous

section we know that the second order locality requirement for the S-matrix in
the presence of stringlike �elds amounts to the vanishing of the de operation on
the renormalized tree component

de(TA � jA0 � j0 � @�T�j�A0 � j0)1�con = 0 (55)

�Ae := de(T0A � jA0 � j0 � @�T0�j�A0 � j0)1�con = Ne + @
�Ne;�; A = Ae +Ae0

and a similar expression in which the unprimed and primed x; e are interchanged;
the total anomaly A from the one-contraction terms is simply the sum of the
two contributions. They originate from the divergence of propagators

@� hT0@�'�(x)@0�'(x0)i = �i@0��(x� x0) + reg (56)

@� hT0@�'�(x)'(x0)i = �i�(x� x0) + reg

where reg stands for the regular contributions which results from applying the
wave operator to the free �eld '�(x) inside the time ordering. The anomaly
contribution is not the only delta contribution, the T0LL0 also contributes since
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according to the minimal scaling renormalization rules we are forced to introduce
a counterterm (52) with an undetermined parameter a: According to the mini-
mal scaling rule of renormalization, the T0 passes to a T which contains a free
renormalization parameter a (52) whereas we keep T = T0 for ' propagators
with a lower number of derivatives. The T propagators also appear in the
'-contractions of the tree contribution TLL0j1�con: Instead of presenting the
lengthy but straightforward calculation of the N 0s we only present the result

N = 2�'�'A �A0; N� = �'�'(�A0� + �
0A�) (57)

where the � stands for �(x� x0):
By inspection one now realizes that the choice a = 1 in (52) leads to a

compensation of the N -anomaly with the normalization term from TLL0: The
N� contributes to the renormalization of the TV�L0 operator but does not
contribute to the renormalization of the second order S-matrix. As a conse-
quence of the identity de@�� = deA

� there are no delta anomaly- contribu-
tions from �-A� contractions. One obtains the expected second order quadratic
in A� contributions which in the gauge formalism results from imposing gauge
invariance

TLL0 = T0LL
0 + 2i�(x� x0)L2; L2 = 2'�(x)'(x)A �A0 (58)

S =

Z
(igL� 1

2
g2L2)� g2

1

2

Z Z
T0LL

0 + higher = ig

Z
L�

Z Z
g2

2
TLL0 + higher

The separate e; e0 dependence is a consequence of the independent directional
�uctuations i.e. reminder that e is not the gauge parameter of the noncovariant
axial gauge but rather the �uctuating string variable of a covariant stringlocal
potential. Since the anomaly contributions are Wick-ordered quadrilinear Terms
there is no problem with setting e = e0; the only problematic aspect is to
identify the e0s in propagators. In momentum space scattering amplitudes one
can always avoid the dangerous e-directions by choosing the e = e0 such that the
denominator in the propagator does not vanish. Then the formalism guaranties
that each contribution to a 2-particle scattering amplitude is well-de�ned and
their sum (the scattering amplitude) is the e-independent. of the sum of these
contributions is guarantied by the formalism (the string-independence of the
S-matrix).
In (58) the last equation has absorbed the L2 contribution into a rede�nition

of the T -product. This is a notational simpli�cation for tree contributions of
arbitrary high order which the gauge description does not suggest. As men-
tioned in (50) the SLF setting permits a "backdoor" construction of pointlike
interaction densities; their momentum space behavior corresponds to what one
expects from the pointlike counterterm formalism but, di¤erent from the latter
it introduces no new undetermined coupling parameters. For such computations
it is necessary to use the N� for the renormalization of the TV�L0 derivative
terms. This observation is restricted to pointlike interaction densities of arbi-
trary order but does not yet extend to �eld correlations; for the latter one has
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to extend the Bogoliubov S-matrix formalism, a step which is well-known for
pointlike �elds, but still needs to be elaborated for stringlocal �elds.
The structure of the de�nition (50) shares with the naive expression obtained

from second order pointlike perturbation theory the large momentum increase,
but the mass-shell restriction of the former leads to the cancellation of lead-
ing high momentum contributions which is the momentum space counterpart
of the on-shell peeling property in x-space. This di¤erence between o¤-shell
correlations and the on-shell lowering of the p-increase has no counterpart in
the pointlike Feynman formalism; as everything which is di¤erent from the stan-
dard pointlike formalism its origin is the powerful Hilbert space positivity which
starts to assert itself in massive s � 1 interaction; as such it is a completely new
phenomenon with no counterpart in the Krein space gauge setting.
The formalism suggest to de�ne the massless theory in terms of the zero

mass limit in the vectormeson mass of the correlation functions of the phys-
ical stringlocal �elds (using m n 1 as a natural covariant infrared cuto¤).
As in case of covariant gauges one expects an logarithmic infrared divergence
in the scattering amplitudes but not in the o¤-shell �eld correlations. Using
an old argument [74] of resumming leading logarithmic divergences one would
expect that the scattering amplitudes for charged particle scattering with a
�nite number of photons vanish in the m ! 0 limit just as in the pointlike
unphysical gauge setting. As in the old YFS paper this indicates that we should
not consider scattering amplitudes but rather use their infrared regularized re-
summation expression and only take the massless limit after having passed to
the photon-inclusive cross section. The plausibility and success of this prescrip-
tion is however no substitute for a foundational spacetime understanding of the
physics of "infraparticles" whose mass shell has been "sucked" into the con-
tinuum (i.e. converted into a milder cut-like singularity). For self-interacting
vectormesons the logarithmic divergenecies in the massless limit occur already
in the correlation functions (see last subsection).

7.3 Couplings to Hermitian �elds and the Higgs model

Although having no counterpart in classical theory, one may ask whether it is
possible to couple a massive vectormesons to a Hermitian scalar �elds H (a kind
of "charge-neutral" counterpart of massive scalar QED). A second order BRST
operator gauge treatment of such a situation which is suitable for a comparison
with our SLF setting has been given by the University of Zürich group ([58] and
references therein) and more recently in [60], It is appropriate to brie�y recall
their results before presenting the solution in the SLF Hilbert space setting. For
comparison it is helpful to reformulate their derivation in analogy to our Hilbert
space formulation [69].
The �rst order pair L, V� which corresponds to the lowest pointlike interac-

63



tion with a Hermitian �eld H is49 (�Scharf � m�)

LP = m(AP �APH + cH3) � L� @�V � with : (59)

L = m(A �AH +
1

2
A � (� !@ H)� m2

H

2
�2H + cH3 + u~uH)

V� = m(A��H +
1

2
�2
 !
@�H)

where the superscripts K on A�; �; L and V� have been omitted for notational
convenience (for the notation see (36)). The mass factor m (the vectormeson
mass) has been introduced in order to keep track of the overall "engineering di-
mension" den = 4. Even though the conceptual content of the Hilbert space ap-
proach is quite di¤erent from the gauge theoretical approach, there are close for-
mal correspondences between the di¤erential form de formalism with the BRST
nilpotent s-operation. Instead of starting with pointlike trilinear interaction LP

and converting it into an L and a divergence of a V� there is the more general
looking possibility to start with a trilinear Ansatz for a stringlike L̂ within the
power-counting restriction and �nd the correct L and V which ful�lls the string-
independence string-independence de(L � @V ) = 0 in a unique way (up to a
contribution in V whose divergence vanishes). We may call this the �rst order
"induction". Using this terminology, the sel�nteracting polynomial in H;� of
degree 4 which is induced in second order has the "Mexican hat" form [58].
This shows very clearly that it is induced from the implementation of the BRST
gauge invariance of an interaction of a massive vectormeson with a neutral
scalar �eld and has no relation with symmetry-breaking. There are only 3 kinds
of renormalizable interactions which involve massive vectormesons: interactions
with complex (charged) matter, with real (Hermitian) matter and among them-
selves. This leaves no place for an additional mysterious "symmetry-breaking"
interaction.
We now pass to the second order implementation of the BRST s-symmetry

(the operator form of gauge invariance in Krein space). The appearance of a
u~uH term, which only vanishes on Kers/Ims; has no counterpart in the SLF
setting; it simply does not occur in the Hilbert space setting. Again one com-
putes the anomalies of the one-contraction (1-c) contributions of the s operation
according to the rules (36) and compensates them with corresponding normal-
ization terms by choosing the free normalization parameter in TLL0 in such a
way that they match the well-de�ned anomalies in the sense of AE 50 , which
means that partial integration of contact terms are allowed. The them into
induced counterterms C which together with the T0-product de�ne the renor-
malized T-product

49A term AP @H2 turns out to be a total derivative since @AP = 0:
50 I.e. partial integration in anomaly terms are allowed.
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sAK = s(T0LL
0j1�c � @�T0V K� L0j1�c + (x ! x0))

AE
= s(C + C�)

with TLL0 = T0LL
0j1�c + C; TV�L

0j1�c = T0V�L
0j1�c + C�

y s(TLL0j1�c � TV�L)j1�c = 0

where the last relation results from absorbing the C 0s (obtained from the calcu-
lation of the anomalies) into the induced normalization terms as shown in [58]
(page 147) this leads to 4 induced delta function anomaly terms

L2 = AAH2 +AA�2 � 1
4
m2m2

H�
4 � 1

2
m2
H�

2H2 + cH3 + c0H4 (60)

Here the c0 is an additional coupling which, although still free in second order, is
needed for the compensation of anomalies in 3rd order which leads to the value
c0 = � 14

m2
H

m2 : In other words the Mexican hat potential is fully induced by the
gauge s-invariance of the S-matrix. There is no place for symmetry breaking
shifts in �eld space. The present calculation leaves open whether a possible
fourth order contribution (as in pointlike charged QED) with an undetermined
coupling strength will arise like those from box diagrams in the Feynman setting.
Again the sum of the local second order term g2

