
A soft-photon theorem for the Maxwell-Lorentz
system

Wojciech Dybalski
Zentrum Mathematik, Technische Universität München,

E-mail: dybalski@ma.tum.de

Duc Viet Hoang
Fakultät für Physik, Ludwig-Maximilians-Universität München

E-mail: V.hoang@physik.lmu.de

Abstract

For the coupled system of classical Maxwell-Lorentz equations we show
that the quantities

F(x̂, t) = lim
|x|→∞

|x|2F (x, t), F(k̂, t) = lim
|k|→0

|k|F̂ (k, t),

where F is the Faraday tensor, F̂ its Fourier transform in space and x̂ := x
|x| ,

are independent of t. We combine this observation with the scattering theory
for the Maxwell-Lorentz system due to Komech and Spohn, which gives the
asymptotic decoupling of F into the scattered radiation Fsc,± and the soliton
field Fv±∞ depending on the asymptotic velocity v±∞ of the electron at large
positive (+), resp. negative (-) times. This gives a soft-photon theorem of
the form

Fsc,+(k̂)−Fsc,−(k̂) = −(Fv+∞(k̂)−Fv−∞(k̂)),

and analogously for F, which links the low-frequency part of the scattered ra-
diation to the change of the electron’s velocity. Implications for the infrared
problem in QED are discussed in the Conclusions.

1 Introduction

It is well known that a formal application of the Noether theorem to the global U(1)
symmetry of QED gives conservation of the electric charge. It is less well known
that a similar reasoning applied to the local gauge symmetry ensures conservation
of the spacelike asymptotic flux of the electric field1

φ(n) := lim
r→∞

r2n · E(nr), n ∈ S2. (1.1)

1A heuristic argument can be found in https://en.wikipedia.org/wiki/Infraparticle.
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The relevance of such asymptotic quantities for qualitative understanding of in-
frared problems has been known for long [Bu82]. Intriguing relations between
asymptotic symmetries, soft-photon theorems and memory effects, recently pointed
out by Strominger, led to a revival of interest in this subject (see [St17] for a re-
view). Thus there is every reason to advance rigorous mathematical understanding
of asymptotic constants of motion in classical and quantum electrodynamics.

In this paper we prove the existence of a large family of asymptotic constants
of motion, including (1.1), for a classical system of coupled Maxwell-Lorentz equa-
tions, also known as the Abraham model (see Section 2). This system describes
one (spatially extended) electron interacting via the Lorentz force with the electro-
magnetic field. The existence and uniqueness of solutions for this model and the
long-time asymptotics was clarified by the works of Komech and Spohn [Sp,KS00]
which provide the basis for the present investigation. These authors emphasized
the role of the traveling wave (or soliton) solutions, which have the form

(E(x, t), B(x, t), q(t), v(t)) = (Ev(x− q − vt), Bv(x− q − vt), q + vt, v), (1.2)

where E,B, q, v denote the electromagnetic fields, the position and velocity of the
electron, respectively. Ev and Bv are concrete functions which can be obtained by
minimizing the total energy of the system at fixed momentum. Of course, Ev=0 is
simply the Coulomb field of the electron at rest. For arbitrary |v| < 1 we have (in
Fourier space)

Êv(k) =
−ik + v(v · ik)

|k|2 − (k · v)2
eϕ̂(k), (1.3)

where eϕ ∈ C∞0 (R3) describes the charge distribution of the electron. For suffi-
ciently small e and suitable initial data Komech and Spohn showed that

lim
t→±∞

‖E( · , t)− Ev(t)(· − q(t))− Esc,±( · , t)‖L2(R3) = 0, (1.4)

where the scattered radiation fields Esc,± satisfies the homogeneous Maxwell equa-
tions. The existence of the asymptotic velocities of the electron v±∞ = limt→±∞ v(t)
is an important intermediate result from [Sp,KS00].

Let us now describe in more detail the findings of the present paper. Under
slightly more restrictive assumptions than Komech and Spohn, we show that

E(x̂, t) = lim
|x|→∞

|x|2E(x, t), (1.5)

depends only on x̂ := x/|x| and is a constant of motion. That is, if the limit exist
for t = 0 then it exists for arbitrary t ∈ R and has the same value. Clearly, the
spacelike asymptotic flux of the electric field (1.1) inherits the properties of E. For
the discussion of infrared singularities it is convenient to have a counterpart of
(1.5) in momentum space. We introduce

E(k̂, t) = lim
|k|→0

|k|Ê(k, t), (1.6)
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which is a constant of motion in the same sense as E. We verify that it has a
decomposition

