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Abstract

Given a two-dimensional Haag-Kastler net which is Poincaré-dilation covariant with
additional properties, we prove that it can be extended to a Möbius covariant net.
Additional properties are either a certain condition on modular covariance, or a variant
of strong additivity. The proof relies neither on the existence of stress-energy tensor nor
any assumption on scaling dimensions. We exhibit some examples of Poincaré-dilation
covariant net which cannot be extended to a Möbius covariant net, and discuss the
obstructions.

1 Introduction

For a relativistic quantum field theory, there has been a long-standing question whether scale
invariance (dilation covariance) implies conformal covariance [Nak15]. In (1 + 1)-dimensions,
we call the latter Möbius covariance1 in order to distinguish it from diffeomorphism covariance
(an action of the Virasoro algebra). This claim, of course, should not be taken literally.
A simple counterexample can be given based on a generalized free field which is dilation
covariant but not Möbius or conformally covariant (see Section 4). On the other hand, in
(3 + 1)-dimensions, there is no known example (even in the physical sense) of relativistic
(unitary) dilation-covariant quantum field theory with certain additional conditions which is
not conformally covariant, although there is currently no proof of the enhancement either. In
(1 + 1)-dimensions, the implication “dilation =⇒ Möbius” is considered a “theorem”, whose
proof exploits the existence of stress-energy tensor and the discreteness of scaling dimension
[Zom86, Pol88].

∗Supported in part by the ERC Advanced Grant 669240 QUEST “Quantum Algebraic Structures and
Models”, MIUR FARE R16X5RB55W QUEST-NET, GNAMPA-INdAM .
†Supported by Programma per giovani ricercatori, anno 2014 “Rita Levi Montalcini” of the Italian Ministry

of Education, University and Research.
1The word “conformal” is reserved for diffeomorphism covariance, c.f. [KL04].
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Dilation covariance is believed to appear naturally in physical models. If one looks at
longer and longer length scale of a physical system, the behaviour of the system should not
depend on the details in the smaller scale and may obtain a low-energy effective theory which
is scale invariant. Alternatively, one might look at smaller and smaller spacetime regions in
the quantum chromodynamics, and should be able to see quarks which are otherwise confined
and not visible. Such a limiting theory is expected to be simpler and to obtain the dilation
symmetry (yet this is not automatic, see [BDM10]). Now, a dilation-covariant theory has
often an additional symmetry, the conformal symmetry. Indeed, in (1+1)-dimensions, most of
important dilation-covariant theories are indeed Möbius covariant. Although not all dilation-
covariant theories have Möbius covariance, it is natural to expect some additional conditions
should imply the enhancement of symmetry.

In theoretical physics, the problem is considered to be solved in (1+1)-dimensions by the
argument by Zamolodchikov [Zom86] and Polchinski [Pol88], which are based on the existence
of scale current and the discreteness of scale dimensions. On the other hand, the enhancement
of symmetry can be clearly stated even in terms of axiomatic/algebraic quantum field theory,
hence it is natural to expect that certain additional assumptions should really imply Möbius
covariance in the mathematical level. In this respect, Guido, Longo and Wiesbrock proved
that a dilation-translation covariant net of von Neumann algebras on the real line R satisfying
the Bisognano-Wichmann property can be extended to the compactified real line S1 and
obtain Möbius covariance [GLW98]. Remarkably, this last result does not assume any other
physical requirement such as the existence of current or scaling dimensions, but the proof is
based on the modular theory of von Neumann algebras. Hence one might expect a similar
result for two-dimensional dilation-covariant quantum field theories.

In this paper, we present a proof of enhancement to Möbius covariance, in addition to
the standard Haag-Kastler axioms, under the following operator-algebraic conditions

• The vacuum is cyclic and separating for the lightcone algebra.

• The theory is covariant under dilations and it is implemented by the modular group
for the lightcone algebra, and one of the following holds.

(a) The half-hand algebra and the double cone algebra (see Figure 1) consist a half-
sided modular inclusion [Wie93, AZ05]

(b) The theory satisfies a variation of strong additivity.

Only one of the last two conditions is needed in our proof. The first one is an assumption
about the modular group of a certain infinitely extended region, and might look too strong,
but actually we show that it is a consequence of the second, which appears to have little to
do with conformal covariance. With these conditions, which again are not concerned with
either the current/stress-energy tensor or scaling dimensions, we can extend the symmetry
group to the two-dimensional Möbius group by the modular theory.

We present two families of counterexamples. In one of them, we simply break the
Bisognano-Wichmann property for the future lightcone V+ which is a necessary condition
for Möbius covariance [GLW98]. In the other, we take a certain representation of the two-
dimensional Möbius group and apply the BGL construction [BGL93]. This itself is Möbius
covariant, but its dual net is the dual net of a generalized free field which cannot be Möbius
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covariant. This last example provides a Möbius covariant net with the trace class property
whose dual net is not Möbius covariant and does not have the split property. The reason why
this dual net cannot be Möbius covariant (the vacuum is not separating for the algebra of
V+) is different from the reason why some generalized free fields cannot be Möbius covariant
(wrong scaling dimension). We also examine arguments in physics literature and see to which
extent they work.

This paper is organized as follows. In Section 2 we explain the geometric setting and
the symmetry structure of two-dimensional Möbius covariant net, and state our additional
assumptions on dilation covariant nets. In Section 3 we give a proof of Möbius covariance
based on these assumptions. In Section 4, examples of dilation-covariant nets which do not
extend to Möbius covariant nets are provided. In Section 5 we discuss to what extent our
assumptions are necessary, some arguments in physics literature and open problems. Beside,
we need the two-dimensional spin statistics theorem in the course of the proof, and we exhibit
a proof in Appendix A for self-containedness. In Appendix B we provide basic results on
direct integrals of Hilbert subspaces which we were not able to find in literature, and are
essential for our counterexamples.

2 Preliminaries

Here we are going to describe the operator-algebraic setting for quantum field theory and
various spacetime symmetries.

2.1 One-dimensional Möbius group

The (1 + 1)-dimensional Minkowski space is the product of two lightrays. The subgroup of
lightlike translations and dilations of the Poincaré group acts on each lightray R = R∪{∞}.
This action can be extended to the Möbius group Möb = PSL(2,R) ∼= PSU(1, 1), which we
review here. See [Lon08, Wei05] for our notations.

Consider the Cayley transform C : R 3 x 7→ −x−i
x+i
∈ S1, where S1 is the complex unit

circle {z ∈ C : |z| = 1} and C(∞) is defined to be equal to −1 by convention. With this
map C, we can pass from the line to the circle picture. The Cayley transform is the inverse
of the stereographic projection C−1 : S1 3 z 7→ −i z−1

z+1
∈ R and sends S1 onto R. With this

convention, the upper semicircle is mapped in to the right half-line (0,+∞).
The group SL(2,R) acts on the compactified line R by linear fractional transformations.

The kernel of its action is {±1} and PSL(2,R) = SL(2,R)/{±1} defines the Möbius group,
the group of orientation preserving conformal transformations of R. We denote it by Möb.
On the unit circle in C, the action of Möb translates to that of SU(1, 1) again by linear
fractional transformations through the Cayley transform.

The group Möb is a three-dimensional Lie group and can be generated by the following
one-parameter subgroups:

• Rotations ρθ: for θ ∈ R/2πZ, ρθ = eiθz ∈ S1, in the circle picture;

• Dilations δs: for s ∈ R, δsa = esa ∈ R, on the line picture.

• Translation τt: for t ∈ R, τta = a+ s ∈ R, on the line picture;
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In literature they are respectively denoted with K, A and N, and any element g ∈ Möb can
be uniquely decomposed following the KAN decomposition (Iwasawa decomposition), i.e.
the product of elements from each of these groups. The subgroups A and N generate the
translation-dilation group P which preserves the point ∞ in the real line picture.

In general, an element g ∈ Möb is determined by its action on three points of the cir-
cle. Any pair of points on S1, hence any interval on S1, can be brought to another pair,
respectively another interval, by a Möbius transformation. If g ∈ Möb takes R+ (in the line
picture) to a general interval I (in the circle picture), then we denote by ΛI(t) = gδ−tg

−1, and
call them the dilations2 associated with I. Note that ΛI does not depend on the choice of g.
By this correspondence, ΛR−(t) = δt, and ΛR++1(t) · a = e−t(a− 1) + 1. The two subgroups
{ΛR+(t)} and {ΛR+1(t)} generate a two-dimensional subgroup of Möb which is isomorphic
to P and preserves the point ∞. Furthermore, any element of a small neighborhood of the
unit element can be written as a simple product: indeed, we have

ΛR+(t)ΛR++1(s) = ΛR++1

(
− ln(e−t−s + 1− e−t)

)
ΛR+

(
− ln

(
e−t−s

e−t−s + 1− e−t

))
and it is immediate that any finite product of ΛR+ and ΛR++1, as long as the parameters are
sufficiently small (namely when e−t−s + 1− e−t > 0), can be reduced to a product of two in
the desired order. A similar relation holds for ΛR+ and Λ(0,1):

ΛR+(t)Λ(0,1)(s) = Λ(0,1)

(
ln(et+s + 1− et)

)
ΛR+

(
ln

(
et+s

et+s + 1− et

))
(1)

By bringing the three points 0, 1,∞ to another three points, an analogous relation holds for
ΛI1 ,ΛI2 , where I1 ⊃ I2 and there is one and only one of the endpoints shared by I1 and I2.
We call these relations simply the commutation relations of ΛI1 ,ΛI2 .