2 L2 is not physical by itself,
but the sum

1

2

Z
L2 +

1

2

Z Z
T0L(x)L(x

0) (61)

is the second order contribution to the gauge-invariant S-matrix. As in (58) the
form of the induced interaction L2 depends again on the de�nition of the T0
with which the anomalies were computed; and as in the previous case of scalar
massive QED one can absorb the quadratic terms in A in (60) into a change
T0 ! T: What remains is the quadrilinear H-� potential which together with
the A-independent terms from L1 can brought into the form of a Mexican hat
potential as shown in [58]. But here this is a result of a second order gauge
induction and not a de�ning property of a symmetry-breaking interaction; the
numerical parameters of induced potential do not introduce any new parameter,
they come out directly in terms of the masses and ratio of masses of the two
interaction de�ning �elds can simply the potential are ratios of the masses and
do not depend on any symmetry-breaking �eld shift parameter. The mechanism
of induced potentials starting from trilinear lowest order AAH interactions leads
to the second order Mexican hat potential.
Contrary to the destruction of gauge invariance by a numerical �eld shift in

the gauge-dependent �eld of scalar QED and subsequent adjustments in terms of
special gauges, the induced Mexican hat potential results from the preservation of
gauge invariance for the coupling of a Hermitian �eld to a massive vectormeson
using the BRST gauge invariance of the S-matrix through the relation sS = 0:
Since all operators are massive there are no infrared problems. As a result the
second order inductions of a Mexican hat potential from the implementation
of the BRST s gauge invariance is totally di¤erent from the introduction by
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hand of a Mexican potential whose purpose is the (impossible task) to break
the gauge symmetry in order to generate a mass. The work of the university
of Zürich group [58] [59] should have caused the ringing of bells with respect to
the Higgs issue, but it was ignored.
In the SLF setting the calculation proceeds in a similar fashion. The e-

independence �rst order argument results in

L = m(A � (APH + �@H)� m2
H

2
�2H + cH3) (62)

V� = m(AP� �H +
1

2
�2@vH)

Again the m factors keep track of the engineering dimension. Di¤erent from
the previous case there are o¤-diagonal propagators between A;AP and �: It
turns out that the best way to handle this problem is to use one AP instead
of only A0s; as long as the power-counting restriction dint � 4 is obeyed this
can be done. Apart from the absence of the u~uH term and the di¤erence in
normalization between the negative metric �K and the physical escort �eld �;
the algebraic steps of the implementation of second order string independence
in the spacetime de di¤erential form calculus are following the same steps as
those of the nilpotent s calculus. Therefore it is not surprising that also the
results are accordant. One expected di¤erence is the appearance of both e and
e0 in the Mexican hat potential; this is similar to the second order expression of
the previous massive scalar QED model. The appearance of in e; e0 asymmetric
term in addition to the symmetric Mexican hat contribution is however unex-
pected. This term vanishes on the diagonal e = e0: There is no problem to let
the directions coalesce in the Wick-ordered Mexican hat potential, the problem
is the propagator of the tree-component. For each momentum space region this
is possible by choosing the pair such that the denominator does not vanish.
This su¢ ces to insure that each contribution to the second order tree approxi-
mation is well-de�ned and by construction the result of adding up the various
contributions is independent of any e: The full second order contribution will
be presented in a joint paper with J. Mund [69].
The calculation in the stringlocal Hilbert space setting con�rms the results

of the BRST gauge setting. This con�rmation is important because the phys-
ical content of the gauge formalism is restricted to the gauge-invariant local
observables but the calculation of the S-matrix requires to go beyond those.
As mentioned before, it is not necessary to go through detailed calculation

if one only wants to see the inconsistency of the Higgs-mechanism with the
principles of QFT. From a conceptual viewpoint the fastes way is to argue that
couplings of massive vectormesons to any matter cannot produce conserved
currents with diverging charges (the spontaneous broken symmetry condition).
Their "Maxwell charge" is always screened and in case of only Hermitian matter,
the identically conserved Maxwell current is the only current. In zero order i.e.
for a free massive vectormeson one has

@�F�� = jMaxwell
� � m2AP� (63)

66



and higher order corrections can be computet by using the SBEG renormaliza-
tion theory for �elds. It is somewhat strange that the followers of the Higgs
mechanism did not at least check the zero order Maxwell current of a massive
vectormeson and verify that its charge is screened and not spontaneously bro-
ken. In the following table all possible situations related to conserved currents
have been collected

screening : Q =

Z
j0(x)d

3x = 0; @�j� = 0 (64)

spont:symm:� breaking :
Z
j0(x)d

3x =1

symmetry :

Z
j0(x)d

3x = finite 6= 0

In order to avoid any misunderstanding, the present critique is not directed
against discoveries made by metaphoric arguments; many discoveries, including
Dirac�s important idea of antiparticles, were based on incorrect models or the-
ories (the hole theory). Metaphoric observations are valuable placeholders but
start to be harmful if in due time they are not replaced by correct arguments
i.e. arguments which are compatible with the foundational principles of QFT.
The idea that QFT can say something about the masses of elementary particles
(masses of the interaction-de�ning �elds) is incorrect; its causality principles
are expected to determine masses of bound states which are interpolated by
composite �elds but for there description one still has to rely on methods of
lattice approximations.
The case of Goldstone�s spontaneous symmetry breaking is no exception.

The de�nition of a spontaneous symmetry breaking is the existence of a con-
served current whose charge (the would be generator of a symmetry ) can not
generate a symmetry because the integral over the zero component of the cur-
rent diverges. The Goldstone theorem says that this can only happen if the
energy momentum spectrum starts at zero; for sel�nteracting bosons its con-
tent is more speci�c in that there must be a zero mass Goldstone boson which
couples to the conserved current and prevents the convergence of the integral
over the zero component of the current for large distances. The shift in �eld
space is not the de�nition but only a mnemonic trick (a "pons asini") to �nd a
model of sel�nteracting scalar �elds whose �rst order interaction leads to such
a current; the intrinsic observable properties of such a situation (the correlation
functions) do not contain a �eld shift but only scalar �elds and their physical
masses. Nevertheless it is within the range of metaphorical tolerance to say that
"the shift breaks the symmetry". The problem with the Higgs mechanism is
that this metaphor created the idea if a spontaneous mass creation which is not
compatible with the structure of QFT.
The situation of coupling of massive vectormesons to matter is totally dif-

ferent. In that case there is the Schwinger-Swieca theorem which says that the
charge of the Maxwell current is screened and in the H-model this is the only
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current. This case involves s � 1 for which is known that the coupling of mas-
sive vectormesons in Hilbert space leads to nonrenormalizable interactions as
a result of violation of the power-counting bound for interacting d = 2 Proca
potentials. The trick for s = 1 is to use the BRST Krein space gauge setting
but this severely limits the con�able range of validity to the small subset of
gauge invariant obervables (the vacuum sector). The new Hilbert space for-
mulation requires to replace the pointlike by stringlocal vectorpotentials and in
this way secures the physicality of all operators; the important �eld operators
are stringlike. But it makes good sense to use stringlike operators to generate
particle states because the di¤erence between point-and stringlocal disappears
on the level of particle states; there simply are no point- and stringlike particles.
Di¤erent from the the Goldstone situation where the issue is the construction
of a �rst order interaction (in terms of free �elds which already have the masses
of the physical masses) and leads to a lowest order current with the Goldstone
properties, the lowest renormalizable order in the s=1 situation must be con-
structed according to the above L � @V requirement (the s respectively the
de invariance) whose validity must be insured in higher orders (the "induction"
mechanism). In both cases there appears a second order induced Mexican hat
potential, but in contrast to the Goldstone case this has no relation with a
symmetry-breaking �eld shift.
To playfully discover something important together with the correct and �nal

theoretical explanation is an unreasonable requirement on the discoverer (in this
case Peter Higgs), this is rather the responsibility of the particle theoreticians
who use the observation. Critique is the live-blood of any highly speculative the-
oretical research especially if it takes place on the frontiers of particle physics.
Interestingly a critical view was already around at the time of Higgs�discovery:
namely Schwinger�s suggestion that currents of massive vectormesons lead to
"screened charges" and Swieca�s subsequent proof which led him to the termi-
nology "Schwinger-Higgs screening" [77], see also [79]. Unfortunately these early
attempts were ignored and vanished in the maelstrom of time. Schwinger did
not mention that in massive gauge theories there are two currents: the Maxwell
current and the particle-antiparticle counting current which only coalesce in the
massless limit. For H-couplings there is no counting current and the coupling
disappears (decomposes into free �elds) in the massless limit.

7.4 Sel�nteracting massive gluons and remarks on con-
�nement

For abelian massive gauge theories in the SLF Hilbert space formulation there
are no structural theoretical reasons for enlarging the �eld content beyond the
matter �elds to which one wants to couple the massive vectormesons since its
escort �elds do not create any additional degrees of freedom. This is less clear
in case of sel�nteracting massive gluons. Although the arguments against the
consistency of the Higgs mechanism are generic (independent of the kind of vec-
tormeson interactions), there could be other consistency requirements coming
from the foundational modular localization properties in Hilbert space which
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make it necessary to introduce additional degrees of freedom. Present calcu-
lational attempts indicate that this is not the case to excludes such a strange
situation but the higher order calculations for massive Y-M interactions have
not been completed at the time of writing this article [78]. The new setting is
still in its infancy and one should wait for the dust to settle.
The escort �elds � �elds do not count in this balance since they are part

of the Hilbert space formalism for all higher spin interactions; they are already
present in the interaction-free case where they enter the relation between the
pointlike Proca potential and its stringlike sibling. The masses of self-coupled
massive vectormesons are totally independent and the mass of each escort is
equal to that of the stringlocal vectormeson which it escorts. On the other
hand the masses of coupled H-�elds are independent and (as all masses, except
for that of the A-dependent escorts which must be identical to the A masses)
are part of the interaction-de�ning free �eld content.
In the remainder of this subsection we will present the �rst order stringlocal

interactions which are obtaind from the de(L � @V ) = 0 argument which also
determines the �rst order pointlike interaction density LP with its dsd > 4
scaling degree. For simplicity we take the equal mass O(3) Y-M model. The
starting point is the reduction of the power-counting violating d = 5 dimension
pointlike interaction LP by peeling o¤ the highests dimension 5 and in this way
obtaining a d = 4 stringlike interaction density L

LP =
X

"abcF
��
a APb;�A

P
c;� = L� @�V�; or d"(L� @�V�) = 0 (65)

L =
3X
1

fabc
�
F��a Ab;�Ac;� +m

2AP�a Ab��c
	
; V� =

X
"abcF

��
a (Ab;� +A

P
b;v)�

c

(66)

Actually we could have started with the most general trilinear Ansatz for L̂ in
terms of A and �: Since there are 4 such terms, this Ansatz would contain 4
di¤erent types of yet undetermined f iabc; i = 1; ::; 4. We could have then asked
the question whether within this general Ansatz for L̂ there exists a V̂� such
that

de(L̂� @�V̂�) = 0 ? (67)