E(k̂,±t) = Esc,±(k̂) + Ev±∞(k̂), t ≥ 0, (1.7)

which reflects the asymptotic decoupling in (1.4) for the two time directions.
Hence, due to the conservation of E we obtain the following variant of the soft-
photon theorem

Esc,+(k̂)− Esc,−(k̂) = −(Ev+∞(k̂)− Ev−∞(k̂)) (1.8)

which links the low-frequency part of the scattered radiation to the change of
the electron’s velocity. Thus it has a similar physical meaning as Weinberg’s
soft-photon theorem in QED (see e.g. [St17, formula (2.8.21)]) and there is cur-
rently substantial interest in the high energy physics community concerning related
asymptotic conditions in classical electrodynamics (see e.g. [Pr18] and references
therein). While similar relations are rigorously known in the external current sit-
uation, see e.g. [He17], we are not aware of such results for the Maxwell-Lorentz
system. Since the r.h.s. of (1.8) can readily be computed using (1.3), we obtain
non-trivial information about the timelike asymptotics of solutions of the cou-
pled Maxwell-Lorentz system: Namely, at least one of the scattered fields Esc,±
(incoming or outgoing) must have a 1/|k| singularity for small |k|.

Although we consider only the Maxwell-Lorentz system with one electron in
this paper, we expect that soft-photon theorems similar to (1.8) are true for a
much larger class of systems. Natural future research directions include the case
of many, possibly spinning electrons, as discussed in [Sp]. Actually, for any system
of non-linear PDE, admitting long-time asymptotics in terms of soliton solutions,
one can try to formulate and prove relations similar to (1.8).

This paper is organized as follows. In Section 2 we provide some background
material about the existence of solutions and scattering theory of the Maxwell-
Lorentz system. In Section 3 we prove the existence of the constant of motion (1.5)
and in Section 4 of its counterpart in momentum space (1.6). Section 5 contains the
proof of our main result, which is the soft-photon theorem (1.8). In the Conclusions
we discuss briefly the infrared problem in QED from the perspective of our findings.

2 Preliminaries

We give an introduction to the Abraham model. All proofs can be found in [Sp,
KS00,Ho18].

2.1 The equations of motion for the Maxwell-Lorentz sys-
tem

We are interested in the dynamics of well-localized charges representing charged
particles of finite extension. In the course of this discussion, let e be the charge
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of such a particle and m its mass. The position q : R → R3 of the particle is a
function of time t ∈ R and d

dt
q(t) ≡ q̇(t) =: v(t) denotes its velocity . We always

assume that q ∈ C2(R) and v ∈ C1(R), i.e., the second derivative of t 7→ q(t) and
first derivative of t 7→ v(t) exist and are continuous for all t ∈ R. The electric field
E and the magnetic field B are represented as vector fields E = (E1, E2, E3) and
B = (B1, B2, B3) with

Ei, Bi : R3 × R→ R for i = 1, 2, 3.

Moreover, we introduce ϕ ∈ C∞(R3) which is the charge distribution of the particle.
That is, for all (x, t) ∈ R3 × R

ρ(x, t) = eϕ (x− q(t)) is the charge density,

j(x, t) = eϕ (x− q(t)) v(t) is the current density.

We assume in the Abraham model that the charge distribution ϕ satisfies the
following properties:

1. ϕ is radial, i.e. ϕ(x) = ϕ(|x|) for all x ∈ R3,

2. ϕ is compactly supported, i.e. ∃Rϕ > 0 such that for all |x| ≥ Rϕ: ϕ≡0.

3. ϕ is normalized, i.e.
∫
ϕ(x) d3x = 1.

As a result, we are able to couple the Maxwell equations with the Lorentz equation:

Definition 2.1. We call

∂tB(x, t) = −∇× E(x, t), (2.1)

∂tE(x, t) = ∇×B(x, t)− eϕ (x− q(t)) v(t), (2.2)

∇ · E(x, t) = eϕ (x− q(t)) , (2.3)

∇ ·B(x, t) = 0, (2.4)

d

dt
{mγv(t)} = e {Eϕ (q(t), t) + v(t)×Bϕ (q(t), t)} (2.5)

the equations of motion for the Abraham model. Here (x, t) ∈ R3 × R, and
γ ≡ γ(t) := 1√

1−v(t)2
. In addition, the fields E and B are smeared with the

function ϕ in the last equation, that is,

Eϕ(x, t) ≡ (E(·, t) ∗ ϕ) (x), Bϕ(x, t) ≡ (B(·, t) ∗ ϕ) (x).