The group Möb can be generated by different subgroups. Consider I1, I2, I3, disjoint
intervals whose union is dense in S1, then ΛIk , k = 1, 2, 3 generate Möb. This can be seen
from the fact that they together can move any ordered three points to any other ordered
three points. In particular, for I1 = (−∞, 1), I2 = (0, 1), I3 = (0,∞), ΛIk , k ∈ Z3 generate
Möb and any pair ΛIk ,ΛIk+1

generates a subgroup isomorphic to P.

2.2 (1 + 1)-dimensional Minkowski space and Einstein cylinder

Consider the set of coordinates given by the lightrays
(
a0−a1√

2
, a0+a1√

2

)
, where a0 is the time

coordinate and a1 is the space coordinate. The following spacetime regions play important
roles in our work.

• Forward and backward light-cones: V+ = R+ × R+ and V− = R− × R−

• Right and left standard wedges: WR = R− × R+ and WL = R+ × R−

• Right and left half-bands: B±R,(c,d) = (a, b)× R± and B±L,(a,b) = R± × (a, b)

• Double cones: D(a,b),(c,d) = (a, b)× (c, d)

2By convention, the sign is reversed: ΛR+
(t) = δ−t, in accordance with [GLW98].

4



Then, we take also some specific regions (see Figure 1):

• BR = (0, 1)× R+ and BL = R+ × (0, 1)

• D0 = (0, 1)× (0, 1)

a1

a0

BL

D0

BR

Figure 1: Double cone D0 and half-bands BR, BL.

Let M̃öb be the universal covering group of Möb. It is again generated by three one-
parameter subgroups ρ, δ, τ (we use the same symbols for elements in M̃öb, as long as non
confusion arises), and ρ is now lifted from R/2πZ to R. Let G be the quotient group of

M̃öb × M̃öb by the normal subgroup generated by (ρ−2π, ρ2π). The group G acts locally on
the Minkowski space M identified with the product of two lightrays R × R, and its action
can be promoted to an action on the Einstein cylinder M̃ [BGL93]3. The Minkowski space
is identified with a maximal square (−π, π)× (−π, π), where the product is intended for the
lightlike decomposition parametrized by the lifted rotations. Let ι be the unit element of
M̃öb. For any g ∈ M̃öb, elements of the form g × ι (respectively ι × g) act trivially on the
positive lightray a0 = a1 (respectively the negative lightray a0 = −a1)

We introduce the following elements in G in terms of the lightlike components:

• let ΛV+ be the two-dimensional dilation of M : ΛV+(t) = δ(−t)× δ(−t).

• let ΛWL
be the one-parameter group of Lorentz boosts associated with the left standard

wedge WL: ΛWL
(t) = δ(−t)× δ(t).

In some literature a different convention is used where the parameter is reversed. The sign
of our convention coincides with that of the modular group (see the Bisognano-Wichmann
property in Section 2.4).

3M̃ is homeomorphic to R×S1, but this product decomposition is different from the lightlike decomposition
above: R goes in the a0-direction while S1 is the a1-direction. This decomposition will not be used in this
paper.
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2.3 The modular theory of von Neumann algebras and half-sided
modular inclusions

Let M⊂ B(H) be a von Neumann algebra with a cyclic and separating vector Ω ∈ H. The
associated Tomita operator SM,Ω is an antilinear involution which is the closure of

H ⊃MΩ 3 xΩ 7−→ x∗Ω ∈MΩ ⊂ H.

Through its polar decomposition SM,Ω = JM,Ω∆
1
2
M,Ω one obtains the modular conjugation

JM,Ω and the modular operator ∆M,Ω. They satisfy the relation JM,Ω∆M,ΩJM,Ω = ∆−1
M,Ω.

Furthermore ∆M,Ω is the generator of a one parameter group of automorphisms called the
modular automorphism group, namely ∆it

M,ΩM∆−itM,Ω = M (see e.g. [Tak03]). For the
anti-unitary conjugation JM,Ω we have JM,ΩMJM,Ω =M′.

Lemma 2.1. Let M⊂ B(H) be a von Neumann algebra with a cyclic and separating vector
Ω ∈ H and a U such that UMU∗ =M and UΩ = Ω. Then it holds that USM,ΩU

∗ = SM,Ω

and hence
U∆M,ΩU

∗ = ∆M,Ω, UJM,ΩU
∗ = JM,Ω.

The following theorem, due to Borchers [Bor92] (and significantly simplified by Florig
[Flo98]), ensures that when there is a one-parameter semigroup of endomorphisms imple-
mented by unitaries with positive generator, these unitaries and the modular group generate
a representation of the group P of dilations and translations. In this representation, they are

assigned ∆
it
2π
M,Ω and U(1)∆

is
2π
M,ΩU(1)∗, respectively and indeed satisfy Equation (1).

Theorem 2.2 (Borchers). Let M ⊂ B(H) be a von Neumann algebra with a cyclic and
separating vector Ω ∈ H, and t 7→ U(t) = eiHt be a unitary one parameter group such that
spH ⊂ R±, U(t)Ω = Ω and AdU(t)(M) ⊂M, t ≥ 0. Then the following hold:

∆is
M,ΩU(t)∆−isM,Ω = U(e∓2πst),

JM,ΩU(t)JM,Ω = U(−t), t, s ∈ R.

The first equality shows that ∆is
M,Ω and U(t) provide a positive energy representation

of P. We note that the group P can be also generated by the Λ(0,∞) and Λ(1,∞), namely
dilations based on 0 and 1, respectively.

Let N ⊂M ⊂ B(H) be an inclusion of von Neumann algebra with a common cyclic and
separating vector Ω ∈ H, then the inclusion is said to be a half-sided modular inclusion
(±-HSMI) if

Ad ∆−itM (N ) ⊂ N , ±t ≥ 0.

The following is a fundamental result on HSMIs [Wie93, AZ05].

Lemma 2.3 (Wiesbrock, Araki-Zsido). If (N ⊂M,Ω) is a +- (respectively −-)HSMI, then
the modular groups ∆it

M,∆
is
N satisfy the same commutation relations as those of ΛR− and

ΛR−−1 (respectively those of ΛR+ and ΛR++1).

The following is a slight variation of [GLW98, Lemma 1.1], see also [Wie98, Theorem 6].
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Lemma 2.4. Let Υ be the universal group algebraically generated by 3 one-parameter sub-
groups tk 7→ Λk(tk), k ∈ Z3, such that Λk and Λk+1 satisfy the same commutation relation
as ΛIk ,ΛIk+1

, where I1 = (−∞, 1), I2 = (0, 1), I3 = (1,∞) for tk in an open neighborhood of
the origin. Then Υ can be made a topological group and there is a continuous isomorphism
between Υ and M̃öb which intertwines ΛIk and Λk.

Proof. This is essentially covered by [GLW98, Lemma 1.1] by noting that the group gener-

ated by ΛIk is isomorphic to M̃öb. Indeed, ΛR− = Λ−1
I3

, Λ(1,∞) = Λ−1
I1

and since (−∞, 0),
(0, 1), (1,∞) is a factorization of S1, hence they satisfy the commutation relations of the
corresponding intervals.

Let us just make the topology on Υ more explicit. By the group structure, there is a
quotient of Υ which is algebraically isomorphic to M̃öb. Let p the quotient map. We declare
that any inverse image of an open set by p is an open set of Υ, and that the topology of Υ
is generated by them. It is easy to check that they form a neighborhood basis, and with this
topology, Υ is a Hausdorff, path-connected (because they are generated by one-parameter
groups), locally simply connected space. It is also immediate that Υ is a topological group,

by taking small neighborhoods of elements in Υ corresponding to those in M̃öb.
As Υ is connected and p is a covering map, Υ is continuously isomorphic M̃öb by univer-

sality of M̃öb, see e.g. [Pon46, Theorem 63].