The only solution (up to additional divergence free contributions to V�) of this
requirement in the case of equal masses is the �rst line of (65). De�ning the
content of the bracket as LP we realize that the �rst order stringlocal S-matrix
is equal to the �rst order pointlike counterpart since the two di¤erent �rst order
interaction densities are adiabatically equivalent (the boundary term from the
divergence of V� vanishes in the adiabatic limit)Z

LP =

Z
L; LP

AE' L (68)

This is the beginning of an extremely restrictive induction mechanism which
has no counterpart in the nonrenormalizable pointlike s � 1 setting. For the

69



full Lie-algebra structure (65) one has to proceed to the induced second order
which will be done in [78].
These observations generalize those which were already made in the abelian

case in subsection 6.2; the locality principle together with Hilbert space pos-
itivity leads to restrictions between couplings which are analogous to those of
classical gauge theory (the geometry of �bre bundles). Here they are simply the
result of the Hilbert space positivity which for interactions which couple s � 1
�elds requires the use of string-localization. There is absolutely no need for
any support from the �bre-bundle setting of classical gauge theory; QFT does
not need any "crutches" from classical �eld theory such as those wich are pro-
vided by the classical-quantal parallellism of quantization. Any quantum �elds
obtained from covariantizing Wigner�s classi�cation of positive energy repre-
sentation of P can be coupled to a scalar density which de�nes the �rst order
interaction density of a QFT and in case its short distance dimension falls within
the power-counting range dsd � 4 the interaction density is on the best way to
de�ne a renormalizable model of QFT. The above "self-induction" mechanism
also works for unequal masses; in this case the f 0s depend also on mass-ratios.
The potentially most important consequence of the Hilbert space SLF for-

mulation is the promise of a profound insight into hitherto incompletely or not
understood infrared phenomena as "infraparticles" and con�nement. Concern-
ing the latter, the remarks one �nds in the literature do not go beyond the
statement that the perturbative expressions for the massless gauge-variant cor-
relations of gluon- or quark- �elds are infrared divergent and that this indicates
the breakdown of perturbation theory. But the behavor of pointlike gauge-
variant matter �elds in a BRST gauge setting is physically irrelevant; what one
needs is an understanding of the infrared property of massless limits of massive
stringlocal gluon correlations and the only way to do this js o¤ered by the SLF
formalism in Hilbert space (aparently this is outside the physical range of gauge
theory). One expects that all correlations vanish which contain besides point-
local composites also gluon/quark �elds; in fact this seems to be the only way
in which the localization principles of QFT can realize con�nement. Pointlike
physical �elds never lead to con�nement.
The infraparticle situation is slightly more accessible . The Yennie-Frautschi-

Suura (YSF) proposal (generalizing previous model calculations by Bloch and
Nordsiek) introduces an ad hoc infrared regularization " in terms of which the
scattering amplitudes involving charged particles are logarithmically divergent
for " ! 0: The leading logarithmic divergencies are then summed up to a
coupling-dependent power behavior containg factors �f(g) which vanishes for
�! 0: The vanishing of the scattering amplitude shows that the LSZ scattering
theory is not the correct concept for obtaining nontrivial scattering informa-
tion for "infraparticles"; in fact the presence of milder cut-type singularities
which replace the one-particle mass shell poles con�rm that such milder sin-
gularities cannot counteract the large-time dissipation of wave packets in the
LSZ time-dependent scattering theory so that one obtains zero for t!1: Low
order perturbative calculations also show that the vanishing can be prevented
by passing from scattering amplitudes to photon inclusive cross sections before
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letting �! 0: We would like to view this limit constructions as a perturbative
analog of the recent structural constructions of charge carriers in [81] [82].
Although both QED and Y-M gluons couplings lead to stringlocal �elds with-

out singular pointlike counterparts, their mathematical structure and physical
manifestations are very di¤erent. Interacting vectorpotentials in QED are in-
tegrals over pointlike observable zero mass �eld strength whereas this property
is lost in massless Y-M interactions. This implies in particular that massless
gluon strings cannot be approximated by local observables. Such objects are
inherently nonlocal in an irreducible sense. This severe nonlocality cannot oc-
cur in s < 1 models, even global objects as charges (integrals over pointlike
currents) can always be approximated by compact localized matter. The emer-
gence of Inherently noncompact �elds from collisions of ordinary matter would
create havoc with causality; this only can be avoided if they and their would-be
particles remain virtual objects whose use is necessary in order to formulate the
interaction density but disappear in the correlation functions. Con�nement in
the sense of vanishing correlation functions which contain in addition to point-
like composits also irreducible stringlike gluons solves this problem in a radical
way51 ;
The de�nition of interacting zero mass vectormesons as limits of their much

simpler massive counterparts in terms of their correlation functions from which
one may reconstruct the operator formulation accounts for the fact that the limit
represents an inequivalent representation in which the Wigner-Fock structure of
the Hilbert space is lost. Structures which are expected to be independent of
the mass, as the Callen-Symanzik beta-function �(g), should be computed in
the massive case since a direct perturbative derivation of the Callen-Symanzik is
not possible due to the presence of infrared divergencies. A derivation of the C-S
relations for stringlocal and hence renormalizable massive vectormesons should
be possible and provide a proof (and not just an argument based on additional
assumptions outside mathematical control52) of asymptotic freedom and in this
way place a closure on that old but un�nnished subject.
The above con�nement scenario presents an interesting contrast to another

kind of stringlocal matter: the QFT of Wigner�s zero mass "in�nite spin" posi-
tive energy representation class. Actually the understanding of the importance
of string-localization for the conceptual progress of QFT started with a paper
[46] in wwhich the main point was the presentation of the QFT behind this
mysterious 1939 Wigner representation. As a positive energy representation it
shares properties as the stability of matter and coupling to the gravitational �eld
with the massive and massless �nite helicity representations. It turns out that
the in�nite spin Wigner representations contains no pointlike covariant wave
functions at all and there are convincing arguments that the associated net of
local algebras admits no compact localized subalgebras generated by composite
pointlike �elds; such representations describe noncompact matter par excellence.

51Only quark-antiquark pairs separated by a �nite string can avoid con�nement since their
compact nature avoids the problem cause by noncompact matter.
52The argument that in deriving the callan-Symanzik equation one can separate low from

high momenta.
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Whereas gluon or quark matter cannot emerge from collisions of normal mat-
ter (which interacts in a compact region), Wigner�s noncompact free in�nite spin
matter, once it got inside our universe, cannot be registered in earthly particle
counters. In fact it is totally inert apart from gravitational manifestations [72].
This means that the presence of such inherent noncompact matter would change
the gravitational balance of normal matter in a galaxy. When Weinberg wrote
his book on QFT he rejected the in�nite spin matter because "nature does not
make use of it"; at that time its strange noncompact localization properties were
not yet known, apart from the fact that all attempts to describe this matter in
terms of pointlike covariant �elds had failed. Although its property of eluding
registration in particle counters would still cause stomachaches with high energy
physicists, it seem that astrophysicists should like such inert matter whose only
arena of action are galaxies.
It may be helpful for the reader to use again Galileo�s method of codi�cation

in terms of a dialog between Sagredo and Simplicio.
Sagredo: Dear friend Simplicio, are you still claiming that the Higgs mech-

anism is only a metaphor for the coupling of Hermitian (chargeless) scalar �elds
to massive vectorpotentials i.e. to the neutral analog of the massive scalar QED?
And would this mean that the mass of the massive vectormeson and the Her-
mitian Higgs �eld in the simplest (abelian) coupling does not originate from a
spontaneous symmetry breaking of the scalar two-parametric QED53 in terms
of a "�eld shift" (the "gauge-breaking" de�ning Mexican hat potential) ? Is
the picture of a distinguished particle whose interaction does not only create
the mass of the vectormeson but also its own mass (often referred to as the
self-creating "God particle") inconsistent with the principles of QFT?
Simplicio: This is more or less my point of view, but I would suggest to

look at the present situation in a historical context. History is more lenient,
in particular it explains how the protagonists of the "Higgs mechanism" were
led to their ideas within the prevalent Zeitgeist which dominated the post QED
particle theory. For a long time (and to a certain extend even nowadays) its was
believed that interactions of zero mass vectormesons are simpler than those in-
volving their massless counterpart (spinor or scalar QED) and that therefore one
should try to understand the massive interaction by starting from the massless
counterparts and think about ideas of how to generate masses.
Sagredo: But isn�t this true, are massless propagators and their use in

Feynman loop integrations not much simpler than integration involving massive
propagators; and above all isn�t "massive QED" nonrenormalizable because
any coupling of a massive vectorpotential (a Proca �eld) would lead to power-
counting violating interactions of short distance scale dimensions dint > 4?
Simplicio: Not quite, at least if you recall what QFT is about, namely to

understand particle theory in terms of the foundational localization principle of
QFT. The most basic structure of quantum physics is the Hilbert space posi-
tivity and this is violated in both cases. In QED the violation enters explicitly
53Di¤erent from spinor QED which only has one coupling parameter, the application of the

standard pointlike renormalization formalism to a scalar gauge coupling leads to an additional
quadrilinear selfcoupling of the matter �eld.
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through the use of pointlike massless vectorpotentials which only exist in inde�-
nite metric Krein spaces, and its massive counterpart is nonrenormalizable as a
result of the d = 2 Proca potential and only becomes formally renormalizable by
the use of a d = 1 potential (together with a negative metric scalar Stückelberg
�eld) in Krein space. The required formalism is the BRST gauge setting which
is somewhat more elaborate than the QED Gupta Bleuler formalism. In both
cases the physics is reduced to the vacuum sector which the gauge-invariant
observables generate by acting on the vacuum state. The BRST gauge for-
malism has great problems with formulas for charge-carrying physical matter
�elds; massive vectormesons interactions have a mass gap and therefore describe
theories within the Krein space analog of the Wigner-Fock particle space and
an Krein space S-matrix whereas the infrared aspect of zero mass interaction
are to a large degree not yet understood (con�nement, "infraparticles"). The
restrictive nature of the quantum gauge formalism (i.e. its limitation to the vac-
uum sector) is shared between the massive and massless case, but the infrared
problems from massless vectormesons come on top of these limitations.
Sagredo: Yet people compute scattering amplitudes, which certainly can-

not be obtained within the vacuum sector of gauge theories. How can one
understand this?
Simplicio; This is indeed a sore point of quantum gauge theory which has