2.2 Existence of solutions of the Maxwell-Lorentz system

We will denote by Y := (E,B, q, v) a state of the Abraham model, and define the
set of states

L :=
{
Y ∈ (L2 ∩ C2)× (L2 ∩ C2)× R3 × V | ‖E‖+ ‖B‖+ |q|+ |γv| <∞

}
, (2.6)
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where V := {v ∈ R3 | |v| < 1}, ‖F‖ :=
(∫

d3x |F (x)|2
)1/2

and C2 is the space
of twice continuously differentiable functions. By imposing, in addition, the con-
straints on the set of states, we obtain the phase space of the model:

M :=

{
Y ∈ L | ∇ · E(x) = eϕ(x− q), ∇ ·B(x) = 0 ∀x ∈ R3

}
.

For future reference, we also introduce certain subsets ofM. For any σ ∈ [0, 1] we
say that Y ∈Mσ if Y ∈M and there exist C,R > 0 such that for all |x| > R

|E(x)|+ |B(x)|+ |x| (|∇E(x)|+ |∇B(x)|) ≤ C

|x|1+σ
.

We can rewrite the equation of motion for the Abraham model as a generalized
differential equation

d

dt
Y (t) = F (Y (t)) , Y (0) = Y 0

or equivalently via integration over the interval [0, t], t ∈ R:

Y (t) = Y 0 +

∫ t

0

F (Y (s)) ds.

Then we have the following statement:

Proposition 2.2. [KS00, Sp] Let Y 0 = (E0, B0, q0, v0) ∈ M. Then the integral
equation associated with the equation of motion,

Y (t) = Y 0 +

∫ t

0

F (Y (s)) ds,

has a unique solution Y (t) = (E(·, t), B(·, t), q(t), v(t)) ∈ M for all t ∈ R, which
is continuous in t and satisfies Y (0) = Y 0.

In [KS00] the phase spaceM is defined without the restriction to C2 functions.
However, it easily follows from formulas (2.16), (2.17) of [Sp], that for initial
conditions from C2 also the solutions are C2.

As the proof of Proposition 2.2 from [KS00,Sp] is restricted to the case t ≥ 0,
let us briefly discuss the general case. We recall that the proof of the proposition
starts from the equation for the Lorentz force (2.5) and uses formulas (2.16), (2.17)
of [Sp] to express the r.h.s. by integral formulas involving propagators of the wave
equation. For example, for t ≥ 0 one expresses the electric field as

E(t) = ∂tGret,t ∗ E0 +∇× (Gret,t ∗B0) (2.7)

−
∫ t

0

ds (∇Gret,t−s ∗ ρ(s) + ∂tGret,t−s ∗ j(s)), (2.8)
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where we omitted the x variable and Gret,t(x) := θ(t) 1
4πt
δ(|x| − t) is the retarded

propagator of the wave equation. For t ≤ 0 this equation should be modified to

E(t) = ∂t(−Gadv,t) ∗ E0 +∇× (−Gadv,t ∗B0) (2.9)

−
∫ t

0

ds (∇Gadv,t−s ∗ ρ(s) + ∂tGadv,t−s ∗ j(s)), (2.10)

where Gadv,t(x) := Gret,−t(x) = −θ(−t) δ(|x|+t)
4πt

is the advanced propagator and the
minus sign in (2.9), compared to (2.7), is needed to match the two formulas at
t = 0. (Of course, the parts (2.8) and (2.10) cannot have such a relative minus
sign, as they have to satisfy the same inhomogeneous wave equation). Thus a
formula valid for all t ∈ R has the form

E(t) = ∂tGt ∗ E0 +∇× (Gt ∗B0) (2.11)

−
∫ t

0

ds (∇Gret/adv,t−s ∗ ρ(s) + ∂tGret/adv,t−s ∗ j(s)), (2.12)

where Gt := Gret,t −Gadv,t is the causal propagator and the choice of the retarded
or advanced propagator in (2.12) is correlated with the sign of t. The estimates
involved in the later application of the Banach fixed point theorem in the proof of
Proposition 2.2 are insensitive to the changes of the propagator discussed above.
Thus one obtains a unique trajectory R 3 t 7→ q(t) and, via (2.11)-(2.12), the
electric field. The magnetic field is treated analogously. Existence of the second
derivative of t 7→ q(t) and the first derivative of t 7→ v(t) at t = 0 follows from the
Lorentz force equation and the fact that the electromagnetic fields tend to E0, B0

as t→ 0 both along the negative and positive values of t. See also [Ha18] for the
problem of existence of solutions of the Maxwell-Lorentz system for point charges
for positive and negative times.