As pointed out in [GLW98, Lemma 1.1], Υ has a natural structure as a Lie group: there
exists an open neighborhood of the origin N ⊂ R3 and the sets U and V containing the
identity in Υ and M̃öb respectively, such that the maps

Φ : N 3 (t1, t2, t3) 7→ Λ1(t1)Λ2(t2)Λ3(t3) ∈ U

and
ΦM̃öb : N 3 (t1, t2, t3) 7→ ΛI1(t1)ΛI2(t2)ΛI3(t3) ∈ V

are 1-1 and surjective. Note that the map ΦM̃öb is a diffeomorphism respecting the Lie struc-
ture, and through p, we can also introduce a manifold structure on Υ. The set {gΦ(N )}g∈Υ

provides an atlas for Υ.

2.4 Haag-Kastler nets

Let K be the set of all the double cones in the Minkowski spacetime R1+1. A two-dimensional
Haag-Kastler net (A, U,Ω) is a net of von Neumann algebras {A(D)}D∈K in B(H) on a
fixed Hilbert space H, together with a strongly continuous unitary representation U of the
Poincaré group P↑+ and the vacuum vector Ω satisfying the following assumptions (see e.g.
[Tan12, Section 2.1])

(HK1) Isotony: if D1 ⊂ D2, then A(D1) ⊂ A(D2).

(HK2) Locality: if D1 and D2 are spacelike separated, then A(D1) ⊂ A(D2)′.

(HK3) Poincaré covariance: it holds that

U(g)A(D)U(g)∗ = A(gD), for g ∈ P↑+, D ∈ K.
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(HK4) Positivity of the energy: the joint spectrum of the translation subgroup in U is
contained in the closed forward light cone V+ = {(a0, a1) ∈ R1+1 : a2

0−a2
1 ≥ 0, a0 ≥ 0}.

(HK5) Vacuum and the Reeh-Schlieder property: there exists a unique (up to a phase)
vector Ω ∈ H such that U(g)Ω = Ω for g ∈ P↑+ and is cyclic for any local algebra,

namely A(D)Ω = H.

(HK6) The Bisognano-Wichmann property: Let ΛWL
be the boost one-parameter group

associated with the wedge WL (see Section 2.2), and A(WL) =
(∨

D⊂WL
A(WL)

)′′
then

U(ΛWL
(2πt)) = ∆it

A(WL),Ω.

We included the Reeh-Schlieder property already in the axioms, because it follows from weak
additivity which is traditionally included in the axioms. The Bisognano-Wichmann property
is not automatic in general (see e.g. [Mor18]), but is a consequence of Möbius covariance (see
below) [BGL93], and it is a natural necessary condition for Möbius covariance.

Let (A, U,Ω) be a net satisfying (HK1)–(HK6). We can also define algebras for more
general open regions X by A(X) = (

∨
D⊂X A(D))′′ such as, for instance, wedges, forward

and backward lightcones and half-bands.
A Poincaré covariant net (A, U,Ω) is said to be Möbius covariant if the representation

U extends to the two-dimensional Möbius group G (see Section 2.2) which acts covariantly

on the extension of the net A to the cylinder M̃ . In such a case we shall say that (A, U,Ω)
is a Möbius covariant net.

In order to deduce Möbius covariance, we further introduce the following conditions.

(HK7) Dilation covariance: we assume that U extends to representation of the group of
Poincaré transformations P↑+ and the dilation group ΛV+ , which still acts covariantly
on the net, namely U(g)A(D)U(g)∗ = A(gD) for all g in the Poincaré-dilation group.

(HK8) Reeh-Schlieder property for V+: Ω is cyclic and separating for A(V+).

(HK9) Bisognano-Wichmann property for dilations:

U(ΛV+(2πt)) = ∆it
A(V+),Ω.

(HK10) One of the following conditions holds.

(a) Modular covariance4:

Ad ∆it
BL

(A(D0)) = AdU(δ(−2πt)× ι)(A(D0))(
= AdU(ΛR+(2πt)× ι)(A(D0))

)
,

especially, A(D0) ⊂ A(BL) is a +-HSMI.

(b) M̃-strong additivity: Let a < b < c and d > 0 in R and BL,(a,c) and BL,(a,b) +
(d, 0) two half-band with a common edge (see Figure 2), then

A(D(0,d)(b,c)) = A(BL,(a,c)) ∩ A(BL,(a,b) + (d, 0))′.
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a1

a0BL,(a,1)

D0

BL,(a,0) + (1, 0)

Figure 2: Double cone D0 as the relative causal complement of the shifted half-band BL,(a,0) +
(1, 0) in BL,(a,1) with a < 0.

The condition (HK10a) is concerned with the modular groups of half-bands, and might
look too strong. On the other hand, (HK10b) can be considered as a variation of strong

additivity: indeed, let the net be Möbius covariant and extend to M̃ . We say the net is
strongly additive if A(D) = A(D1)∨A(D2), where D,D1, D2 are double cones such that D1

and D2 share one boundary point, are spacelike to each other and the causal completion of
their union is D. It is immediate to see that this condition is equivalent to Haag duality on M
(see for the latter e.g. [KL04, Section 2.1 a)], [CLTW12, Proposition 5.2, a)]). Furthermore,

if A is Möbius covariant, then Haag duality on M̃ is automatic [BGL93, Theorem 2.3(i)].
Therefore, under Möbius covariance, Haag duality on M is equivalent to (HK10b). For this
reason we call (HK10b) a (variant of) strong additivity, although A does not a priori extend

to M̃ .
Differently from (HK10a), (HK10b) does not refer to modular groups which are without

a priori Möbius covariance difficult to determine, hence is more transparent for a sufficient
condition for the implication “dilation + α =⇒ Möbius”.

In Proposition 3.2 below we show that (HK10b) implies (HK10a). Only (HK1)–(HK10a)
are needed for the proof of conformal covariance in Theorem 3.3.

3 Proof of Möbius covariance

Lemma 3.1. Let (A, U,Ω) be a von Neumann algebra net satisfying conditions (HK1)–

(HK9). Then U extends to a representation UR of the group P × M̃öb (and analogously

M̃öb×P) and local covariance holds for left half-band algebras: AdUR(g)(A(BL,(a,b))) =

A(g ·BL,(a,b)) as long as g is in a neighborhood of the unit element of P× M̃öb whose action
does not take BL,(a,b) out of the Minkowski space M .

4This does not require that the actions Ad ∆it
BL

and AdU(δ(−2πt)×Λ(0,1)(2πt)) should coincide, indeed

we see that ∆it
BL

= U(δ(−2πt)× Λ(0,1)(2πt)), where U is an extension to G.
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Proof. We shall denoteM1 = A(WL+(0, 1)),M2 = A(BL),M3 = A(V+) and ∆k, k = 1, 2, 3
the associated modular operators w.r.t the vacuum vector Ω. By (HK6) and (HK9), we have
thatM2 = A(BL) ⊂ A(V+) =M3 andM2 = A(BL) ⊂ A(WL + (0, 1)) =M1 are +- and −-
HSMI, respectively (see Figure 3). Therefore, by Lemma 2.3, their modular groups ∆it1

2 ,∆it3
3

(∆it1
1 ,∆it2

2 respectively) satisfy the commutation relations of Λ(0,1) and ΛR+ (respectively
those of ΛR−+1 and Λ(0,1)). Let δ(·) × ι be dilations along the line a0 + a1 = 0. They are
included in the Poincaré-dilation group: indeed, δ(t)× ι = ΛV+(− t

2
)ΛWL

(− t
2
), and hence we

have U(δ(t)× ι) = U(ΛV+(− t
2
))U(ΛWL

(− t
2
)). By Lemma 2.1, all the above modular groups

∆it
k commute with U(δ(t)× ι), since the latter preserves each algebra and the vacuum. Note

also that

U(δ(t)× ι)U(δ(s)× ι)

= U
(
δ
(
ln(et+s + 1− et)

)
× ι
)
U

(
δ

(
ln

(
et+s

et+s + 1− et

))
× ι
)

(2)

as U(δ(·)× ι) is a one-parameter group. In particular, they satisfy the commutation relations
of Λ(0,1) and ΛR+ . Similarly, it also satisfies the commutation relations of Λ(0,1) and ΛR−+1.
Therefore, by straightforward computations, we have the following:

• ∆it2
2 U(δ(2πt2)× ι) and ∆it3

3 U(δ(2πt3)× ι) = U(ι× δ(−2πt3)) satisfy the commutation
relations of Λ(0,1) and ΛR+ .

• ∆it2
2 U(δ(2πt2)×ι) and ∆it1

1 U(δ(2πt1)×ι) = U(ι×ΛR−+1(2πt1)) satisfy the commutation
relations of Λ(0,1) and ΛR−+1.

a1

a0V+BL

WL

Figure 3: Regions V+, BL,WL +(1, 1) and their shadows R+, (0, 1),R−+1 on the line a0 = a1.

