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The understanding of the sector structure of the physical state space in quantum field
theories with long range forces, such as quantum electrodynamics, is a longstanding
problem. Recall that a superselection sector is a subspace of the physical Hilbert space
of all states of finite energy on which the local observables act irreducibly. So the global
superselection observables have sharp values in a sector and the superposition principle
holds unrestrictedly there; states in different sectors cannot coherently be superimposed,
however. The presence of long range forces leads to an abundance of sectors which carry
the same total charge, but differ by multifarious clouds of low energy massless particles
which are formed in collisions of the charged particles. In computations one frequently
copes with this problem by some ad hoc selection of sectors, e.g. by picking a convenient
physical gauge, and by summing over undetected low energy massless particles. This
method provides physically meaningful results but it is conceptually unsatisfactory, for
it breaks Lorentz invariance and does not allow the effects of local operations on states
to be studied since these do not respect the splitting of the massless particle content
into a soft and a hard part because of the uncertainty principle. Celebrated results of
quantum field theory such as the PCT theorem, the spin and statistics theorem, collision
theory and the determination of the global gauge group from the sector structure, cf. [1],
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therefore do not apply to these theories.
These conceptual difficulties, which are frequently subsumed under the heading “in-

frared problems”, have received considerable attention in the past, cf. the respective
sections in the monographies [1, 2, 3] and references quoted there. In spite of progress on
some of its aspects a fully satisfactory solution has not been accomplished to date and,
in fact, may never be accomplished along those lines. The infrared problems originate
from the unrealistic idea that theory ought to describe experiments in arbitrary regions
of Minkowski space which in principle would allow the sectors of infrared clouds to be
discriminated. Yet, as a matter of principle, there are no such experiments, so one should
not worry about them. Indeed, taking the spacetime limitations of realistic experiments
into account, a fully consistent and comprehensive description of the properties of phys-
ical states in theories with long range forces was recently established in [4] within the
algebraic framework of quantum field theory [1]. We outline here the basic ideas and
main results and refer to [4] for precise statements, proofs and further references.

The recent resolution of the infrared problems is based on the insight that the arrow
of time should already enter in the interpretation of the microscopic theory. To avoid
misunderstandings: the arrow of time is not explained, it is taken into account in the
theory as a fundamental empirical fact. Realistic experiments are performed in finite
spacetime regions. Beginning at some spacetime point a one performs preparations of
states and measurements until sufficient data are taken. In principle, subsequent gener-
ations of experimentalists could continue the experiment into the distant future. Thus
the maximal regions where data can be taken are future directed lightcones V with apex
a whose boundaries are formed by lightrays emanating from a. On the other hand it is

a

time

space

Experiments take place in future directed lightcones V

impossible to make up for missed measurements and operations in the past of the initial
point a. The choice of this point is completely arbitrary, one could take for example
the birthday and birthplace of Aristotle who invented the term physics (φυσικη); we all
know about this event and reside in the corresponding cone. Or one could take the time
and place where the funding of an experiment was approved. What matters is that data
in the past of a need not or cannot be taken into account. Phrased differently, it suffices
for the comparison of theory and experiment to consider the restrictions of global states
to the observables which are localized in a given lightcone V .
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We are using here the Heisenberg picture, where the spacetime localization is encoded
in the observables. The algebra generated by the observables localized in a given space-
time region R is denoted by A(R) and the C*–algebra of all local observables by A.
The global states of interest are described by positive, linear and normalized expectation
functionals ω : A → C. Their restrictions ω � A(V ) to the subalgebras generated by the
observables in a given lightcone V contain only partial information about the ensembles
and are therefore called partial states.

In theories of exclusively massive particles the algebras A(V ) are known to be irre-
ducible in each sector, hence complete information about the global states can be recov-
ered from the partial states by means of the theory. The situation is markedly different,
however, in the presence of massless particles. This is so because outgoing massless
particles (radiation) created in the past of a produce no observational effects in V in
accordance with Huygens’ principle. As a consequence, infrared clouds cannot sharply

���
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A

Outgoing massless particles created in the past escape observations in V

be discriminated by measurements in a given lightcone V (all partial states carrying the
same total charge are normal with respect to each other). Moreover, the algebras A(V )
are highly reducible. As a matter of fact, their weak closures A(V )− in the vacuum sector
are factors of type III1 according to the classification of Connes.