2.3 Soliton solutions

Proposition 2.2 gives the existence and uniqueness, but no concrete construction of
solutions. To proceed, we consider a specific class of solutions, namely the charge
solitons which represent charged particles with constant velocities v ∈ V. First,
we define the following electromagnetic fields:

Definition 2.3. We set for all x ∈ R3\{0}

φv(x) :=
e

4π
√

(x/γ)2 + (v · x)2
, φvϕ(x) := (2π)−3/2φv ∗ ϕ(x)

and define the electric field Ev of a soliton with velocity v and the magnetic field
Bv of a soliton with velocity v ∈ V as

Ev(x) = −∇φvϕ(x) + v (v · ∇φvϕ(x)) , Bv(x) = −v ×∇φvϕ(x). (2.13)
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The corresponding momentum space expressions are

Êv(k) = −ikφ̂vϕ + v(v · ikφ̂vϕ), B̂v(k) = −v ×
(
ikφ̂vϕ

)
, (2.14)

where

φ̂v ≡ φ̂v(k) =
e

k2 − (k · v)2
, φ̂vϕ ≡ φ̂vϕ(k) = φ̂v(k)ϕ̂(k). (2.15)

(Note that φv 6∈ L1(R3,R), so the Fourier transformations2 need to be understood
in the distributional sense). Now the soliton solution is constructed as follows:

Proposition 2.4. [KS00, Sp] For any v ∈ V, the following family of states

Yv(t) = (Ev(· − q − vt), Bv(· − q − vt), q + vt, v) ∈M

is a solution of the Abraham model.

2.4 Long-time asymptotics

It turns out that a large class of solutions converges to soliton solutions for large
times via emission of radiation. It is therefore convenient to define

Z(x, t) =

(
Z1(x, t)
Z2(x, t)

)
=

(
E(x, t)− Ev(t)(x− q(t))
B(x, t)−Bv(t)(x− q(t))

)
, (2.16)

where
(
Ev(t)(x− q(t)), Bv(t)(x− q(t)), q(t), v(t)

)
is the soliton approximation at

time t ∈ R. We remark for future reference that the system of equations of the
Abraham model can then be rewritten in the following form [KS00,Sp]

Z(x, t) = U(t)Z(x, 0)−
∫ t

0

dsU(t− s)g(x, s), (2.17)

where

g(x, t) =

(
(v̇(t) · ∇v)Ev(t)(x− q(t))
(v̇(t) · ∇v)Bv(t)(x− q(t))

)
.

The operator U is unitary on L2(R3)×L2(R3) and is given by the solutions of the
homogeneous Maxwell’s equations in position space:

U(t)F(x, 0) ≡
(
{∂tGt ∗ F1(·, 0)} (x) +∇× {Gt ∗ F2(·, 0)} (x)
{∂tGt ∗ F2(·, 0)} (x)−∇× {Gt ∗ F1(·, 0)} (x)

)
,

where F1, F2 are the components of F and Gt(x) = θ(t) 1
4πt
δ(|x| − t) + θ(−t) δ(|x|+t)

4πt

is the causal propagator. We note for future reference that in momentum space

Ĝt(k) = (2π)−3/2
sin (|k|t)
|k|

for t ∈ R. (2.18)

2We use the conventions for the Fourier transform from [RS2].
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The advantage of (2.17) is that the only implicit input on the r.h.s. is t 7→
(q(t), v(t)).

For large positive (+) or negative (-) times, the differences on the r.h.s. of
(2.16) should give the scattered radiation field. Thus we write Zsc,±(x, t) =
(Esc,±(x, t), Bsc,±(x, t)), where

Zsc,±(x, 0) := Z(x, 0)−
∫ ±∞
0

dsU(−s)g(x, s), (2.19)

Zsc,±(x, t) := U(t)Zsc,±(x, 0). (2.20)

By definition, (x, t) 7→ (Esc,±(x, t), Bsc,±(x, t)) satisfy the homogeneous Maxwell
equations. The long-time asymptotics of the Abraham model is now described by
the following theorem. We remark that the proof given in [KS00,Sp] for t ≥ 0 gen-
eralizes to t ≤ 0, since the relevant estimates are not sensitive to the substitution
Gret → −Gadv, cf. also formula (2.18).

Theorem 2.5. [KS00,Sp] For |e| ≤ e, where e is sufficiently small, and Y (0) ∈
Mσ for σ ∈ (0, 1] the following statements hold true:

1. The acceleration v̇ satisfies |v̇(t)| ≤ C(1 + |t|)−1−σ for some C independent
of t. Hence, limt→±∞ v(t) = v±∞ ∈ V exists.