On the other hand, it is immediate that also U(ι × δ(−2πt3)) = U(ι × ΛR+(2πt3)) and
U(ι × ΛR−+1(2πt1)) satisfy the commutation relations of ΛR+ and ΛR−+1. Therefore, by

Lemma 2.4, we obtain a strongly continuous representation UR of M̃öb which coincides with
U(ι× · ) when restricted to ι×P by construction.
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We claim that this representation commutes with U(g× ι), g ∈ P. We only have to show
that ∆it

2U(δ(2πt)×ι) commutes with U(g×ι). By Lemma 2.1, ∆it
2 and hence ∆it

2U(δ(2πt)×ι)
commute with U(δ(s) × ι) since AdU(δ(2πt) × ι)(A(BL)) = A(BL) and U(δ(s) × ι)Ω = Ω.
Furthermore, as AdU(τ(a)× ι)(A(BL)) ⊂ A(BL) for a ≥ 0 and U(τ(a)× ι) preserves Ω, by
Theorem 2.2 we have that Ad ∆it

2 (U(τ(a) × ι)) = U(τ(e−2πta) × ι). Moreover it also holds
that AdU(δ(2πt2)× ι)(U(τ(a)× ι)) = U(τ(e2πta)× ι) as it is a representation of P. It follows
that ∆it

2U(δ(2πt)× ι) commutes with U(τ(a)× ι).
Altogether, U(g1 × ι) and UR(ι × g2) commute for g1 ∈ P, g2 ∈ M̃öb. We define a

representation UR of P× M̃öb by UR(g1 × g2) := U(g1)UR(g2).
Now we prove local covariance of {A(BL,(a,b))} with respect to UR. It is enough to check

it for ι× g ∈ ι× M̃öb, because covariance for elements in P× ι is the assumption (HK3) and

(HK7). We view that M̃öb acts on the universal covering S̃1 of S1 (which is homeomorphic

to R, see Figure 4). Let us denote by I(a,b) the interval in S̃1 corresponding to (a, b) in R.

We also identify R with an interval S̃1 and denote it by IR. In this paragraph, we consider
A as a net defined on open regions in IR × IR. Let I b IR be a bounded interval. Any
g ∈ M̃öb such that gI b IR can be written as a product of three elements g = g1g2g3, such
that g1, g3 ∈ P, g3I = I(0,1), g1 · I(0,1) = gI and g2 = Λ(0,1)(t2) for some t2 ∈ R. For such

g ∈ M̃öb, note that UR(ι× g1) and UR(ι× g3) acts geometrically by (HK3) and (HK7), and
UR(ι× g2) = ∆it2

2 U(δ(2πt2)× ι) preserves A(BL) = A(IR+ × g3I) = A(IR+ × I(0,1)), therefore,
we have

AdUR(ι× g)(A(IR+ × I)) = AdUR(ι× g1g2g3)(A(IR+ × I))

= AdUR(ι× g1g2)(A(IR+ × g3I))

= AdUR(ι× g1)(A(IR+ × g3I))

= A(IR+ × gI),

which is the desired local covariance. At this point, we can prove continuity from below

R

( (
(a, b)

) )

Figure 4: The universal covering of S1, and R as an interval on it.

(c.f. [FJ96, (24)]) for left half-bands, namely, A(R+×I) =
∨
IαbI
A(R+×Iα). Indeed, for each

Iα we can find gα ∈ M̃öb such that gαI = Iα and gα → ι as Iα tends to I. Now by continuity
of UR in the strong operator topology,

∨
IαbI
A(IR+ × Iα) =

∨
α AdUR(ι× gα)A(IR+ × I) ⊃

A(IR+ × I), and the converse inclusion is trivial.
Now we bring back the original notations and I, Iα are intervals in R. As for wedges, we

have by definition that A(WL) =
∨
IbR− A(R+×I). Therefore, for g which takes any interval

of R− into a compact interval in R, we have AdUR(ι × g)(A(WL)) =
∨
IbR− A(R+ × gI) =

A(R+ × gR−), where the last equality follows from continuity from below. In other words,
covariance holds also for WL. By taking g = g1g2 where g2 ∈ P, covariance holds for any
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WL+(0, aR), aR ∈ R. Finally, as UR(τ(aL)×ι) commutes with UR(ι×g), the above covariance
holds for any left wedge.

Proposition 3.2. Let (A, U,Ω) be a von Neumann algebra net satisfying conditions (HK1)–
(HK9)(HK10b). Then it also satisfies (HK10a).

Proof. By (HK10b), it holds that A(D0) = A(R+ × (aL, 1)) ∩A((R+ + 1)× (aL, 0))′ for any
aL < 0. For t > 0, Λ(0,1)(t) takes any interval in R− in R− itself, and say, Λ(0,1)(t)·aL = bL < 0,
and Λ(0,1)(t) · 1 = 1,Λ(0,1)(t) · 0 = 0. By covariance of Lemma 3.1, we have

AdUR(ι× Λ(0,1)(t))(A(D0)) = A(R+ × (bL, 1)) ∩ A((R+ + 1)× (bL, 0))′ = A(D0),

where the last equality holds for any negative number bL by (HK10b). Now we can invert t and
the equality holds also for t ≤ 0. Recalling the definition UR(ι×Λ(0,1)(t)) = ∆it

BL
U(δ(2πt)×ι),

and that AdUR(ι×Λ(0,1)(t)) preserves A(D0), we conclude that AdU(δ(−2πt)×ι)(A(D0)) =
Ad ∆it

BL
(A(D0)).

Theorem 3.3. Let (A, U,Ω) be a von Neumann algebra net satisfying conditions (HK1)–
(HK10a). Then U extends to the two-dimensional Möbius group G and with this extension
(A, U,Ω) is a Möbius covariant net.

Proof. Let us similarly define UL (the only assumption which is not symmetric between left
and right is (HK10a), but we have not used it for Lemma 3.1). Namely, UL(Λ(0,1)(2πs)× ι) =
∆is
BR
U(ι × δ(2πs)). We are going to prove that UR(ι × Λ(0,1)(2πt)) and UL(Λ(0,1)(2πs) × ι)

commute, and hence we will have a representation of M̃öb× M̃öb.
First, we show that U(ι× δ(2πt)) commutes with ∆is

D0
UR(ι× Λ(0,1)(−2πs)). Note that

• From (HK10a) and Lemma 2.1, UR(ι×Λ(0,1)(2πs)) commutes with the modular group
∆it
D0

of A(D0).

• By (HK9) and (HK10a) respectively, namely ∆it
V+

= U(δ(−2πt)× δ(−2πt)) and ∆is
BL

=
UR(δ(−2πs) × Λ(0,1)(2πs)) (see Lemma 3.1), the following three are all +-HSMI (see
Figure 5):

A(D0) ⊂ A(V+), A(D0) ⊂ A(BL), A(BL) ⊂ A(V+).

• The same relation as (2) holds for any one-parameter group.

Therefore, by putting s1 = ln(et+s + 1− et), t1 = ln
(

et+s

et+s+1−et

)
for small t we have

U(ι× δ(−2πt))∆is
D0
UR(ι× Λ(0,1)(−2πs))U(ι× δ(2πt))

= U(δ(2πt)× ι)∆it
V+

∆is
D0

∆−isBL
U(δ(−2πs)× ι)∆−itV+

U(δ(−2πt)× ι) (def. of UR, (HK9))

= U(δ(2πt)× ι) ∆it
V+

∆is
D0

∆−isBL
∆−itV+

U(δ(−2πs)× ι)U(δ(−2πt)× ι) (reordering)

= U(δ(2πt)× ι) ∆is1
D0

∆it1
V+

∆−it1V+
∆−is1BL

U(δ(−2πs)× ι)U(δ(−2πt)× ι) (by Eq. (1))

= U(δ(2πt)× ι) ∆is1
D0

∆it1
BL

∆−it1BL
∆−is1BL

U(δ(−2πs)× ι)U(δ(−2πt)× ι) (cancelling factors)

= U(δ(2πt)× ι) ∆it
BL

∆is
D0

∆−isBL
∆−itBL

U(δ(−2πs)× ι)U(δ(−2πt)× ι) (by Eqs. (1)(2))

= UR(ι× Λ(0,1)(2πt)) ∆is
D0
UR(ι× Λ(0,1)(2π(−s− t))) (def. of UR)

= ∆is
D0
UR(ι× Λ(0,1)(−2πs)). ([UR(Λ2(t)),∆is

D0
] = 0)
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But if this is valid for small t, it is valid also for any t by iteration.
We claim that ∆it

D0
= UR(ι×Λ(0,1)(2πt))UL(Λ(0,1)(2πt)× ι). One one hand, we know from

the previous paragraph that

AdU(ι× δ(2πs))(∆it
D0
UR(ι× Λ(0,1)(−2πt))) = ∆it

D0
U+(ι× Λ(0,1)(−2πt)).

On the other hand, by Theorem 2.2 and Proposition 3.1, we have

AdU(ι× δ(2πs))(∆it
D0
UR(ι× Λ(0,1)(−2πt))) = ∆it

ι×δ(2πs)·D0
UR(ι× Λ(0,s)(−2πt)).