Whereas the infrared clouds appearing in the states cannot sharply be discriminated
in any lightcone V , their total charge can be determined there. This follows from the
fact that charges are tied to massive particles which eventually enter V , unless they are
annihilated or created in pairs carrying opposite charges. These considerations suggest
abandoning the concept of superselection sectors of states and replacing it by the coarser
notion of charge classes, which combines an abundance of different sectors. Making use
of the topologically transitive action of inner automorphisms on the normal states of type
III1 factors, established by Connes and Størmer, this idea has been formalized as follows.

Charge classes: Let ω1, ω2 be pure states on the global algebra of observables A. The
states belong to the same charge class if, for given lightcone V , there exists some unitary
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The total charge carried by massive particles can be determined in any V

operator W12 ∈ A(V ) such that ω2 � A(V ) = ω1 ◦ AdW12 � A(V ) or, more generally, if
the norm distance between these partial states can be made arbitrarily small for suitable
unitaries W12.

Thus the partial states within a charge class can be transformed into each other
by physical operations which are described by the adjoint action of unitary operators
localized in the lightcones. It can be shown that the definition of charge classes does
not depend on the choice of lightcone V ; moreover, the corresponding partial states are
factorial (primary), i.e. all charges which can be determined in V have sharp values
within a charge class.

In order to determine the structure of the charge classes of interest one has to under-
stand their mutual relation. In this context it is meaningful to view the lightcones V as
globally hyperbolic spacetimes which are foliated by hyperboloids (time shells) playing
the role of Cauchy surfaces; thus within V spacelike infinity is formed by its asymp-
totic lightlike boundary. Given V , one can proceed from the partial states in the charge
class of the vacuum state ω0, carrying zero global charge, to partial states in any given
charge class by limits of local operations in V . These operations may be thought of as
creation of pairs of opposite charges on some given time shell and the removal of the

time

space

�

time

space

Charge creation by creating pairs and removing the unwanted charge
within a hyperbolic cone C

unwanted charge on this shell to spacelike infinity; it thereby disappears in the spacelike
complement of any relatively compact region in V and thus cannot be observed anymore,

IAMP News Bulletin, October 2013 9



Detlev Buchholz

leaving behind a charged partial state in V . In order to control the energy required for
these operations one has to localize them in broadening hyperbolic cones. A hyperbolic
cone C is a convex cone on a time shell in the sense of hyperbolic geometry; its causal
completion in V is denoted by C and called hypercone. These considerations can be put
into a mathematically precise form as follows.

Charge creation: Given a charge class, there exists for any hypercone C ⊂ V a sequence
of inner automorphisms {σn = AdVn}n∈N which are induced by unitary operators Vn ∈
A(C) such that the strong limit σC

.
= limn σn exists pointwise on A(V ) in the vacuum

sector and the partial states ω0 ◦ σC � A(V ) obtained by composing the vacuum state
with the limit maps belong to the given charge class.

The resulting limit maps σC : A(V ) → A(V )− are linear, symmetric and multiplica-
tive, i.e. they are homomorphisms mapping the algebra A(V ) into its weak closure A(V )−

in the vacuum sector H. Instead of enlarging this (separable) Hilbert space so as to in-
clude charged states it is more convenient to fix H and to regard the homomorphisms
as charge-carrying representations of the observable algebra A(V ) on this space. Their
basic properties are summarized in the following proposition.

Proposition 1: Given a charge class, let C ⊂ V be any hypercone and let σC : A(V ) →
A(V )− be a corresponding homomorphism defined as above. Then

(a) σC � A(R) = ι (the identity map) if the regions R ⊂ V and C are spacelike
separated.

(b) σC (A(R))− ⊆ A(R)− if C ⊆ R.

(c) The homomorphisms (representations of A(V )) σC1 , σC2 attached to any given pair
of hypercones C1, C2 ⊂ V are unitarily equivalent.