2. For (Esc,±, Bsc,±) defined in (2.19), (2.20), we have

lim
t→±∞

{
‖E( · , t)− Ev(t)(· − q(t))− Esc,±( · , t)‖ (2.21)

+ ‖B( · , t)−Bv(t)(· − q(t))−Bsc,±( · , t)‖
}

= 0. (2.22)

(The ±-signs above are correlated).

The assumptions of Theorem 2.5 are our standing assumptions in the
remaining part of this paper.

3 A conservation law in position space

We denote by F the Faraday tensor, whose components are the electromagnetic
fields Ei, Bj, i, j = 1, 2, 3. We set F(x, t) := lim|x|→∞ |x|2F (x, t) (if the limit exists)
and denote by E, B its electric and magnetic components.

Theorem 3.1. Suppose that F(x, 0) := lim|x|→∞ |x|2F (x, 0) exists and depends
only on x̂ = x

|x| . Then also F(x̂, t) := lim|x|→∞ |x|2F (x, t) exists for any t ∈ R and

depends only on x̂ in the first variable. Moreover, F(x̂, t) = F(x̂, 0).

Remark 3.2. InMσ=1 there are many examples of initial data with slow, Coulomb-
type decay for which F(x̂, 0) exists.
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Proof. We treat only the electric field for t > 0, as the remaining cases are
analogous. By (2.17), we have

E(x, t) = E1(x, t) + E2(x, t) + E3(x, t) + E4(x, t) + Ev(t)(x− q(t)) (3.1)

with

E1(x, t) := ∂tGt ∗
[
E(·, 0)− Ev(0)(· − q(0))

]
(x),

E2(x, t) := ∇×
{
Gt ∗

[
B(x, 0)−Bv(0)(x− q(0))

]}
,

E3(x, t) := −
∫ t

0

ds
[
∂τGτ

∣∣
τ=t−s ∗ (v̇(s) · ∇v)Ev(s)(· − q(s))(x)

]
,

E4(x, t) := −
∫ t

0

ds
[
∇×

{
Gτ

∣∣
τ=t−s ∗ (v̇(s) · ∇v)Bv(s)(· − q(s))(x)

}]
.

Let us consider the contribution of E1. We obtain the chain of equalities
below, which gives the existence of lim|x|→∞ |x|2E1(x, t), using the existence of an
analogous limit for the initial data and a soliton solution. We will use in the first
step the limit |x| → ∞ eliminates the q(0) dependence. We will also repetitively
apply the dominated convergence theorem to exchange the limit with integrals.
Its assumptions are verified using concrete formulas for the soliton fields and the
fact that the initial data are in Mσ, σ ∈ (0, 1].

lim
|x|→∞

|x|2E1(x, t)

= − lim
|x|→∞

|x|2
∫
d3y

δ
′
(|y| − t)
4π|y|

[E(x− y, 0)− Ev0(x− y)]

= lim
|x|→∞

|x|2
∫
dΩ(ŷ)

∫
d|y| δ(|y| − t)

4π

d

d|y|
[|y| (E(x− y, 0)− Ev0(x− y))]

= lim
|x|→∞

|x|2 1

4π

∫
dΩ(ŷ)

[
(E(x− ŷt, 0)− Ev0(x− ŷt)) + t

(
E ′(x− ŷt, 0)− E ′v0(x− ŷt)

)]
(∗)
=

1

4π

∫
dΩ(ŷ)

[
lim
|x|→∞

|x|2E(x− ŷt, 0)− lim
|x|→∞

|x|2Ev0(x− ŷt)
]

=
1

4π

∫
dΩ(ŷ)

[
lim
|x|→∞

|x|2E
(
|x|
(
x− ŷt

|x|

)
, 0

)
− lim
|x|→∞

|x|2Ev0
(
|x|
(
x− ŷt

|x|

))]
= lim
|x|→∞

|x|2E(x, 0)− lim
|x|→∞

|x|2Ev0(x).

The prime above denotes the derivative w.r.t. |y| and in (∗) we used that E ′(x, 0), E ′v0(x) ∼
1

|x|2+σ for σ > 0 as the initial data and the soliton solutions belong to Mσ for

σ ∈ (0, 1].