Combining these two equalities and the limit s→∞, we obtain ∆it
D0
UR(ι× Λ(0,1)(−2πt)) =

∆it
BR
U(ι×ΛR+(−2πt)). Recall that ∆it

BR
= U(ι× δ(−2πt))UL(Λ(0,1)(t)× ι) by definition, and

we have U(ι×δ(−2πt)) = U(ι×ΛR+(2πt)), hence, ∆it
D0

= UR(ι×Λ(0,1)(2πt))UL(Λ(0,1)(2πt)×ι).
In particular, UR(ι×Λ(0,1)(t)) and UL(Λ(0,1)(s)× ι) commute and we obtain a representation

U of M̃öb× M̃öb by U(gL × gR) = UL(gL × ι)UR(ι× gR).

a1

a0

BL

D0

V+

Figure 5: Triple HSMI, D0 ⊂ BL, BL ⊂ V+, D0 ⊂ V+.

Now we prove local covariance of double cone algebras under M̃öb × M̃öb action. By
dilation and translation covariance, it is enough to consider D0. Let IL and IR be intervals
on the line R such that D0 = IL × IR. Recall that in the last step we proved ∆it

D0
=

U+(Λ(0,1)(−2πt))U−(Λ(0,1)(−2πt)). Now let us take an element of the form g×ι ∈ M̃öb×M̃öb,
such that gL = gL,1gL,2, gR = gR,1gR,2, where gL,1, gR,1 ∈ P, gL,1 = Λ(0,1)(t), gR,1 = Λ(0,1)(s)
for some t, s ∈ R. For such element, AdU(gL × gR)(A(D0)) = AdU(gL,1 × gR,1)U(gL,2 ×
gR,2)(A(D0)) = AdU(gL,1 × gR,1)(A(D0)) = A((gL,1 × gR,1) · D0), because U(gL,2 × gR,2) =
U(Λ(0,1)(t) × Λ(0,1)(s)) preserves A(D0) and covariance for gL,1 × gR,1 ∈ P × P holds by

assumptions. As any element g ∈ M̃öb×M̃öb which does not take D0 outside the Minkowski
space M can be written as above, this establishes local covariance with respect to M̃öb×M̃öb.

From here, by the conformal spin-statistic theorem (Theorem A.5), U factors through G
and we conclude that (A, U,Ω) is a Möbius covariant net.

Corollary 3.4. Let (A, U,Ω) be a conformal net satisfying (HK1)–(HK9) and (HK10b).
Then U extends to the two-dimensional Möbius group G and with this extension (A, U,Ω) is
a Möbius covariant net.

Proof. Immediate from Proposition 3.2 and Theorem 3.3.
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4 Counterexamples

In this section we discuss several Haag-Kastler nets which are covariant with respect to the
Poincaré-dilation group but cannot be extended to a Möbius covariant net. Constructions and
results of these sections can be easily adapted to (3+1)-dimensions. One should substitute the

representation of M̃öb× M̃öb in Section 4.2.2 by “massive” representations of the conformal
group in the sense of [Mac77], and note that any double cone O can be obtained as the
intersection of countably many wedges.

4.1 Breaking the Bisognano-Wichmann property for future light
cone

The Bisognano-Wichmann property for boosts holds in any Möbius covariant net on (1 + 1)-
dimensional the Minkowski spacetime [BGL93, Theorem 2.3]. Furthermore, since wedges are
mapped to lightcones by Möbius transformations, the Bisognano-Wichmann property for V+

holds in a Möbius covariant net (corresponding results hold for any conformally covariant
net on higher-dimensional Minkowski space).

Let (A, U,Ω) be a Möbius covariant net which admits a one-parameter inner symmetry,
namely, there is a one-parameter unitary group {V (s)} such that AdV (s)A(O) = A(O) and
[U(g), V (s)] = 0 for g ∈ G and s ∈ R and V (s)Ω = Ω. In this situation, we can construct a
new representation of the Poincaré-dilation group by setting UV (g) = U(g) for g ∈ P↑+ and
UV (δ(t) × δ(t)) = U(δ(t) × δ(t))V (t). It is easy to check that UV is still a representation of
the Poincaré-dilation group, A is covariant under UV and Ω is invariant under UV . While
the original net (A, U,Ω) satisfies the Bisognano-Wichmann property, the new net (A, UV ,Ω)
violates it since the algebra A(V+) and the vacuum Ω stay the same while UV (δ(t) × δ(t))
has been modified. Therefore, this UV cannot be extended to G in such a way that A is still
covariant, because that would contradicts the Bisognano-Wichmann property for V+ [BGL93,
Theorem 2.3].

It is easy to find such Möbius covariant nets. For example, if (A0, U0,Ω0) is a Möbius
covariant net on S1 with a one-parameter inner symmetry V0(s), one can just take the tensor
product A(IL × IR) := A0(IL) ⊗A0(IR), U(gL × gR) := U0(gL) ⊗ U0(gR),Ω := Ω0 ⊗ Ω0, and
V (s) := V0(s) ⊗ V0(s). As concrete examples, one can take a loop group net AG,k with a
compact group G at level k, and as V0 one can just take any one-parameter group in G
which acts as inner symmetry [GF93, Section III]. One can also consider the tensor product
of two copies of the U(1)-current net as a chiral component (see [Tan14, Section 5] for the
construction of inner symmetry on the complex massive free field, and [BT15, Section 5.2]
for restricting it to a lightray to obtain a net on S1).

As for the converse, we do not know whether it is always possible to satisfy (HK9) by
modifying U of a given Poincaré-dilation covariant net with (HK8), see the discussions in
Section 5.1. The fact that it is possible to modify the representation of the Poincaré-dilation
group is known in the physics literature [Nak15, Section 2.2, below (2.6)]. Finally, we remark
that it is also easy in (1 + 1)-dimension to violate the Bisognano-Wichmann property for
wedges [Tan14, Section 5].
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4.2 BGL construction and generalized free fields

The simplest two-dimensional quantum field theory is the massive free field. It cannot be
dilation covariant because it has an isolated mass shell. Yet, if one glue together continuously
many massive free fields, the mass spectrum becomes continuous and dilation may act on it.
This idea can be indeed realized as generalized free field. Here we take the construction based
on the one-particle representation of the Poincaré group: to a positive energy (anti-)unitary
representation of the Poincaré group with the CPT transformation, Brunetti, Guido and
Longo associated a net of real subspaces on wedges, and its second quantized net [BGL02].

When the given representation of the Poincaré group extends to Möbius group G =
(M̃öb×M̃öb)/Z2, there are two choices for double cones: either one defines the real subspaces
for double cones by covariance à la BGL, or by duality for wedges. We take a representation of
G such that the former construction yields a Möbius covariant net without chiral components,
while the latter contains a generalized free field and fails to have both Möbius covariance and
the split property.

Generalized free fields can have have dilation covariance but fail to be Möbius covariant,
see e.g. [DR09, Section 3.1]. In this case, a generalized free field has scaling dimension which
is not consistent with the unitarity condition of the Möbius group (or the conformal group
in the case of (3 + 1)-dimensions), and consequently, the field cannot be Möbius covariant.
This is different from our counterexamples. We consider first a Möbius covariant net (which
corresponds to a generalized free field with unitary scaling dimension), and show that its
dual net is dilation covariant but not Möbius covariant.

4.2.1 Nets of standard subspaces and first quantization nets

A general reference for this section is [Lon08]. Firstly, we recall the notion of real subspaces.
A linear, real, closed subspace H of a complex Hilbert space H is called cyclic if H + iH is
dense in H, separating if H ∩ iH = {0} and standard if it is cyclic and separating.

If H is a real linear subspace of H, the symplectic complement of H is defined by

H ′ ≡ {ξ ∈ H ; Im 〈ξ, η〉 = 0, for η ∈ H} = (iH)⊥R ,

where ⊥R denotes the orthogonal in H with respect to the real part of the scalar product
on H. H ′ is a closed, real linear subspace of H. If H is standard, then H = H ′′. H is
cyclic (respectively separating) if and only if H ′ is separating (respectively cyclic), thus H is
standard if and only if H ′ is standard. The Tomita operator SH associated to a standard
subspace H ⊂ H is the densely defined closed anti-linear involution H + iH 3 ξ + iη 7→
ξ − iη ∈ H + iH. The polar decomposition SH = JH∆

1/2
H defines the positive self-adjoint

modular operator ∆H and the anti-unitary modular conjugation JH . In particular, ∆H

is invertible and
JH∆HJH = ∆−1

H . (3)

We further have that SH′ = S∗H , JHH = H ′ and ∆it
HH = H for every t ∈ R. The one-

parameter, strongly continuous group t 7→ ∆it
H is the modular group of H. There is a 1–1

correspondence between Tomita operators and standard subspaces, namely between standard
subspaces H ⊂ H, operators S which are closed, densely defined anti-linear involutions on
H and pairs (J,∆) of an anti-unitary involution J and a positive self-adjoint operator ∆ on
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H satisfying (3). We recall the following analogue of Takesaki’s theorem [Lon08, Proposition
2.1.10].