no analog in classical gauge theory. Strictly speaking the S-matrix should be
computed from the LSZ limit of �elds, but there is a formalism which goes
back to Bogoliubov which represents the nth order S-Matrix in terms of formal
spacetime integrals over time-ordered products of the (�rst order) interaction
density. The Krein space gauge setting uses this formalism within the BRST
operator formulation and claims that the BRST condition sS = 0 in terms of the
nilpotent BRST s-operation insures that the resulting S lives in the Wigner-Fock
space of physical particles. But this requirement cannot be formulated within
the vacuum sector of the local observables, so the conceptual clarity remains
less than perfect.
Sagredo: All these problems arise because one tried to resolve the con-

ceptual clash between s � 1 pointlike interactions and Hilbert space positivity
at the expense of the Hilbert space in favor of keeping the pointlike �eld for-
malism for tensor potentials. Can one not take the other direction by letting
the Hilbert space positivity decide which is the tightest covariant localization
consistent with it?
Simplicio: Yes one can, provided one is prepared to make a new concep-

tual investment of the same caliber as that which led from the old (Wentzel,
Heitler) noncovariant perturbation theory to that of post wwII covariant QED
which included vacuum polarization (loop contributions). It turns out that the
clear answer to your question is to use covariant stringlocal �elds localized on
spacelike lines x + R+e: But this is much easier said than done, it amounts to
a nearly revolutionary change of QFT of almost all of its perturbative aspects
except of its causal localization principle which becomes strengthened. This is
not surprising because people did not opt for gauge theory because they were
unaware of the physical importance of Hilbert space positivity but rather as a
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result of lack of apparent alternatives. There were hints in what direction to
look at by Mandelstam and DeWitt but they consisted in the restriction of the
formalism to �eld and missed the point of the short distance improving use of
stringlocal potentials; others observed that the axial gauge is, together with the
noncovariant Coulomb gauge, consistent with Hilbert space positivity, but failed
to treat the e-variable as a �uctuating spacetime variable by assigning to it the
role of a gauge parameter which is the same in all �elds. This misunderstanding
caused serious renormalization problems of short- mixed with long- distances
which �nally led to the abandonment of this "gauge".
The correct unserstanding came in a roundabout way from the solution of the

localization problem related to the in�nite spin Wigner representation by meth-
ods of modular localization [23] [46]. The related free �eld theory turned out
to describe noncompact localized "stu¤": not only potentials but all covariant
�elds are stringlocal. From here arose the idea that all massless s � 1 free po-
tentials are covariant relatives in the Hilbert space of the noncovariant Coulomb
(radiation) representations. Though the price to pay in terms of localization is
surprisingly little since the smallest causally closed noncompact localization re-
gion is an arbitrarily narrow spacelike cone whose core is a semi-in�nite string,
to deal with the renormalization theory in Hilbert space of stringlocal �elds with
independent directional �uctuations is a quite unaccustomed new problem.
Physicists of the older generation as the principle protagonist of the BRST

formulation Raymond Stora knew perfectly that gauge theory is only a place-
holder for a still (up to recently) unknown Hilbert space formulation. They
certainly would have been surprised if the implementation of the extremely re-
strictive Hilbert space positivity does not lead to new insights outside the range
of gauge theory (a di¤erent view of the "Higgs mechanism", the ability of Y-M
interactions to exist without the classical �bre-bundle "crutches", a deeper and
more speci�cic understanding of what hides behind infrared divergencies as the
con�nement problem).
Sagredo: Are their any new physical concepts which have no counterpart

in the pointlike setting?
Simplicio: Yes there are several. One remarkable new aspect is the appear-

ance of "escorts" of stringlocal massive vectorpotentials; these are stringlocal
scalar Hermitian �elds � (one for each massive vectormeson). Its name refers
to the fact that (unlike a H-�eld) it has the same mass and the same coupling
strength as the vectormeson, but (also unlike the H) it does not add new degrees
of freedom to those which are already contained in the stringlocal vectormeson
i.e. it is a kind of "massive gluonium �eld". In the abelian Higgs model, whose
physical content in the Hilbert space SLF description is just the unique renor-
malizable A �AH coupling, this �rst order interaction density induces a second
order Mexican hat like potential inH and �: Naturally the numerical coe¢ cients
depend only on the ratio of the two masses of the massive A and the H: The new
Hilbert space SLF setting turns the Higgs mechanism from its hat to its feet:
instead of spontaneously creating masses with the help of a symmetry-breaking
Mexican hat potential the renormalizable interaction between massive A and
H �elds associated with a string-independent S-matrix induces a second order
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Mexican hat potential. Its form depends on the masses of the de�ning free �elds
from the requirement that the Hilbert space S-matrix should be independent of
the e0s ( i.e. it should be a kind of global counterpart of the local observables).
Whereas in the gauge setting any manipulation with gauge variant �elds or

associated particles outside gauge invariance has the risk of a move in a casino,
the Hilbert space SLF formalism is secured by the locality principle of QFT.
Starting with a symmetric zero mass theory and breaking gauge symmetries a la
Higgs, one has the impression that one does something very fundamental which
leads to the determination of masses with the help of using Weinberg angles to
describe the kind of symmetry breaking. But the disanchentment comes when
one realizes that the apparent symmetric start did not lead to a reduction of
parameters; one could as well have started with free �elds of di¤erent masses
and di¤erent couplings instead of using �eld shifts, Weinberg angles and other
parameters which one needs in order to bring the �rst order interaction-de�ning
�eld-content and its physical masses into the form needed for the start of renor-
malized perturbation theory and let the requirement of e-independence induce
a Mexican hat like potential. The idea that the spontaneously breaking of a
symmetry-restricted zero mass situation, although being in contradiction with
the conceptual structure of QFT, could at least serve as a mnemonic device
returns as a boomerang when it imposes on the acting particle theorist the duty
to assign to the H the role of a creator of all masses, including its own (the "God
particle") . This mnemonic device detracts the acting particle theoretician from
his real duty which is to treat the interaction of a massive vectormeson with
a Hermitian �eld according to the rules of operator BRST gauge invariance or
within the rules of the Hilbert space positivity preserving SLF setting. The
correct content of the Higgs model after liberating it from the metaphors is that
of a interaction between a massive (possibly self-interacting) vectormesons and
Hermitian �elds which. according to the rules of treating vectormesons, induces
a second order Mexican hat type H�self-interaction.
Sagredo: If it is that simple as you presented it, namely a kind of neutral

counterpart of the Maxwell theory of charged matter, why was such a coupling
not studied before Higgs?
Simplicio: Thinking in terms of quantizing Maxwell �elds coupled to charge-

carrying quantum-matter the generalization to massive vectormesons appears
natural; but the idea of coupling neutral (Hermitian) H-�elds is quite removed
from Lagrangian quantization of classical �elds54 , in particular since such "charge-
less" interactions are only possible with massive vectormesons and disappear for
m! 0 i.e. have no counterparts in classical electromagnetism. The �rst indica-
tions of what may be di¤erent with massive vectormesons came from Schwinger
[80] who suggested that in such a case the charge is "screened" (vanishes);
as a model which only exists in the screening phase he proposed the d=1+1
rigorously solvable "Schwinger model" [73]. In a subsequent structural (non-
perturbative) proof of charge-screening by Swieca [77] it became clear that in

54More precisely of classical �elds obtained by reading quantum �elds (Dirac spinor,..) and
their quantum symmetries back into the classical realm.
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couplings of massive vectormesons to complex matter there are two conserved
currents namely the identically conserved Maxwell current from the divergence
of the massive �eld strength j� = @�F�� and the particle-antiparticle counting
current of complex �elds; they only coalesce in the massless limit. Swieca em-
phasized that in case of a selfconjugate H-�eld the Maxwell charge (the only
conserved charged in the abelian Higgs model) is screened and not spontaneously
broken; for this reason he used the terminology Schwinger-Higgs mechanism in
his publications.
Unfortunately the Higgs mechanism of spontaneous mass generation was

proposed by several authors at the same time with identical computational
recipes involving �eld shifts in the gauge-variant complex �eld of scalar QED
so that the shared conceptual error was protected by the "many people cannot
err" dictum. Swieca�s sociologically futile attempts may serve as an illustration
that there was a well-founded early scienti�c criticism of these ideas, but this
could not change the tide and the beginnings of a correct understanding were
�nally lost in the maelstrom of time. After Glashow, Weinberg and Salam
supported the spontaneous symmetry breaking the Higgs issue became sealed
and the chance for a correct understanding within QFT evaporated.
Sagredo: Even if the "Higgs symmetry breaking" is only a metaphor for a

coupling of a Hermitian �eld to a massive vectormeson as you claim, couldn�t
it survive as a mnemonic trick which at the end more or less decribes what you
want ? If a metaphoric idea leads to results which later on �nds a derivation
for which every step is consistent with the principles of QFT, isn�t it justi�ed
to credit the discoveres? After all we attribute the discovery of antiparticles to
Dirac even though his hole theory was later recognized as being incorrect.
Simplicio: This is an important point, and yes they do deserve recognition

as in many other cases besides Dirac. In a science about foundational properties
of matter, the frontiers are often in a very speculative state and discoveries
via metaphors are helpful. But at the times of Pauli, Feynman, Lehmann,
Landau, Kallen, Schwinger, �t Hooft, Veltman, Jost,...none of the many less than
correct proposals which resulted from conceptual misunderstandings had the
chance to survive for more than a decade (SU(6), peratization,...). The valuable
discoveries, as those of renormalized perturbation of nonabelian gauge theories,
went through many re�nements; starting with �t Hooft and Veltman, passing
through Faddeev-Poppov, Slavnov and reaching the level of technical maturity
in the BRST formalism before the recent proposal of the use of stringlocal
potentials in a Hilbert space setting (which is still very much in its infancy)
again returned to it.
There are only two exceptions to the continuous unfolding of a discovery:

the 5 decades old discovery of String Theory (which has neither observational
nor theoretical credentials) and the Higgs mechanism which is the only experi-
mentally successful discovery which managed to survive for more than 4 decades
without any theoretical modi�cation . The (often well-founded) early critique
was unable to penetrate the thick protecive sociological layer of approval and
�nally vanished in the maelstrom of time. Present Big Science and a Nobel prize
guaranty that the issue will remain protected against scienti�c critique.
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To be more concrete, QFT is a foundational theory based on the quantum
adaptation of causal localization. Its perturbative implementation in the most
accepted (Bogoiubov) formulation is based on interaction-de�ning free �elds
and a �rst order interaction density. Hence the de�nition of a model includes
the masses of these �elds; renormalization theory insures that these masses are
identical to the masses of the observed particles which are considered elementary
within that model. QFT is not a theory which can say anything about masses
of the de�ning �elds. renormalized perturbation theory in its present stage is
not able to say something about bound states, for this task one presently uses
lattice approximations. In case of the massive vectormeson-H coupling one
only needs to write down the �rst order AAH coupling, the rest (which include
the second order "Mexican hat" shaped H-sel�nteractions) are induced by the
powerful BRST gauge conditions (the s-invariance of the S-matrix) or by the
even more powerful Hilbert space positivity condition in the new SLF setting
(the di¤erential calculus implementing string independence).
All the numerical aspects of the induced second order potential are �xed

in terms of the masses of the model-de�ning free �elds there is no place for
(gauge symmetry breaking??) �eld shifts etc. By ignoring the gauge aspects
of scalar QEF one can of course envisage a quasiclassical picture of how to
attain such a H-coupling, but at the latest when setting up the renormalized
perturbation theory involving a massive vectormeson one has to liberate oneself
from such pictures and follow the BRST rules of gauge theory starting with
the gAAH coupling of massive vectormesons to Hermitian scalar �elds and let
the BRST operator formalism do its job (the implementation of sS = 0) [58].
Otherwise one may overlook the fact that the Mexican hat potential is induced
in order g2 of the gauge-invariant S-matrix and depends on the two masses. Of
course one may re-construct from these two data the strength of a quadrilinear
selfcoupling of an imagined scalar QED and the gauge breaking shift paramter
in �eld space (also 2 parameters), but why does anybody want to construct
something, which is it best a quasiclassical image, if the �rst order is already
prepard for renormalized perturbation theory in the BRST setting . The price
can be only conceptual confusion since anybody who knows what the purpose
of gauge invariance really is, knows that it cannot be broken.
This is totally di¤erent from setting up perturbation theory of a Goldstone

spontaneous symmetry breaking. Here the starting point is the intrinsic def-
inition of spontaneous symmetry breaking. Contrary to popular opinion it is
not the shift in �eld space but the physical (observable) attribute of a a con-
served current whose charge (the would-be symmetry generator) diverges. A
structural theorem [76] says that this can only occur in the presence of a zero
mass Goldstone particle which wrecks the convergence of the charge for large
distances55 .
The task is therefore to �nd renormalizable couplings which illustrates this

55His Cargese lecture notes [56] on this topic are highly recommended since they reveal the
clarity and depth on which these issues were once understood. His profound knowledge about
spontaneous symmetry-breaking led him some years later to the "Schwinger-Higgs charge
screening mechanism" [77].
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phenomenon. One can try to do this by hand by �ddling with tri- and quadri-
linear multi-component scalar self-couplings, but a more convenient way is the
use of a �eld shift (it is just a trick and not the de�nition of spontaneous symme-
try breaking!) starting from a symmetric situation and the subsequent readjust-
ment of masses. In this case there is no gauge requirement which induces terms
(over which one has no control) and the conserved currents in both cases are
very di¤erent; the Maxwell current of a massive vectormeson (the only current
of the H-model) leads to "screened charge" Q = 0; whereas a spontaneously
broken symmetry manifests itself in terms of a diverging charge Q =1. Noth-
ing could be more di¤erent than that! The uni�cation of both phenomena under
the roof of spontaneous symmetry breaking is a conceptual misunderstanding.
Interacting massive gauge theories exist with arbitrary masses and in the

Hilbert space setting each massive vectorpotential is accompanied by its scalar
stringlocal escort � which carries the same mass. For equal vectormeson masses
(in particular for zero masses) the induction mechanism imposes a Lie-structure
on the self-couplings of vectormesons; solutions with completely independent
couplings mut equal masses would violate the Hilbert space positivity. H-�elds
may be coupled in addition, but their presence is not necessary for reasons
of theoretical consistency. There is no simple way to distinguish them from
possible massive gluonium states (colorless bound states of massive gluons). One
possibility is the existence of a massive gluonium bound-state (with whatever
quantum numbers �t the LHC observation) and to view the Y-M-Higgs particle
as a phenomenological description of such a situation; this would restore the
fundamental aspect which the H-coupling without a gluonium bound state does
not have. The QFT-incompatible Higgs mechanism was deceiving many people
to think that an alleged "mass creation" via spontaneous symmetry breaking
has a lesser number of paramters than starting the renormalized perturbation
theory right away with the physical masses; most of them are disappointed when
they realize that this does not reduce the number of undetermined parameter of
the Standard Model. The vectormeson-H-coupling and the (through gauge or
e-independence) induced second order contributions is more honest; it is clear
that the principles of QFT in their renormalized perturbative setting cannot
provide more.
Interacting zero mass vectormesons (QED, QCD) are outside the range of

the standard �eld -particle setting in a Wigner-Fock Hilbert space. In that
case one need to go the round-about way of computing appropriately infrared-
renormalized correlation functions of stringlocal vectormesons in the massless
limit and then reconstruct the operators using Wightman�s reconstruction the-
orem. One expects that the characterizing property of con�nement will be the
vanishing of correlation functions containing self-interacting massless stringlocal
gluon �elds.
Sagredo: In your new setting the stringlocal �elds 	(x; e) are renormal-

izable in the standard sense of the power-counting criterion, which in partic-
ular means that they are localizable in the sense of Wightman�s testfunction
smearing with Schwartz D functions in the (x; e) variables. On the other hand
you claim that your new stringlocal renormalization theory also allows to con-
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struct associated singular pointlike �elds whose short distance scaling degree is
unbounded (increasing with perturbative order) which explains their pointlike
nonrenormalizability in terms of their worsened localizations. Do these singular
pointlike �elds play any useful role?
Simplicio: Most of the intuition which comes with the de�nition of the

model in terms of a pointlike massive �eld interaction is preserved; in fact the
associated renormalizable stringlike interaction is obtained by "peeling-o¤ sur-
face terms" which carry the leading short distance singularities and hence do not
contribute in the adiabatic S-matrix limit. This has the interesting consequence
that the high-energy behavior of scattering amplitudes is better than that which
one naively reads o¤ in momentum space by going in a simple-minded way to the
mass shell from the Fourier transformed pointlike correlation functions. Hence
phenomenological arguments in favor of the presence of Higgs particles based
on the use of Feynman diagrams are not supported; the perturbative content of
s � 1 stringlocal interactions cannot simply be encoded into Feynman diagrams
(including contributions from counterterms). The intuitive appeal of pointlike
couplings is however completely lost in the massless limit; in that limit the
singular pointlike �elds disappear and the stringlike localization in QED be-
comes more sti¤ since di¤erent e-directions of the localization lines along which
infrared photons "hover" cease to be unitarily equivalent (spontaneous break-
down of Lorentz covariance in electrically charged sectors); this is the regime in
which the standard �eld-particle relation is lost.
QFT is presently undergoing signi�cant changes. There are several forth-

coming papers which promise to clarify the mathematical problems coming from
causal string crossings in addition to the already existing Epstein-Glaser renor-
malization theory for point-crossings. The development of these new ideas will
be slow because a lot of foundational knowledge about QFT has been lost.
Sagredo: I thank you dear friend for sharing your thoughts, and I hope that

your pessimistic assessment about particle theory in the shadow of Big Science
remains a warning and does not become a prediction about its future. It will
take some time to fully comprehend what you told me; lots of important issues
to think about lie before me before I will meet you again.//

8 The dual model, misunderstandings about par-
ticle crossing

The idea to avoid the use of singular �elds, which led to the problem of ultravio-
let divergencies, and instead formulate particle physics in terms of the S-matrix
goes back to Heisenberg. It was abandoned soon afterwards when the success
of renormalized perturbation theory in QED left no doubts that the conclusion
of inconsistency of QFT based on those divergencies was premature. The prob-
lem which perturbative methods had with strong interactions led to adaptation
of the Kramers-Kronig dispersion relations to particle physics. It was modest
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in scope56 but after a decade it came to closure by achieving all its objectives
(the only project in particle theory which came to a successful closure) which
included the support of the validity of the locality principle in the at that time
new high energy region.
This success encouraged several theoreticians to formulate a new constructive

S-matrix setting in which the perturbative analytic particle crossing property for
the S-matrix (and later formfactors) played the important role. Together with
unitarity and Poincaré invariance it became known as the "S-matrix bootstrap"
but it was soon abandoned as a result of the unmanageable nonlinear problems
arising from simultaneously implementing these three properties "by hand".
Without any demonstrable success it nevertheless enjoyed a lot of support even
by people who on di¤erent topics had been quite critical as e.g. Freeman Dyson.
A related problem was the insu¢ cient understanding of the conceptual origin of
particle crossing; its derivation from the locality principle for some very special
scattering amplitudes did not lead to su¢ cient insights, and the prohibitively
di¢ cult method of analytic functions [51] of several complex variables led to an
early end of these attempts.
Another attempt to obtain a constructive computational access to particle

theory in terms of an on-shell project based on S-matrix properties was formu-
lated by Mandelstam [28]. In analogy to the successful use of the Jost-Lehmann-
Dyson spectral representation which led to a rigorous proof of dispersion rela-
tion, Mandelstam postulated the validity of a double spectral representation for
the elastic scattering amplitude as a starting point for getting access to analytic
on-shell properties including the crossing property.
The era of genuine misunderstanding of particle crossing started with Veneziano�s

[83] construction (based on properties Euler�s beta function) of a meromorphic
function of two variables which had an in�nity of �rst order poles in the two
variables which were related by an analytic crossing relation. Although his
presentation did not contain any physical argument why this mathematically
constructed function which is meromorphic in variables which he identi�ed with
the invariant s,t,u variables (the "Mandelstam variables") should be related
with the elastic part of a scattering amplitude, his construction created a lot
of excitement within which a critical attitude had little chance. Apparently
the results on integrable models, which could have revealed that although scat-
tering amplitudes can be meromorphic in the rapidity variables but not in the
Mandelstam variables, were not known to the dual model community.
Instead of speculating about what went on the mind of peoples who excepted