9



As for E2, we find

lim
|x|→∞

|x|2E2(x, t) = lim
|x|→∞

|x|2
∫
d3y

δ(|y| − t)
4π|y|

∇ × [B(x− y, 0)−Bv0(x− y)]

= lim
|x|→∞

|x|2 1

4π

∫
dΩ(ŷ) t∇× [B(x− ŷt, 0)−Bv0(x− ŷt)]

=
1

4π

∫
dΩ(ŷ) t lim

|x|→∞
|x|2∇× [B(x− ŷt, 0)−Bv0(x− ŷt)]

= 0,

where we again made use of the fact that the initial data and the soliton solutions
belong to Mσ.

Let us move on to the contribution of E3. First, we write

lim
|x|→∞

|x|2E3(x, t) = − lim
|x|→∞

|x|2
∫ t

0

ds

∫
d3y

(−1)

4π|y|
δ
′
(|y|−(t−s)) (v̇(s) · ∇v)Ev(s)(x−y),

where we used that the limit (if it exists) eliminates the q(s) dependence. Next,
we note the equality∫

d3y
(−1)

4π|y|
δ
′
(|y| − (t− s)) (v̇(s) · ∇v)Ev(s)(x− y)

=
1

4π

∫
dΩ(ŷ)

[
(t− s) (v̇(s) · ∇v)E

′
v(s)(x− ŷ(t− s)) + (v̇(s) · ∇v)Ev(s)(x− ŷ(t− s))

]
.

Hence, making use of the rapid decay of E ′v(s), we find

lim
|x|→∞

|x|2E3(x, t) =
−1

4π

∫
dΩ(ŷ) lim

|x|→∞
|x|2

∫ t

0

ds (v̇(s) · ∇v)Ev(s)(x− ŷ(t− s))

=
−1

4π

∫
dΩ(ŷ) lim

|x|→∞
|x|2

∫ t

0

ds (v̇(s) · ∇v)Ev(s)(x)

=
−1

4π

∫
dΩ(ŷ)

[
lim
|x|→∞

|x|2Ev(t)(x)− lim
|x|→∞

|x|2Ev0(x)

]
= − lim

|x|→∞
|x|2Ev(t)(x) + lim

|x|→∞
|x|2Ev0(x),

where we used the Fubini theorem in the first step, in the second step we used the
presence of the limit to eliminate the shift by ŷ(t− s) and in the third step we noted
that the integral w.r.t. s can be computed. By reading the above computation
backwards, we obtain the existence of lim|x|→∞ |x|2E3(x, t).

As for E4, we find

lim
|x|→∞

|x|2E4(x, t)

= − lim
|x|→∞

|x|2 1

4π

∫ t

0

ds

∫
dΩ(ŷ) (t− s) (v̇(s) · ∇v)∇×Bv(s)(x− ŷ(t− s)− q(s)) = 0
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since ∇×Bv(t)(x) ∼ 1
|x|2+σ for σ > 0.

By substituting all the contributions above to (3.1), we obtain

lim
|x|→∞

|x|2E(x, t) = lim
|x|→∞

|x|2E(x, 0).

This completes the proof. �

4 A conservation law in momentum space

We recall that F is the Faraday tensor and we set F(k, t) := lim|k|→0 |k|F̂ (k, t) (if

the limit exists), where F̂ is the Fourier transform of F in space. We denote by E ,
B the electric and magnetic components of F .

Theorem 4.1. Suppose that F(k, 0) := lim|k|→0 |k|F̂ (k, 0) exists and depends

only on k̂ = k
|k| . Then also F(k, t) := lim|k|→∞ |k|F̂ (k, t) exists for any t ∈ R and

depends only on k̂ in the first variable. Moreover, F(k̂, t) = F(k̂, 0).

Proof. Again, we consider only the electric field and the case t > 0. We recall
formula (2.17)

Z(x, t) = U(t)Z(x, 0)−
∫ t

0

dsU(t− s)g(x, s). (4.1)

The electric part has the form considered already in the proof of the previous
theorem:

E(x, t) = ∂tGt ∗
[
E(·, 0)− Ev(0)(· − q(0))

]
(x)

+∇×
{
Gt ∗

[
B(x, 0)−Bv(0)(x− q(0))

]}
−
∫ t

0

ds

[
∂τGτ

∣∣
τ=t−s ∗ (v̇(s) · ∇v)Ev(s)(· − q(s))(x)

−∇×
{
Gτ

∣∣
τ=t−s ∗ (v̇(s) · ∇v)Bv(s)(· − q(s))(x)

}]
+ Ev(t)(x− q(t)).