Lemma 4.1. . Let K ⊂ H ⊂ H be an inclusion of standard subspaces in H. If ∆it
HK = K

for every t ∈ R, then K = H.

Let us denote the set of (left and right) wedges by W in the two-dimensional Minkowski
space M . The one parameter group of Lorentz boosts ΛWL

(t) = δ(−t) × δ(t) is associated
to WL. We associate to a general left wedge W = gWL the one-parameter group ΛW (t) =
gΛWL

(t)g−1, and to a right wedge W = gWR the reversed one-parameter group ΛW (t) =
gΛWL

(−t)g−1.
Let P+ be the proper Poincaré group, namely, it is generated by the connected component

P↑+ of the full Poincaré group and j : (aL, aR) 7→ (−aL,−aR). Let α be the action of j on P↑+,

then P+ = P↑+ oα Z2. We introduce also jW := gjg−1, where g ∈ P↑+ is such that W = gWL

or gWR, depending on whether W is a left or right wedge (this does not depend on the choice
of g, hence is well-defined). Let U be a (anti-)unitary, positive energy representation of P+,
namely unitary on P↑+ and anti-unitary on jWP↑+. In particular jW is represented by an anti-
unitary operator U(jW ). Define ∆W by the equation U(ΛW (t)) = ∆i2πt

W . Brunetti, Guido

and Longo associated a standard real subspace H(W ) = ker(1 − U(jW )∆
1
2
W ). They form

a (P+-covariant) net of standard subspaces for wedges in the following sense [BGL02,
Theorem 4.7]:

(SS1) Isotony: If W1,W2 and W1 ⊂ W2 then H(W1) ⊂ H(W2);

(SS2) Poincaré Covariance: U(g)H(W ) = H(gW ) for g ∈ P+, W ∈ W ;

(SS3) Positivity of energy: the joint spectrum of translations in U is contained in V+;

(SS4) Reeh-Schlieder property: H(W ) is standard in H for any W ∈ W

(SS5) Locality: for any W1 ⊂ W ′
2 then H(W1) ⊂ H(W2)′, where W ′ denotes the causal

complement of W in the Minkowski space M

(SS6) Bisognano-Wichmann property: U(ΛW (t)) = ∆i2πt
W for every W ∈ W and t ∈ R.

Given a net of standard subspaces {H(W )} for wedges, the dual net Hd of real subspaces
is defined for a double cone O by

Hd(O)=̇H(O′)′, (4)

where the causal complement O′ of O in the Minkowski space M consists of two wedges
W1,W2, and H(O′) is the real closed subspace spanned by H(W1) and H(W2). We do not
know for which class of U H(O) is standard, but we can prove it for a concrete class in Section
4.2.2. In that case, the net of standard subspaces {Hd(O)} satisfies isotony, P+-covariance,
positivity of energy, the Reeh-Schlieder property and locality in the natural sense.

If U extends to the group GoαZ2 (where G is the two-dimensional Möbius group), there
is another choice to assign a standard subspace to double cones. Let us define H(O) =

ker(1 − U(jO)∆
1
2
O), where U(jO) = U(g)U(JW )U(g)∗ with g such that O = gW and ∆O =
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U(g)∆WU(g)∗. With this definition, the net of standard subspaces {H(O)} satisfies isotony,
G oα Z2-covariance, positivity of energy, the Reeh-Schlieder property and locality in the
natural sense where O is a double cone on M̃ . We refer to this the BGL construction of
standard subspaces associated with U .

Bosonic second quantization. Let H be a (complex) Hilbert space and F+(H) be the
associated bosonic Fock space. Given a real subspace H ⊂ H, we shall denote with R+(H)
the second quantization von Neumann algebra

R+(H) = {W+(f) : f ∈ H}′′ ⊂ B(F+(H))

where W+(f) are the Weyl operator5 on the Fock space, satisfying the CCR

W+(f)W+(g) = eIm (f,g)W+(f + g), f, g ∈ H)

and ω(W+(f)) = (Ω,W+(f)Ω) = e−
1
2
‖f‖2 . The second quantization construction respects

the lattice structure and the modular theory. Let Γ+(A) be the multiplicative Bose second
quantization of a one-particle operator A on H.

Proposition 4.2. [Ara63, LRT78, LMR16] Let H and {Hκ} be closed, real linear subspaces
of H. We have

(a) R+(H)′ = R+(H ′);

(b) R+(
∑

κHκ) =
∨
κR+(Hκ);

(c) R+(
⋂
κHκ) =

⋂
κR+(Hκ).

(d) If H is standard, then SR+(H),Ω = Γ+(SH), JR+(H),Ω = Γ+(JH), ∆R+(H),Ω = Γ+(∆H).

In particular if O 7→ H(O) is a Poincaré covariant net of standard subspaces satisfying
(SS1)-(SS6), then its second quantization O 7→ A(O) = R+(H(O)) is a Poincaré covariant
net of von Neumann algebras satisfying (HK1)–(HK6) in Section 2.4. Furthermore, it follows
from Proposition 4.2, that Ad(O) = R+(Hd(O)), where Ad(O) := A(O′)′ is the dual net of
A.

4.2.2 Möbius covariant nets without chiral components

We apply the BGL construction to a particular class of representations of G. To be specific,
let us take the irreducible positive energy representation U0 of Möb with lowest weight 1.
Let j0 be the map z 7→ z̄ on S1 and it acts on Möb through the identification of Möb as
SU(1, 1), which we call α0. U0 extends to an (anti-)unitary representation of Möb oα0 Z2

which we denote again by U0, namely U0 is unitary on Möb and anti-unitary on j0 Möb. (see
e.g. [Lon08, Section 1.6.2]). We can define a positive-energy (anti-)unitary representation
of G oα Z2 by U(gL × gR) := U0(gL) ⊗ U0(gR) and U(j) := U(j0) ⊗ U(j0) where, on the
real line picture, j0 : R 3 a 7→ −a. Note further that the joint spectrum of U restricted to
the translation group R1+1 has no nontrivial spectral projections corresponding to the sets

5The symbol W+ should not be confused with wedges W . Weyl operators appear only in this section.
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R+×{0} or {0}×R+. In the second quantization Γ+(U), these spectral projections contain
only CΩ.

By the BGL construction, we obtain a Möbius covariant net (AU ,Γ+(U),Ω). This net

does not have chiral components, i.e. Amax
U,L (IL) := A(IL × IR) ∩

(
Γ+(U)(ι× M̃öb)

)′
=

C1 = A(IL × IR) ∩
(

Γ+(U)(M̃öb× ι)
)′

=: Amax
U,R (IR) (see [Reh00, Definition 2.1]). Indeed, if

these algebras were nontrivial, the representation Γ+(U)(τ×τ) of R1+1 would have nontrivial
spectral projections (properly larger than CΩ) corresponding to the sets R+×{0} or {0}×R+,
which is a contradiction.

A Möbius covariant net A is said to have the split property if for each O b Õ (namely,
O ⊂ Õ) there is an intermediate type I factor RO,Õ such that A(O) ⊂ RO,Õ ⊂ A(Õ). To
show that AU has the split property, let us consider the theory on restricted to the timelike
line aR = aL, namely R ⊃ I 7→ AU(OI) where OI is the minimal double cone including
I. The diagonal action Γ+(U)(g × g) acts on {A(OI)} covariantly, where g ∈ Möb and the
one-particle conformal Hamiltonian is L0 ⊗ 1 + 1 ⊗ L0, where L0 is the rotation generator
in U0. As we took U0 as an irreducible representation of Möb, the one-particle conformal
Hamiltonian satisfies the trace class property:

Tr(e−β(L0⊗1+1⊗L0)) = Tr(e−βL0)2 <∞, for any β > 0

since Tr(e−βL0) <∞. Now the trace class property is preserved through second quantization
[Lon08, Corollary 7.4.2] and it ensures the split property for any inclusion AU(OI) ⊂ AU(OĨ),
with I b Ĩ [BDL07, Corollary 6.4]. For any inclusion of double cones O b Õ, we can find
O1 such that O b O1 b Õ and O1 b Õ is conformally equivalent to some OI b OĨ for which
the split property holds, therefore, AU(O) ⊂ AU(Õ) with O b Õ ⊂ R1+1 satisfies the split
property.