Points (a) and (b) encode the information that the homomorphisms arise from lo-
cal operations in the hypercone C and are a consequence of the locality of observables
(Einstein causality). Point (c) expresses the fact that the sectors of the infrared clouds,
which are inevitably produced by charge creating operations, cannot be discriminated by
observations in V . In analogy to the terminology used in sector analysis, the maps σC
are called (hypercone localized) morphisms. We restrict attention here to the simplest,
physically important family of charge classes where in part (b) of the proposition one
has equality of the respective algebras. Then one obtains for the weak closures of the
observables in the charged representations the equality σC(A(V ))− = A(V )−, so these
algebras are again factors of type III1. In view of the transitivity theorem of Connes and
Størmer mentioned above it is therefore meaningful to assume that the morphisms in
point (c) of the preceding proposition are related by unitary intertwiners in A(V )−. We
summarize these features for later reference.

Simple charge classes: A charge class is said to be simple if for each hypercone C ⊂ V
there exist corresponding (simple) localized morphisms σC such that

(i) σC (A(R))− = A(R)− if R ⊇ L
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(ii) for any pair σC1 , σC2 there exist corresponding unitary operators (intertwiners)
W21 ∈ A(V )− such that σC2 = AdW21 ◦ σC1 . We write in this case σC1 � σC2 .

The analysis presented in [4] covers the case of these simple charge classes and thereby
the physically most important example of the electric charge. It provides complete results
with regard to the problem of charge conjugation, statistics, covariance and the spectral
properties of these classes in analogy to sector analysis in massive theories [1]. Similarly
to sector analysis, one has to rely on a maximality condition for the hypercone algebras,
called hypercone duality:

A(C)� ∩A(V )− = A(Cc)− , A(Cc)� ∩A(V )− = A(C)− ,

where Cc denotes the spacelike complement of C in V and a prime � at an algebra
denotes its commutant in B(H). Roughly speaking, this condition says that the hypercone
algebras cannot be extended without coming into conflict with Einstein causality.

It is an important consequence of hypercone duality that equivalent morphisms which
are localized in neighboring hypercones C1, C2 have unitary intertwiners which are con-
tained in A(C)−, where C is any larger hypercone containing C1 and C2. Making use of
this fact and locality one can extend the morphisms from their domain A(V ) to larger
algebras (as morphisms). Based on these extensions, the following result describing the
structure of simple localized morphisms has been established in [4].

Proposition 2: Let σC1 , σC2 be simple morphisms which are localized in hypercones C1
and C2.
(a) The (suitably extended) morphisms can be composed and there is for any given

hypercone C some simple morphism σC localized in C such that σC1 ◦ σC2 � σC.

(b) σC1 ◦ σC2 � σC2 ◦ σC1 . If σC1 , σC2 belong to the same charge class there exists a
corresponding intertwiner ε(σC1 , σC2) ∈ A(V )− which depends only on the given
morphisms.

(c) For each charge class there exists a statistics parameter ε ∈ {±1} such that for
any given pair of morphisms σC1 , σC2 in this class which are localized in spacelike
separated hypercones C1, C2 one has ε(σC1 , σC2) = ε 1.

(d) For each simple charge class there exists a simple conjugate charge class such that
for any morphism σC in the given class there is a corresponding morphism σC in the
conjugate class satisfying σC ◦ σC = σC ◦ σC = ι. Moreover, the conjugate class has
the same statistics parameter as the given class.

According to item (a) the simple charge classes can be composed (the charges can be
added) and the composite classes are again simple. Item (b) says that the order of factors
in the composition does not matter, one always ends up in the same class. According to
(c) the states in each charge class have definite (Bose, respectively Fermi) statistics. It is
encoded in the statistics parameter which is the value of the group theoretic commutator
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of cone–localized charged field operators resulting from the morphisms. Item (d) says
that for each simple charge class there is a simple conjugate class of states carrying
opposite (neutralizing) charges with the same statistics. Finally, items (a), (b) and (d)
imply that the equivalence classes of simple morphisms determine an abelian group with
product given by composition and unit element ι. Its dual is the global (abelian) gauge
group generated by the simple charges. Since these results do not depend on the choice
of V , these physically important data can be determined in any lightcone, in contrast to
the superselection sectors of the infrared clouds. Thus the elusive theoretical effects of
these clouds completely disappear from the discussion by taking into proper account the
limitations on real experiments imposed by the arrow of time.