Veneziano�s use of the dual model meromorphic function as an approximation of
an elastic scattering amplitude (to be improved by "unitarization"), it is much
easier to understand what kind of quantum �eld theoretic idea leads precisely
to such dual model function. This clari�cation is due to Mack [84], and his
construction is here referred to as the "Mack-machine"; this name is chosen
because it cannot only produce Veneziano�s dual model and similar dual models

56 Its main aim was to make sure that the causal localitity principle of QFT continues to be
valid at the energies of the newly emerging High Energy Physics.
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constructed later, but in a certain sense it can produce all dual models (all
crossing symmetric meromorphic functions57 in s,t,u).
The construction uses conformal global operator expansions for pairs of oper-

ators which, in contrast to the Wilson-Zimmermann short distance expansions,
are known to converge

A(x)B(y)
 =
X
k

Z
d4z�A;B:;Ck(x; y; z)Ck(z)
 (69)

hA1(x1)A2(x2)A3(x3)A4(x4)i ! 3 different expansions (70)

and applies them to all pairings inside the 4-point function (second line). Each
pair of operators has a converging expansion on the vacuum in which the result-
ing operators Ck stand for a list of composites which can be connected with the
given pair through nonvanishing conformal 3-point functions �: Used inside the
4-point function, this leads to three di¤erent ways of decomposing the 4-point
function into a sum over two three-point functions multiplicatively connected by
an integrattion over the z-variables. Mack showed that the Mellin transform of
this in�nite sum over C 0s leads precisely to the pole representation of the mero-
morphic functions which de�ne dual models; the position of the �rst order poles
is given in terms of the spectrum of scale dimensions of the C 0s which couple to
the pairs. Veneziano�s model corresponds to a certain chiral conformal model,
but any conformal 4 point function in any spacetime dimension upon expansion
of its 4-point function and Mellin transformation of the resulting series always
leads to a dual model in the sense of de�ning a meromorphic function with �rst
order poles which ful�lls a crossing relation where the set of contributung poles
is (up to a shared factor) a subset of the anomalous dimension spectrum of the
conformal theory. What initially looked magic and unique58 in the hands of
Veneziano, is now "mass-produced" by the Mack-machine; demysti�ed in this
way nobody would identitify this construction with that of a scattering ampli-
tude.
Graphically the relation is reminiscent of an identity between two types of

in�nite sums over Feynman graphs with particle exchanges either in Mandel-
stam�s s or t variable but, as the underlying conformal QFT shows conformal,
there is no conceptual relation to scattering of particles. A scattering functions
cannot be meromorphic in the Mandelstam variables but, under special circum-
stances (integrability) it is meromorphic in the rapidity variables. Conformal
theories are interesting quantum �eld theories from which one can learn a lot
about the inner workings of the modular localization properties, but they cer-
tainly contain no information about scattering of particles; in fact interacting

57Even in the simplest context of integrable models elastic crossing symmetric scattering
amplitud are not meromorphic in the Mandelstam variables (but rather in the exponential
"rapidity variables")
58The uniqueness, which was already expected to be follow from the bootstrap principles,

was a precursor of the reductionist idea of a theory of everything (TOE) which originated in
connection with ST.
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conformal models contain no particles at all, they are rather theories of anom-
alous scale dimensions which live on a covering of the compacti�ed Minkowski
space. Mellin transforms of their 4-point functions may be called dual models,
but this has no bearing on interactions between particles. It does not make
sense to apply ideas of unitarization to them as if they would de�ne a kind of
nonunitary approximation of an S-matrix.
This could have been the end of a misunderstanding and the closure of

this unfortunate chapter of misguided particle; in fact it probably would have
been the end if not an even stranger twist would have greatly increased the
mysterious aspects and with it the attractiveness of ST. This consisted in the
observation that the oscillator algebra resulting from the Fourier decomposition
of a certain chiral 10-component conformal current algebra formally related to
supersymmetric version of the Polyakov action

Z
d�d�

X
�=�;�

@�X�(�; �)g
��@�X�(�; �); �; � = t� x (71)

X = potential of conformaL current j

permits a positive energy representation of the Poincaré group which decom-
poses into a discrete in�nite sum of irreducible representation (an in�nite (m; s)
"tower"). This action is conveniently formulated on the oscillator variables ob-
tained by Fourier transformations after the standard circular compacti�cation
of conformal theories.
The construction of such a tower (an in�nite component �eld �elds) from

an irreducible algebraic structure was one of Majorana�s project which he for-
mulated in 1932 with the idea to achieve something similar to what the O(4,2)
group representation theory does for the hydrogen atom spectrum in QM; of
course he did not think in terms of conformal constructions. This project was
revived in the 60s when it acquired some popularity under the name "dynamic
in�nite group representation project" (Fronsdal, Barut, Kleinert,..[85]). In fact
Majorana�s project as well as its later revival restricted this search to irreducible
representations of extensions of the Lorentz group. The only known solution up
to date is the representation on the irreducible oscillator algebra of the supersym-
metric 10 component current algebra, the so-called superstring representation of
the Poincaré group. This is a group theoretic fact which, although discovered by
string theorists, has no relation to Mandelstam S-matrix based on-shell project.
To understand in a more generic way the prerequisites one need to encounter

the representation of a noncompact group as a kind of internal symmetry group
on the component space of a multicomponent chiral conformal algebra, it is
helpful to be reminded of same basic fact of LQP in which inner symmetries
arise from the local net of observable algebras in the vacuum representation. The
inequivalent local representation classes (superselection sectors) can in typical
cases be combined with the vacuum representation within a larger �eld algebra
net [8]. There are convincing arguments why a continuous set of superselection
sectors (in the presence of zero mass particles as QED one must pass to charge-
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classes [81]) and noncompact internal symmetries of the �eld algebras cannot
occur in higher than two dimensions. The superselection analysis is however
very di¤erent in d=1+1 dimensions and such cases do occur; in fact the abelian
chiral current models are examples.
As an illustration let us look at a n-component current algebra

�k(x) =

Z x

�1
jk(x); hjk(x)jL(x0)i � �k;L (x� x0 � i")�2 (72)

Qk = �k(1) ; 	(x; ~q) = " : ei~q
~�(x)" : ; carries ~q � charge

Qk ' Pk; dim(ei~q
~�(x)); ~q � ~q ' p�p�; (dsd; s) � (m2; s)

Here we have substituted the confusing notation X (71) in favor of � for the
multicomponent current potential because we want to avoid a notation which
may suggest the wrong idea of an operator which embeds a chiral conformal the-
ory on a lightray (or on its compacti�ed circle) into a n-dimensional Minkowski
spacetime so that its development in time it looks like a 2-dimensional surface
(a tube, in case of a chiral theory on a circle). This picture of a covariant
string generating a spacetime tube-like world-sheet is incorrect inasmuch as it
is incorrect to think that the classical covariant particle Lagrangian

p
ds2 leads

to a covariant quantum embedding described in terms of a covariant operator
xop� (�): In fact Lagrangian quantization is the wrong guide; there simply exists
no covariant position operator whose spectral projectors ful�ll the requirements
of covariant localization. Wigner was well aware of this limitation when he con-
structed relativistic particles by representation theory and not by quantization.
In the book on string theory by Polchinski he used this classical relativistic

particle Lagrangian as a "trailer" for presenting a relativistic quantum theory
of strings based on the Nambu-Goto action which replaces the ds2 under the
square root by the corresponding covariant surface di¤erential. Hence instead
of being helpful, this analogy turns out to be a squid load. The quantization
of the Nambu-Goto Lagrangian according to the correct rules for quantization
in the presence of re-parametrization invariance resembles that of quantizing
the Einstein-Hilbert action; It is certainly non-renormalizable and has no nat-
ural relation to the Poincaré group which acts on the embedding Minkowski
spacetime [86]. There is another approach to the square root N-G Lagrangian
which is due to Pohlmeyer [87]; it is based on the observation that the classical
system is integrable. So instead of confronting the problem of quantization of
reparametrization-invariant actions which inevitably leads to renormalization
problems, he proposes to quantize the Poisson relations between the in�nitely
many conserved "charges". The problem with this quantization is that one
looses the connection with localization in spacetime and Poincaré covariance.
On the other hand the Polyakov Lagrangian has a direct relation to chiral

conformal QFT, so one believes to be on conceptually safe grounds. Here the
problem is that the representation of the irreducible oscillator algebra behind
the operator formalism (72) which serves for the representation of the Poincaré
group (and the ensuing intrinsic localization concept which comes with positive
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energy representation of the Poincaré group [23]) is not the same as the one
which localizes the chiral model on the lightray. With other words the Hilbert
space representations of the oscillator algebra are not equivalent. The charge
spectrum of the chiral theory is the whole Rn and the sigma-model �elds 	
in (72) are the charge carriers. On the other hand the spectrum of the rep-
resentation of the Poincaré group is contained in the forward light cone and
has mass gaps. The the spectrum of the zero mode multicomponent charge
operator covers the full spectrum of the charge superselection structure. The
treacherous nature of the analogy between the mass spectrum and the conformal
dimensional spectrum

P�~Q�: P
2~Q2 (73)

y m2~dscaLe

is overlooked by string theorists. These analogies become even more seductive
if one realizes that a particular discrete particle representation of the Poincaré
group (the superstring representation) does appears on the oscillator algebra of a
10 component supersymmetric current model (unique up to a �nite discrete "M-
theoretic" variation). But what has this group theoretic coincidence between a
spectrum of a discrete Poincaré group representation on the oscillator algebra
of a supersymmetric 10-component abelian current to do with Mandelstam�s
S-matrix project? The answer is nothing beyond the appearance of crossing
symmetric analytic functions. Nevertheless the group theoretic content of this
relation is interesting from a historial viewpoint because it is the only known
solution of the 1932 Majorana project to �nd an irreducible algebra which carries
a purely discrete representation of the Poincaré group.
In distinction to the string-localization of matter �elds interacting with vec-

torpotentials in previous section, the representations occurring in the super-
string representation are pointlike generated. This was precisely what the cal-
culations of the (graded) spacelike commutator of the putative string-�elds by
string-theorists in the 90s showed [88][89]. The situation is somewhat confusing
as a result of the fact that the distribution representing the in�nite component
quantum �eld is extremely singular since the localization points of all pointlike
components fall on top of each other. It is an interesting historical question why
the string community agreed with the authors that the localization is string-
like (a point on an invisible string?). Looking back with some hinsight, the
dual model and string theory are certainly the most curious results from an
epoch in which conceptually unguided calculations combined with sophisticated
mathematics was expected to lead to a uni�ed theory of everything (a TOE).
Historians of science will have a lot of problems to understand the related Zeit-
geist, but the almost 50 years lasting popularity (longer than the phlogiston
theory) will leave them no choice but to try to explain to a curious public what
really went on in the minds of people.
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9 Localization and phase-space degrees of free-
dom