4.2.3 Dual net without Möbius covariance

As (A,Γ+(U),Ω) is Möbius covariant, and especially Poincaré-dilation covariant, the dual
net (Ad

U ,Γ+(U),Ω), where A(O) = A(O′)′ = A(W1)∩A(W2), where W1,W2 are wedges such
that O = W1 ∩ W2, remains to be Poincaré-dilation covariant, because the set of wedges
is closed under Poincaré and dilation transformations. Here we show that it cannot be
extended to a Möbius covariant net because Ad

U(V+) = B(H). We identify U with the direct
integral of massive representations Um of P↑+, for which the property HUm(V+) = Hm is well
known. This provides an example of a Möbius covariant net (AU ,Γ+(U),Ω) whose dual net
(Ad

U ,Γ+(U),Ω) neither is Möbius covariant nor satisfies the split property.

The massive free field. Let Um be the scalar representation of the Poincaré group P+

with mass m. It has the form

(Um(a, λ)ξ)(p1) = eia·pmξ(λ−1(p1)), (a, λ) ∈ P↑+
(Um(j)ξ)(p1) = ξ(p1),

where pm(p1) = (ωm(p1), p1) ∈ R1+1 (in (p0, p1)-coordinate, not in (pL, pR)-coordinate),
ωm(p1) =

√
m2 + p2

1, λ(p1) = − sinh(λ)ωm(p1) + cosh(λ) p1 (where we identify λ ∈ R and
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an element of the Lorentz group) and ξ ∈ Hm = L2(R, dp1
2ωm(p1)

). Let {Hm(W )} be the net
of standard subspaces for wedges associated to Um as in Section 4.2.1. We define subspaces
relatively to double cones by duality as in Equation (4). Actually, the more traditional con-
struction of the free massive field net satisfies Haag duality, c.f. [Ost73], hence the one-particle
local subspaces can be explicitly described as

Hm(O) = {f̂+(pm) ∈ Hm : f ∈ S (R1+1,R), supp f ⊂ O},
Hm(W ) = {f̂+(pm) ∈ Hm : f ∈ S (R1+1,R), supp f ⊂ W},

f̂+(p1) =
1

2π

∫
d2a f(a)e−ia·pm .

We associate the following real subspaces to the forward and the backward light cones
V±:

Hm(V±) =
∑
O⊂V±

Hm(O).

The following proposition is partly an adaptation of the arguments in [SW71].

Proposition 4.3. Hm(V±) = Hm

Proof. We prove the claim for V−. It can be proved analogously for V+.
Let O ⊂ V− and take the vectors ξ ∈ Hm(O) and η ∈ Hm(V−)′. Consider the function

f(a) = Im 〈η, U(a)ξ〉.

It follows that f is real, it vanishes for any a ∈ V− and, since (� + m2)f = 0, supp f̂ ⊂
(−Ωm ∪ Ωm) as a distribution.

We claim that f ≡ 0. Let dµ(p) = f̂(p) δ(p2 −m2) d2p be the measure associated to the
Fourier transform of f , namely

f(a0) =

∫
eia0p0dµa1(p0), a = (a0, a1), p = (p0, p1)

where

dµa1(p0) =

∫
e−ia1p1dµ(p0, p1)

=
(
e−ia1
√
p20−m2

f(p0,
√
p2

0 −m2) + e−ia1
√
p20−m2

f(p0,−
√
p2

0 −m2)
)
dp0.

Now, note that the support of a0 7→ f(a0, a1) is contained in R+ − |a1|, thus the Fourier
transform dµa1(p0) extends to an analytic function on the upper complex half-plane. Fur-
thermore, p0 7→ dµa1(p0) is null on the interval (−m,m) and hence for any test function h,
the analytic function h ∗ dµa1(p0) is 0 by the reflection principle. Therefore, f(·, a1) ≡ 0 for
every a1 ∈ R, and hence f ≡ 0.

Now let η be in the symplectic complement of any Hm(O): η ∈
(∑

O⊂M Hm(O)
)′

, hence

in particular it belongs to Hm(W ′)′ ∩Hm(W )′ = Hm(W ) ∩Hm(W ′). Indeed,

η ∈
⋂

O⊂W ′
Hm(O)′ =

(∑
O⊂W ′

Hm(O)

)′
= Hm(W ′)′ = Hm(W ),
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and similarly for W ′.
We show that η = 0. Firstly we observe that η ∈ Hm(W )∩Hm(W ′) hence ∆it

Hm(W )η = η.
Indeed,

η ∈ ker(1− SHm(W )) ∩ ker(1− SHm(W ′))⇔
η ∈ ker(∆

1/2
Hm(W ) −∆

−1/2
Hm(W ))⇔

∆Hm(W )η = η.

In particular, by the Bisognano-Wichmann property, we have that U(ΛW (t))η = η for any
wedge W and t ∈ R. Since Um is an irreducible representation of P↑+, boosts does not have
proper invariant vectors, and we conclude that η = 0.

This proof can be adapted in any Minkowski space R1+s with s ≥ 1.

The product representation as the direct integral of massive representations.
We have seen in [BT15, Section 5.2] that the representation U0, restricted to the translation-
dilation group, can be realized on L2(R+, pdp) as follows:

(U0(τ(t))ξ)(p) = eitpξ(p)

(U0(δ(s))ξ)(p) = e−sξ(e−sp)

(U0(j0)ξ)(p) = ξ(p).

and accordingly the product representation U restricted to the Poincaré-dilation group on
L2(R+, pLdpL)⊗ L2(R+, pRdpR) is given by

(U(τ(tL)× τ(tR))ξ)(pL, pR) = ei(tLpL+tRpR)ξ(pL, pR)

(U(δ(sL)× δ(sR))ξ)(pL, pR) = e−sL−sRξ(e−sLpL, e
−sRpR)

(U(j0 × j0)ξ)(pL, pR) = ξ(pL, pR).

With this realization and the correspondence 2pLpR = p2
0 − p2

1 = m2, p1 = pR−pL√
2

, we have
the natural identification

L2(R+, pLdpL)⊗ L2(R+, pRdpR) ∼= L2(R2
+, pLpRdpLdpR)

∼= L2(V+,
m3 dmdp1
2ωm(p1)

)

=

∫ ⊕
R+

dµ(m)L2(R, m3 dp1
2ωm(p1)

)

This identification is given by the map ξ(pL, pR) 7→ ξ′(m, p1) = 2ξ(ωm(p1)+p1√
2

, ωm(p1)−p1√
2

), where
the factor 2 is needed to make it unitary. It is straightforward to check that this intertwines
the representation U above and

(U ′(a, λ)ξ′)(m, p1) = eia·(ωm(p1),p1)ξ′(m,λ−1(p1)) (a, λ) ∈ P↑+,
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acting on H = L2
(
R+ × R, dµ(m)dp m3

2ωm(p1)

)
=
∫ ⊕
R+
m3dµ(m)L2(R, dp1

2ωm(p1)
), where the boost

λ corresponds to δ(λ)× δ(−λ). Then, U decomposes into the direct integral

U =

∫ ⊕
R+

m3 dµ(m)Um.

A generalized free field can act on the second quantization of this Hilbert space, and it is
covariant with respect to Γ+(U). It is well known that the net of von Neumann algebras for
generalized free fields does not always satisfy Haag duality [Lan74], depending on the measure
on the space of m: it is proven that if the measure decays exponentially, Haag duality fails
[Lan74]. We will show that the measure m3 dµ(m) is associated with a Möbius covariant net
while the dual net cannot be made Möbius covariant. Accordingly, we conjecture that the
generalized free field corresponding to the measure m3dµ fails to have Haag duality.

The dual net Ad is not Möbius covariant. Here we show that the dual net Ad does
not satisfy (HK8), therefore, it cannot be made Möbius covariant. It turns out that, since U
is a direct integral of massive representations, Ad does not satisfy the split property either.

Let {HU(W )} (respectively {Hd
U(O)}) be the covariant (respectively dual) BGL net of

standard subspaces for wedges (respectively double cones) associated with the representation
U =

∫ ⊕
R+ m

3 dµ(m)Um.

We show that Hd
U(O) =

∫ ⊕
R+ m

3 dµ(m)Hm(O), where the direct integral is taken with HU

as a real Hilbert space. Note also that Hm(O) is a µ-measurable family of (real) subspaces
in the sense of [Dix81, Section II.1.7] (see Appendix B), because one can take a sequence
of real test functions supported in O which separate the points in O (see Proposition B.2).
Now, we have that

Hd
U(O) =

⋂
W⊃O

HU(W )
(•)
=
⋂
W⊃O

∫ ⊕
R+

m3 dµ(m)Hm(W )

(?)
=

∫ ⊕
R+

m3 dµ(m)
⋂
W⊃O

Hm(W ) =

∫ ⊕
R+

m3 dµ(m)Hm(O).