Using (2.18), we obtain in momentum space

Ê(k, t) = cos(|k|t)
[
Ê(k, 0)− Êv(0)(k)e−ikq(0)

]
+ ik̂ ×

{
sin(|k|t)

[
B̂(k, 0)− B̂v(0)(k)e−ikq(0)

]}
−
∫ t

0

ds

[
cos(|k|(t− s)) (v̇(s) · ∇v)Êv(s)(k)e−ikq(s)

− ik̂ ×
{

sin(|k|(t− s)) (v̇(s) · ∇v)B̂v(s)(k)e−ikq(s)
}]

+ Êv(t)(k)e−ikq(t).
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Hence it holds

E(k̂, t) = E(k̂, 0)− Ev0(k̂) + Ev(t)(k̂)

− lim
|k|→0

∫ t

0

ds

[
cos(|k|(t− s)) (v̇(s) · ∇v)|k|Êv(s)(k)e−ikq(s)

− ik̂ ×
{

sin(|k|(t− s)) (v̇(s) · ∇v)|k|B̂v(s)(k)e−ikq(s)
}]

(4.2)

= E(k̂, 0)− Ev0(k̂)−
∫ t

0

ds
[
(v̇(s) · ∇v)Ev(s)(k̂)

]
+ Ev(t)(k̂)

= E(k̂, 0),

where we used in the second step lim|k|→0 e
−ikq(s) = 1, lim|k|→0 cos(|k|(t− s)) = 1,

lim|k|→0 sin(|k|(t− s)) = 0 and in the last step we noted that the integral w.r.t. s
can be evaluated. This concludes the proof. �

5 Soft-photon theorem

Now we are ready to state and prove our main result. We consider a solution
R 3 t 7→ Y (t) of the Maxwell-Lorentz system satisfying the assumptions of Theo-
rem 2.5. We denote by Fsc,± the scattered electromagnetic fields and by Fv±∞ the
soliton solutions corresponding to the asymptotic velocities.

Theorem 5.1. Under the assumptions of Theorem 4.1 the limits

Fsc,±(k, t) = lim
|k|→0

|k|Fsc(k, t), Fv±∞(k, t) = lim
|k|→0

|k|Fv±∞(k, t) (5.1)

exist, depend only on k̂ in the first variable and are independent of t. Moreover,

Fsc,+(k̂) + Fv+∞(k̂) = Fsc,−(k̂) + Fv−∞(k̂). (5.2)

Remark 5.2. An analogous statement holds for F.

Proof. We provide the details only for the case of the electric field. For t > 0,
the difference Z(x, t)− Zsc(x, t) yields by (2.17), (2.20),

E(x, t)− Esc,+(x, t) =

∫ ∞
t

ds

[
∂τGτ

∣∣
τ=t−s ∗ (v̇(s) · ∇v)Ev(s)(· − q(s))(x)

∇×
{
Gτ

∣∣
τ=t−s ∗ (v̇(s) · ∇v)Bv(s)(· − q(s))(x)

}]
+ Ev(t)(x− q(t)). (5.3)

Thus, we find by analogous arguments as in the proof of Theorem 4.1, and making
use of the fact that t 7→ v̇(t) is integrable (see Theorem 2.5), that

E(k̂)− Ev(t)(k̂)− Esc,+(k̂) = Ev+∞(k̂)− Ev(t)(k̂), (5.4)
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where all the taken limits exist and depend only on the indicated variables. Con-
sequently,

E(k̂) = Esc,+(k̂) + Ev+∞(k̂) = Esc,−(k̂) + Ev−∞(k̂), (5.5)

where in the last step we repeated the above reasoning for t < 0 and made use of
the fact that E(k̂) is a conserved quantity. �

6 Conclusions

In this paper we derived the following soft-photon theorem for the Maxwell-Lorentz
system

Esc,+(k̂)− Esc,−(k̂) = −(Ev+∞(k̂)− Ev−∞(k̂)), (6.1)

and analogously for the magnetic field. In order to elucidate its physical meaning,
let us consider a scattering process in which the electron, which is initially at rest
(v−∞ = 0), collides with infrared regular radiation (Esc,−(k̂) = 0). Making use of
relation (1.3) and considering that the l.h.s. of (6.1) is transverse, we obtain

Esc,+(k̂) = −Ptr(k̂)Ev+∞(k̂), (6.2)

where Ptr(k̂) := 1− |k̂〉〈k̂| is the transverse projection. This formula nicely brings
together two seemingly distinct aspects of the infrared problem: the slow decay
of the Coulomb field on the r.h.s. and the infrared singularity of the scattered
radiation on the l.h.s. It is clear from our discussion, that the presence of the
asymptotic constants of motion (1.6) is behind this equality. Making use of relation
(1.3), we can rewrite (6.2) as follows

lim
|k|→0

|k|Êsc,+(k, t) = − ie

(2π)3/2

(
(Ptr(k̂)v∞)(k̂ · v∞)