In a course on QM one learns that the number of "degrees of freedom" (quantum
states) per unit cell of phase space is �nite. Already in the beginning of the 60s it
became clear that this not compatible with the causal localization in QFT. The
�rst computation revealed that the in�nity is not worse than that of a compact
set [90] which in later work of Buchholz and Wichmann became sharpened to
the cardinality of a nuclear set [8]; together with modular localization theory it
led to the important concept of modular nuclearity [8].
The physical motivation of these investigations is the desire to understand

the connection between �eld localization and the presence of particles; in partic-
ular the circumstances under which the causal localization properties of quan-
tum �elds lead to particles with discrete masses including the important prop-
erty of asymptotic completeness59 . One remarkable result in the more than
eight decades lasting attempts to prove the existence of models of QFT with
interactions, and in this way obtain mathematically controlled approximations,
is the before mentioned existence proof for certain strictly renormalizable in-
tegrable models. Such models are characterized in terms of their factorizing
S-matrices which permits a classi�cation in terms of matrix-valued 2-particle
scattering functions (section 6). In that case one knows the particle structure
and one would like to �nd the net of local algebras and the their generating
quantum �elds whose collision theory reproduces the known particle content.
The S-matrix determines the structure of the wedge algebras. In order to ob-
tain a nontrivial net of compact localized double cone algebras one can use the
aforementioned modular nuclearity property of phase space degrees of freedom
which follows from the analytic properties of the scattering functions.
On the positive side these models have a realistic short distance behavior as

one expects it from renormalizabity, i.e. they are not superrenormalizable as
polynomial self-interactions between scalar dsd = 0 (logarithmic divergent short
distance behavior) �elds in two dimensions60 . The fact that integrability in QFT
can only be achieved in d=1+1 did not a¤ect their usefulness as a "theoretical
laboratory" of QFT. The existence of these models can be controlled with the
help of "modular nuclearity" [34].
Another important use of these ideas consists in the exclusion of models

with unphysical causality properties. Lagrangian quantization seems to lead
inevitably to divergent renormalized perturbative series, and hence it is not
suited for addressing problems of existence of models. It is however important
to maintain the formal causality properties of Lagrangian quantization in the
better mathematically controlled LQP setting of QFT. Whereas the spacelike
Einstein causality property is easily taken care of, the relevance of the causal
completion (causal shadow) property is sometimes overlooked. One reason is

59The equality of the Hilbert space with a Wigner-Fock particle space.
60The d=1+1 superrenormalizable theory can still be treated within a measure-theoretic

functional quantization setting [36], no use of modular localization properties is needed.
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that this quantum counterpart of causal propagation cannot be formulated in
terms of individual �elds; its precise formulation needs the algebraic setting as
in section 4.
It is easy to write down generalized free �elds which ful�ll Einstein causality

but violate the causal completeness property (the local version of the old time-
slice property [37]). A recent illustration of a violation of this important physical
property is the conformal covariant generalized free �eld which results from a
normal free �eld on a AdS spacetime through the mathematical AdSn+1-CFTn
isomorphism [91]. The physical defect of �elds which violate the causal com-
pleteness property is that they lead a "poltergeist e¤ect" in the causal shadow
region; as one "moves up" from the spacetime region O into its causal com-
pletions O00 there are causality violating degrees of freedom apparently coming
from nowhere.
The LQP setting reveals that this physical defect is of a general nature and

may be viewed as a manifestation of the holistic nature of spacetime localiza-
tion. As the holistic nature of life needs the right amount of chemicals, the
holistic nature of causal localization in spacetime needs the right cardinality of
degrees of freedom which is appropriate for causal localization. Starting from a
physical AdS theory, one obtains an "overpopulated" CFT model which leads
to the mentioned poltergeist phenomenon. In the opposite direction a "physical
healthy" CFT passes to an "anemic" AdS theory which does not have enough
degrees of freedom which are needed for a nontrivial realization of causality; in
the case at hand one has to go to noncompact spacetime regions in order to �nd
at all any degrees of freedom [49].
It is interesting to note that this pathology is absent in holographic pro-

jections onto null-surfaces; unlike in isomorphic correspondences, holographic
projections "thin out" (loss of imbedding information) degree of freedom by the
right amount which �ts the lower dimensional surface.
A similar phenomenon happens in case one passes to a "brane" by �xing

one spatial; as Mack showed [84], the overpopulation in a brane causes even
problems to distinguish spacetime- from inner- symmetries. Brane physics has
been exclusively discussed in terms of quasiclassical approximation where these
pathologies remain hidden.
It is interesting to take a closer look at a special misinterpretation which

played an important role in ST. As mentioned before, the irreducible oscillator
algebra of the 10 component chiral current admits two inequivalent represen-
tations, one which is important for the invariance under the conformal Möbius
group and the pointlike localized �elds on a lightray, and the other which carries
the mentioned 10 dimensional superstring positive energy representation of the
Poincaré group. Both representations are pointlike generated; this is a property
shared by all positive energy representations (with the exception of Wigner�s
in�nite spin representations). But there is a huge di¤erence in the cardinality
of freedom; the oscillator representation carries the superstring Poincaré group
representation, but certainly not the superstring �eld representation which is
canonically associated with it and hence it is not possible to view the one as
embedded into the other. The misplaced terminology "ST" which refers to a
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stringlocal object in a target spacetime is the result of incorrect picture.
At best this terminolgy could refer to an internal oscillator chain (after

taking out the zero mode degree of freedom) "over" a spacetime localization
point which carries the (m; s) representation as well as additional operators
which are not needed for the representation of the Poincaré group, but interlink
the di¤erent levels of the (m,s) tower and in this way secure the embedding of
the reducible supersting representation of the Poincaré group into an irreducible
algebra. Such a tower of free �elds piling up over one point leads to pointlike
singularities which are beyond those of ordinary (Wightman) QFT even though
each individual component is an ordinary free �eld. Perhaps this could have
been the reason why, despite their correct calculation, the authors in [89][88]
presented their result as a con�rmation of stringlike spacetime localization by
declaring the localization point to be the center point on a spacetime string.
The pressure of the ST community (to which the authors obviously belong)
may have contributed to draw such misguided conclusions against Heisenberg�s
notion of quantum observables from a correct computation.
As previously mentioned the embedding of lower dimensional QFTs into

higher dimensional ones and its Kaluza-Klein inverse are also inconsistent with
the holistic localization principle. Arguments based on quasiclassical approx-
imations or by "massaging" Lagrangians do not help on issues which directly
relate the cardinality of degrees of freedom with quantum causal localization.
What would have helped in such a situation is a mathematically controlled argu-
ment in terms of correlation functions and not the "massaging" of Lagrangians.
Interestingly there are situations in which the cardinality of degrees of free-

dom of the higher dimensional theory is thinned out as to match the adequate
cardinality of the lower dimensional situation; one such situation is the holo-
graphic projection of a QFT onto one of its null-surfaces [31]. It is the thinning-
out aspect of a projection (instead of an degrees of freedom preserving isomor-
phism) which is important for such an adjustment.
It is also conceivable that certain aspects of compactifying a spacetime di-

mension can be formally achieved by converting time into temperature through
application of "thermalization" via a compacti�cation through a kind of pe-
riodicity on a circle whose radius decreases with increasing temperature. For
models of QFT which permit an Osterwalder-Schrader "euclideanization" one
could think of changing one rectangular into a circular coordinate and procure
the time-coordinate by analytic continuation. Strictly speaking, the holistic
aspect of quantum matter in QFT does not support a separation between quan-
tum matter and its spacetime properties (this is di¤erent in QM which does not
possess an intrinsic notion of localization and where one has to de�ne one of
the canonical operators to be a interpreted as a position operator. Spacetime
is imprinted on quantum matter and Kaluza-Klein reductions and embedding
are only possible in quasiclassical approximations to which the holistic relation
between localization and degrees of freedom does not apply. The necessary
knowledge about thts conceptual structure of QFT was not around at the time
of Kaluza and Klein; the conceptual structure of QFT in those days was often
naively identi�ed with that of its quasiclassical approximations.
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These insights into the connection between the cardinality of degrees of free-
dom and localization immediately disproves the Maldacena conjecture which
claims that both sides of the AdS5-CFT4 represent physical theories. It also del-
egates "brane physics" "extra dimensions", "dimensional reduction" and many
other ideas which originated in the same state of mind about particle physics as
ST ("shut up and compute") to the dustbin of history, except that in this case
history is still very present and to get particle theory back on track will still
take generations. As a coauthors of a 1962 paper [37] which led to the concept
of the causal completion property (which later on was related with the degree of
freedom issue [8] it is particularly distressing to look at the present situation in
which globalized communities of particle theorists have fallen behind previously
attained levels of knowledge about important concepts and where historical ig-
norance even leads to million dollar prizes; good for the recipients but bad for
the future of particle physics.
Sagredo: Dear Simplicio, some of our friends tell me that you claim that

the dual model and ST led to a derailment of an important part of particle
theory?
Simplicio: Although my attitude with respect to those attempts concerning

a "theory of everything" has been indeed very critical, I have good reasons to
avoid expressing my critique in this way. What prevents me is the fact that I
share the goals of an S-matrix-based alternative to the quantization approach.
Hence criticizing a certain unfortunate direction which this has taken in the
form of string theory should not be misunderstood as a dismissal of the aims of
the project.
After the successful closure of the dispersion relation project it seemed nat-

ural to look for a setting in which the analytic properties derived from the
relativistic causality of QFT can be extended in such a way that they may
be used for dynamical calculations in particle physics. So instead of starting
with quantized �elds and deriving properties of interacting particles (scattering
amplitudes, formfactors), why not start directly with objects referring to par-
ticles and address the problem of whether these results can be backed up by
a more foundational QFT to a later stage. It is customary to refer to such a
particle-based construction as an "on-shell" projects and to quantum �eld based
approach as "o¤-shell" since scattering amplitudes and formfactors are formally
related to mass shell restrictions of Fourier transforms of �eld correlations: Dif-
ferent from the o¤-shell project of QFT for which one will know the physical
content of the model-de�ning �eld theoretic interaction only at the end of the
calculation, the on-shell particle-based project is a "top-to-bottom" setting in
which the physical properties are laid out before one starts to work one�s way
down to the �eld theoretic description.
The problem is of course that our conceptual/mathematical understanding