In the analysis of the covariance and spectral properties of the simple charge classes
one is faced with the problem that the spacetime symmetry group, the Poincaré group
P↑

+, does not leave any lightcone invariant. One therefore considers for given V its

sub–semigroup S↑
+ = V + � L↑

+, where L↑
+ is the group of proper orthochronous Lorentz

transformations leaving the apex of V fixed and V + the semigroup of future directed
timelike and lightlike translations. This semigroup acts by endomorphisms on V and
induces corresponding endomorphisms α · ofA(V )− which transform the local observables
in accordance with the underlying geometric action, i.e. αλ(A(R)−) = A(λR)− for all
regions R ⊂ V and λ ∈ S↑

+. The following characterization of covariant morphisms is
appropriate in this situation.

Covariant simple morphisms: Let σ : A(V ) → A(V )− be a simple morphism. (In
order to simplify notation its localization hypercone will be omitted in the following.)
The morphism is said to be covariant if there exists a family of equivalent morphisms
{λσ : A(V ) → A(V )−}λ∈S↑

+
with 1σ = σ and a strongly continuous family of unitary

operators λ �→ Γλ ∈ A(V )− such that αλ(Γµ) are intertwiners between λµσ and λσ for

λ, µ ∈ S↑
+.

The morphisms λσ describe a situation where the charge created by σ is in addition
shifted by λ. The idea that this transport of charges can be accomplished in a covariant
manner enters in the condition that the unitaries Γµ inducing the transport from σ to
µσ are mapped by the action of the semigroup to operators αλ(Γµ) which induce the
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transport of the shifted charges, i.e. from λσ to λµσ. The properties of the covariant
morphisms are described in the following proposition established in [4].

Proposition 3: Let the lightcone V be given and consider the subfamily of all simple
hypercone localized morphisms σ : A(V ) → A(V )− which are also covariant.

(a) The subfamily is stable under composition and conjugation.

(b) Each morphism σ determines a unique continuous unitary representation Uσ of (the

covering of) the full Poincaré group �P↑
+ = R4 � �L↑

+ such that

AdUσ(λ̃) ◦ σ = σ ◦ αλ , �λ ∈ V + � �L↑
+ ,

where �λ �→ λ is the canonical covering map from the covering group to the Poincaré
group.

(c) spUσ � R4 ⊂ V +, i.e. the joint spectrum of the generators of spacetime translations
satisfies the relativistic spectrum condition.

This result shows that the covariant morphisms describe the physically expected prop-
erties of elementary systems in a meaningful manner. There is for each given charge
class and lightcone V an (up to equivalence) unique continuous unitary representation of
�P↑
+. Thus, restricting observations to lightcones one does not encounter the spontaneous

breakdown of the Lorentz group, met in Minkowski space, and can interpret the genera-
tors of the representation as energy, angular momentum, etc., of the underlying partial
states. The energy is bounded from below, expressing the stability of the charged states.
We mention as an aside that this feature is inherited from the vacuum sector where this
property holds by definition since the vacuum is a ground state for all inertial observers.
It has to be noticed, however, that the generators of the time translations should not be
interpreted as genuine observables in the presence of massless particles since in that case
they are not affiliated with the algebra of observables A(V )−. This can be understood
if one bears in mind that part of the energy content of the global states will be lost by
outgoing radiation created in the past of V . Phrased differently, the energy content of the
partial states on A(V ) is fluctuating, and the generators of the time translations subsume
this effect in a gross manner, akin to the generators (Liouvillians) in quantum statistical
mechanics.

So, to summarize, the notorious infrared problems in the interpretation of theories
with long range forces originate from the unreasonable idealization of observations cover-
ing all of Minkowski space. Observations and operations are at best performed in future
directed lightcones, hence the arrow of time enters already in the interpretation of the
microscopic theory. The restriction of global states to the observables in a given light-
cone V amounts to a geometric infrared regularization. Instead of splitting the massless
particle content into an energetically soft and a hard part, it is split into a marginal part
which escapes observations in V and an essential part which can be observed and manip-
ulated in V but which does not allow discrimination of infrared sectors. This splitting is
compatible with the Lorentz symmetry and Einstein Causality and therefore allows the
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statistics, charge conjugation, covariance and spectral properties of the charge classes to
be determined. The general method established in [4] covers so far only simple charges
related to an abelian gauge group, such as the electric charge. But work in progress
indicates that it may be improved so as to apply to all charge classes.
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