1− (k̂ · v∞)2

)
(6.3)

for any t ≥ 0. This brings to light the infrared singularity Êsc(k, t) ∼ 1/|k| of the
scattered radiation. By an analogous discussion for the magnetic field we get

lim
|k|→0

|k|B̂sc,+(k, t) =
e

(2π)3/2
v∞ × ik̂

1− (k̂ · v∞)2
, (6.4)

thus it also exhibits a 1/|k| behavior for small momenta.
It is customary to say that such radiation fields ‘escape from the Fock space’ of

the quantised variant of our theory. Although such infrared jargon may be clear
for experts, let us take the opportunity here to explain it from the perspective
of the present investigation. Consider the free, second-quantised electromagnetic
fields (in Fourier space), which are operator valued distributions on Fock space

Ê(k, t) :=
∑
λ=±

√
|k|
2

(iελ(k)e−i|k|taλ(k)− iελ(−k)ei|k|ta∗λ(−k)), (6.5)

B̂(k, t) :=
∑
λ=±

√
1

2|k|
ik ×

(
ελ(k)e−i|k|taλ(k) + ελ(−k)ei|k|ta∗λ(−k)

)
. (6.6)

13



Here a
(∗)
λ (k) are the creation and annihilation operators of photons with momentum

k and polarisation λ, ελ(k) are the polarisation vectors and we refer e.g. to [Sp]
for more details on these formulas. We interpret these fields as the (outgoing)
asymptotic fields of the theory. To study the classical limit of this quantum theory,
we consider expectation values of (6.5), (6.6) on coherent states of the form

|w〉 = exp

(∑
λ=±

∫
d3k
(
w(k) · ελ(k)a∗λ(k)− h.c.

))
|0〉, (6.7)

where |0〉 is the Fock space vacuum. (For an extensive discussion of the role of
coherent states in the study of infrared problems we refer to [FMS79]). Specifi-
cally, we are looking for such C3-valued functions w that this expectation value
reproduces the classical low-energy behaviour (6.3), (6.4)

lim
k→0
|k|〈w|Ê(k, t)|w〉 = lim

|k|→0
|k|Êsc,+(k, t), (6.8)

lim
|k|→0

|k|〈w|B̂(k, t)|w〉 = lim
|k|→0

|k|B̂sc,+(k, t), (6.9)

for t ≥ 0. The l.h.s. of (6.8), (6.9) are readily computed and the equality holds
for w of the familiar form, see e.g. [Fr73,Fr74.1,CFP09,CFP07,FP10,KM13],

w(k) = − eϕ̂(k)√
2|k|3/2

v∞

1− k̂ · v∞
. (6.10)

As the |k|−3/2 singularity in (6.10) is not square integrable, indeed |w〉 given by
(6.7) is not a vector in Fock space, but only makes sense as a state 〈w| · |w〉 on
the algebra of the electromagnetic fields. Via the GNS construction it gives a
representation of this algebra which is disjoint from the Fock representation. In
this sense the scattered field escapes from the Fock space.

Since Esc,± appear in (1.4) as long-time asymptotics of the solutions of the
Maxwell-Lorentz system, one can ask if |w〉 can be obtained by scattering theory.
This turns out to be the case, as we have the equality (up to a phase), which can
be traced back to Bloch and Nordsieck [BN37,BN37.1]

|w〉 = W+|0〉, W+ = Texp
(
i

∫ ∞
0

dt

∫
d3xA(x, t) · jv∞(x, t)

)
. (6.11)

Here A is the electromagnetic potential in the Coulomb gauge and jv∞(x, t) :=
ev∞ϕ(x−v∞t) is the external current describing the electron moving with velocity
v∞. We recognize that W+ is (up to a phase) the outgoing Dyson wave opera-
tor of the second-quantised electromagnetic field interacting with such a current.
Here the infrared singularity is hidden in a possible divergence of the time-integral
and the equality in (6.11) is meant in the sense of states on the algebra of the
electromagnetic fields. Formula (6.11) is at the basis of the Faddeev-Kulish ap-
proach [KF70,Fr73,Dy17], as it ensures that the Dollard modifier maps the Fock
space vacuum to the right representation of this algebra. A variant of this formula
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was also used in [CD19] to show that this representation cannot be distinguished
from the vacuum upon restriction to the interior of a future or backward light-
cone. This latter observation supports the Buchholz-Roberts approach to infrared
problems [BR14].
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