works best on the level of the foundational causal localization principles of quan-
tum �elds, whereas it is di¢ cult to directly convert the apparent immediteness
of observed particles with the help of analytic properties of scattering ampli-
tudes into concrete predictions. Whereas the foundational properties of �elds
lead to analytic properties of o¤-shell �eld correlations, it is extremely hard to
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extract from them on-shell analytic properties. Even in perturbation theory
where the graphical aspects of crossing properties are obvious, the proof that
there is an analytic on-shell path which relates a scattering amplitude to its
crossed counterpart is anything but simple. Stanley Mandelstam, one of the
protagonists of an on-shell project, knew that on-shell analytic properties be-
yond those which were needed for the derivation of the particle analog of the
Kramers-Kronig dispersion relations are hard to get at. His proposal of the
Mandelstam double spectral representation for the elastic scattering amplitude,
was guess and not a derivation from the causality principles. It was Venezianos
guess of a dual model and its later conversion into string theory which led to
the derailment of Mandelstam�s project.
Looking back at that epoch with today�s hindsight it is clear that there was

no chance for such a project to succeed at that time. An important aspect of
the S-matrix which tightens its link with the causality principle of local quan-
tum physics was still missing namely the fact that the S-matrix, in addition of
describing the collision of particles, is also a relative modular invariant of the
wedge algebra A(W ): For integrable models of QFT, a property which unfortu-
nately is limited to d=1+1 and which forces the S-matrix to be purely elastic,
the on-shell project has a unique solution; in this case one can really start from
the classi�cation of S-matrices and arrive at a unique integrable QFT which
is associated to that integrable S-matrix. Even without integrability there are
some ideas, but due to the complexity of the problem there has been no signif-
icant progress.
Sagredo: But how was string theory related to Mandelstam�s on-shell

project and what was its impact ?
Simplicio: Mandelstam realized that an on-shell approach to particle the-

ory idea must start with a profound understanding of the analytic crossing
property of scattering amplitudes of which the elastic part is the simplest. As a
starting point he postulated a two-variable representation which became known
under the name "the Mandelstam representation". Unfortunately no crossing
symmetric solution of this representation was found.
In order to understand the next step one needs to recall a bit of the spirit of

the times. When a seemingly well-de�ned but nonlinear problem did not admit
any solution this was sometimes taken as a hint that if the problem admits any
soiution at all, this should be rather unique. This was the view about solutions
of the nonlinear Schwinger-Dyson equations and this was not di¤erent in case
of the nonlinear bootstrap project. It may nowadys appear naive, but the idea
that Poincaré invariance, unitarity and the crossing property lead to a unique
S-matrix (a TOE apart from gravity) had a strong spell on many people. and
even prominent physicists as Freeman Dyson supported it for some time.
When Veneziano, while playing with properties of Euler beta functions,

found a meromorphic crossing symmetric functions with an in�nite family of
�rst order poles, there was a lot of commotion in the phenomenologically mo-
tivated particle theory community. Veneziano�s proposal to view it as a model
of an approximation (it was not unitary and had no elastic cut) to a crossing
symmetric scattering amplitude received widespread acceptance and also Man-

89



delstam�s blessing. Nowadays we know that such functions occur in models of
conformal QFT and have no relation to scattering amplitudes. When the use of
the dual model functions in scattering theory was �nally given up, the reason
was not the existence of a conceptual �aw but rather the fact that new ex-
perimental results removed the phenomenological basis for the interest in such
models. This was the end of the Mandelstam on-shell project but not that of
the dual model formalism. The new idea was that Veneziano�s mathematical
dual model observations were anyhow too sophisticated for strong interaction
phenomenology and one should �nd a more foundational application. This was
the birth of string theory which pushed the somewhat modi�ed dual model for-
malism from its application to strong interactions all the way up to the Planck
scale; in this way it became the millenniums TOE.
Sagredo: But doesn�t this mean that string theory rid itself from the im-

possible relation to Mandelstam�s on-shell project? How does this �t in with
your belief that ST a failed theory?
Simplicio: The 10 dimensional free superstring is a second quantized version

of the so-called superstring representation. This is a positive energy Wigner
representation on the irreducible operator algebra associated with a certain
supersymmetric 10-component abelian chiral current algebra. One has all the
right to be surprised about the existence of such a representation since it is the
only known entirely discrete positive energy representation on an irreducible
algebra; representations on �eld algebras coming from QFT inevitably have the
continuous contribution from scattering theory. It is the �rst and only known
solution of Majorana�s 1932 problem [92] to �nd an irreducible algebra which can
support an in�nite component discrete positive energy Wigner representation
(an "in�nite component �eld equation"). This group theoretic problem was
solved by the string theorists construction of the "superstring representation" on
the algebra of the supersymmetric 10-component abelian chiral current model;
this is their achievement.
Sagrado: But what about strings in spacetime ?
Simplicio: The terminology "string theory" is misleading since the super-

string �eld creates states which decomposes into irreducible pointlike generated
irreducible Wigner components. The only positive energy Wigner representa-
tions which are genuinely stringlocal are the massless in�nite spin representa-
tions but they are absent in the superstring representation. Since the relation
between states and �eld operators in case of linear (free) �elds is unique, the
pointlike nature of states passes immediately to the �elds. By projecting states
on �nite invariant energy subspaces one can explicitly see that the "string" �eld
is the singular limit of pointlike ordinary �elds.
There is an important philosophical message which these failures reveal. In-

dependent of how theoretical discoveries are obtained, the aim must always be
to understand them as a realization of physical principles. String-localization
cannot be based on similarities of an in�nite (m; s) tower spectrum with that of
a quantum mechanical chain of oscillators; causal localization is a totally intrin-
sic property of local quantum physics and the concept of modular localization
expresses this fact in its conceptual/mathematical most concise form.
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Of course what we consider to be a foundational principle is subject to future
re�nements. The idea of �nding a TOE by playing mathematical games is not
the way in which the material world reveals itself to us. Such a theory is its
own principle whereas all our experience shows that the real interesting part of
nature is that it o¤ers a wealth of di¤erent realizations of its principles.
The explanation of why the popularity of a TOE reached its peak at the

turn of the millennium will be problem for historians of science. As the phlo-
giston theory, string theory lasted too long in order to be overlooked in the
history of physics. Whereas the phlogiston theory was abandoned as a result
of contradictions with measurements, the contradictions of string theory with
existing principles of particle physics were always present for anybody with a
strong conceptual awareness. The �nal word about its legacy is up to historians
of science.
My dear Sagredo, at this late hour I propose to close our dialog.//

10 Resumé and concluding remarks

QFT provides particle theory with an important conceptual structure: the
causal localization principle. It results from the amalgamation of the Faraday-
Maxwell-Einstein classical causality with the operator-algebraic formulation of
quantum theory in Hilbert space. Its conceptual strength is matched by its
concise mathematical formulation: the adaptation of the Tomita-Takesaki the-
ory of operator algebras in the form of modular localization. One reason for
submitting the present work to a history/philosophy oriented physics journal is
the fact that this new framework of QFT sheds additional light on a famous
debate in the history of QFT namely the dispute between Einstein and Jordan
which �nally led Jordan to the discovery of QFT. Its main message concerning
the vacuum-polarization caused statistical mechanics nature of the spacetime-
restricted vacuum has sometimes been misinterpreted in terms of the quantum
mechanical particle-wave duality [4].
The new modular localization-based formulation removes the alleged space-

time string-localization from string theory and shows that such models are spe-
cial examples of in�nite component pointlike �elds. It reveals the conceptual
origin of the particle crossing property and explains the solvability of integrable
models in terms of the simplicity of generators of modular-localized wedge al-
gebras. It suggests to construct nonperturbative QFTs by starting from the
modular structure of wedge algebras and obtain compact localized operator al-
gebras in terms of intersections of wedge algebras.
The enormous conceptual range of modular localization unfolds in numerous

applications. In certain cases this led to clashes with existing results and their
interpretation. This happened in particular with ideas which originated in string
theory as dimensional embeddings and reductions (the use of Kaluza-Klein ideas
outside of (quasi)classical approximations) and Maldacena�s incorrect claim that
the mathematical AdS-CFT isomorphism can be used to relate two causally
localized QFTs in di¤erent spacetime dimensions.
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On the constructive side it led to a deeper conceptual understanding of the
limitations of BRST gauge theory and a how to overcome them in a new Hilbert
space setting of stringlocal �elds. This in turn led to a demysti�cation of the
Higgs mechanism and its alleged symmetry-breaking Mexican hat potential in
terms of massive vectormesons coupled to Hermitian (instead of complex) �elds
and their induced second order interactions. The new Hilbert space setting of
interacting higher spin �elds leads in particular to the new concept of stringlocal
Hermitian "escort �elds" which in the case of s = 1 are in many aspects Higgs-
like, except that they appear as an inexorable part of the massive vectormesons
rather than independent scalar �elds to be coupled to massive vectormesons.
This new concept has no counterpart in the pointlike gauge setting and therefore
cannot be adequately described in the terminology of pointlike �elds.
These theoretical results present a new meeting ground of ideas coming from

foundational local quantum physics with problems arising from the observation-
oriented research on the Standard Model. It does not exclude Higgs couplings
but it denies the existence of a Higgs mechanism of mass creation by symmetry
breaking.
An unsolved problem of at least comparable importance is the derivation of

gluon/quark con�nement from the QCD coupling. As explained in the text, the
problem amounts to establish the vanishing of all correlation functions which
contain stringlocal gluon or quark operators in the limit of vanishing gluon
mass61 ; where the stringlike nature results from the very restrictive Hilbert
space positivity, which was not available in the Krein space gauge setting. Us-
ing the vectormeson mass m as a natural covariant infrared cuto¤ and the fact
that the m ! 0 limes comes with logarithmic divergencies, one expects to be
able to prove this by resumming the leading long distance log terms in per-
turbation theory. The computation with stringlocal covariant �elds should be
similar but somewhat more complicated than the well known (extended) YFS
calculation for the scattering amplitude in massive QED.
The purpose of this article has been accomplished if it succeeds to draw

attention to the enormous unifying power of modular localization for problems
of QFT and particle physics.
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