Since U disintegrates as
∫ ⊕
R+
m3dµ(m)Um it is easy to see that HU(W ) = ker(1−U(jW )∆

1
2
W ) ⊃∫ ⊕

R+
m3 dµ(m)Hm(W ). The converse inclusion follows since the Lorentz boosts U(ΛW (t)) =∫ ⊕

R+
m3 dµ(m)Um(ΛW (t)) fix the subspace

∫ ⊕
R+
m3 dµ(m)Hm(W ) for any t ∈ R. Since the

latter subspace is standard and (SS6) holds on HU , we conclude (•) by Lemma 4.1. To
justify (?), we refer to the Appendix B, Lemma B.3(b), and note that we only need two
wedges whose intersection is O. Therefore, by Lemma B.3(c),

Hd
U(V+) =

∑
O⊃V+

Hd
U(O) =

∫ ⊕
R+

m3 dµ(m)Hm(V+).

We have seen in Proposition 4.3 that Hm(V+) = Hm, hence it follows that Hd
U(V+) = H. In

particular, (HK8) fails and the net Ad cannot be made Möbius covariant by replacing Γ+(U)
by any other representation.
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It is known that the dual net of the generalized free field does not satisfy the split property
if the measure is not atomic [DL84, Theorem 10.2]. Our measure is m3 dµ(m), therefore, the
dual net Ad fails to have the split property6.

5 Comments on assumptions and examples

5.1 Operator-algebraic assumptions

As we discuss the question whether dilation covariance can be promoted to Möbius covariance,
(HK7) is a natural assumption. The physical meaning of (HK8) and (HK9) are not very clear,
but they are necessary conditions for a Haag-Kastler net to be Möbius covariant. Indeed, a
Möbius covariant net extends to the cylinder M̃ , any double cone is conformally equivalent
to a lightcone, hence (HK8), and the Bisognano Wichmann property holds automatically for
wedges, double cones and lightcones, hence (HK9). We showed in Section 4.2 that (HK8)
excludes the dual net of certain generalized free fields which are counterexamples to the
implication “dilation =⇒ Möbius” without any additional assumption. Furthermore, even if
(HK8) is satisfied, (HK9) may fail and in this case Möbius covariance cannot be expected, as
shown in Section 4.1. Conversely, if (A, U,Ω) satisfies (HK1)–(HK6) and (HK8), the modular
group of A(V+) commutes with Lorentz boosts U(δ(t)× δ(−t)) (because it preserves A(V+)
and Ω, hence Theorem 2.2 applies), however, it is unclear whether it acts covariantly on A.

(HK10a) is certainly a necessary condition for Möbius covariance, but might seem too
strong, because it requires that ∆it

BL
acts as a certain Möbius transformation up to an inner

symmetry. On the other hand, we proved the implication (HK10b) =⇒ (HK10a) (under
(HK1)–(HK9)) and (HK10b) does not refer to any Möbius transformation, therefore, Corol-
lary 3.4 is rather satisfactory. Furthermore, let us stress that our proofs do not rely on either
stress-energy tensor or current, c.f. Section 5.2. Indeed, there are Möbius covariant nets
without stress-energy tensor. Therefore, at least from the mathematical point of view, the
modular theory is more essential for Möbius covariance.

Yet, there are examples of Möbius covariant net not satisfying (HK10b). The simplest
examples are two-dimensional nets Virc ⊗ Virc, where Virc is the Virasoro net with central
charge c > 1. As the chiral components Virc does not satisfy strong additivity [BSM90,
Section 4, P.122], the two-dimensional net fails to satisfy (HK10b). Another family of ex-
amples is the derivatives of the U(1)-current [GLW98, Corollary 2.11], and one can again
construct two-dimensional nets by tensor product which do not satisfy (HK10b). These ex-
amples satisfy (HK10a), hence are covered by Theorem 3.3 (although Möbius covariance for
these examples is trivial because each chiral component if Möb-covariant). Interestingly, in
both examples the current is missing, and there is even no stress-energy tensor in the latter

6This can be seen at the one-particle level. The second quantized net AU has the split property if and
only if the operator ∫ +∞

0

∆
FO,Õ

m
|[0,1]dµ(m)

is trace class, where FO,Õ
m is the intermediate type I factor subspace between Hm(O) ⊂ Hm(Õ), cf. [FG94,

DL84]. In particular it is a necessary condition for the split property that dµ has to be purely atomic,
concentrated on isolated points, cf. [Mor18].
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case [Koe03, Proposition 3], hence it is not covered by the physics arguments (see below).
In the d = 1 case, Guido, Longo and Wiesbrock have shown that any local net which is co-

variant with respect to the translation-dilation group and satisfies the Bisognano-Wichmann
property extends to a Möbius covariant net on S1 [GLW98, Theorem 1.4]. This does not
straightforwardly generalize to d = 1 + 1 because the inclusion A(WR + (0, aR)) ⊂ A(WR) is
in general not a standard inclusion, and hence, even if one assumes the Bisognano-Wichmann
property for wedges, it is not enough to construct a representation of the group M̃öb× M̃öb.
This is why we needed the assumption (HK10a).

5.2 Physics literature

The arguments by Zamolodchikov and Polchinski [Zom86][Pol88] are considered a proof in
physics literature (e.g. [Nak15]). They are expressed in terms of Wightman-type assumptions
on pointlike observables Ok(x), i.e. [Nak15, Section 3.1]:

• unitarity

• Poincaré covariance

• (unbroken) dilation covariance

• discrete spectrum in scaling dimension: each of the pointlike observables Ok(x) has a
definite “scaling dimension” AdU(δ(t))(Ok(x)) = t∆kOk(tx).

• existence of scale current: there are a stress-energy tensor Tµν(x) and a current Jµ(x)
such that

∫
dd−1x [xρTρ0(x)− J0(x)] is the generator of dilations.

Note that, apart from implicit assumptions such as {Ok(x)} are Wightman fields and the
existence of the integral for the generator of dilations, the well-definedness of scaling di-
mension is also a quite strong assumption: it implicitly says that there is a family of fields
{Ok(x)} which linearly generate the whole Hilbert space from the vacuum. This is different
from the usual Wightman situation where the whole Hilbert space is generated algebraically,
namely, one is allowed to use polynomial of such (smeared) fields. Once a complete set of
fields {Ok(x)} is obtained, one defines the “scaling dimension matrix” γk` which is defined
by [D,Ok(x)] = −i(

∑
` γk`O`(x) + xµ∂µOk(x)). Actually it appears that it is not always

diagonalizable only from dilation covariance [Nak15, Section 2.2, below (2.6)]. Therefore,
the discreteness of scaling dimension, and invertibility of γk`, strongly anticipates the Möbius
covariance.

Under these assumptions, the main concern of [Pol88] is whether one can take a stress-
energy tensor Tµν which has the “canonical scaling dimension”, namely AdU(δ(t))Tµν(x) =
t2Tµν(tx). Such a new stress-energy tensor is obtained by the inverse of γk`. Once Tµν acquires
the canonical scaling dimension, the Lüscher-Mack theorem [FST89, Theorem 3.1] gives a
clear explanation of why it satisfies the Lie algebra of vector fields.

By smearing the stress-energy tensor with a slightly singular function (whose existence

is implicitly assumed, see below), one obtains the generators of the Lie algebra of M̃öb.
However, we are unable to find arguments or explanation on the following points:
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• Once a stress-energy tensor with canonical dimension is found, how can one show that
the rest of the fields {Ok(x)} are Möbius covariant? Indeed, if one of {Ok(x)} are
“descendant”, one is forced to introduce the primary field [Koe03, ESNR11]. Namely,
there is no guarantee that the original set of fields {Ok(x)} is sufficient.

It is not always possible to find such an extended family solely from the representation
of M̃öb. Indeed, we have the example from Section 4.2, where the representation U
extends to M̃öb× M̃öb, but the observables do not extend to M̃ .

• Does the stress-energy really give the generator of rotation? Here we have two examples
in which stress-energy tensor is not directly connected with rotation.

– The U(1)-current net. One can take a new stress-energy tensor T cµν with central
charge c > 1 which are relatively local to the U(1)-current J and generate the
same translation-dilation group, but does not give the correct rotation [BSM90].

– The dual net of the Virasoro net Virc with c > 1. The stress-energy tensor T cµν
generate the correct translation-dilation group, but not the rotations for the dual
net.

Besides, in order to obtain the generator of rotation, one has to smear the stress-energy
tensor with the function x2 + 1 (c.f [Nak15, below (2.14)]), which is more singular than
other generators (1 for translations and x for dilations). Indeed, this is exactly why T c

fails to extend to S1 on the whole Hilbert space of the U(1)-current. It appears to be
known that in this case the conformal covariance cannot be obtained [Nak18].

• Stress-energy tensor is not uniquely determined, even if it is assumed to have the
canonical dimension, as in the U(1)-current net. Which one is the “physically” correct
stress-energy tensor?

Generalized free fields (c.f. Section 4.2) are referred to as “fake counterexamples” in
[DR09, Section 3.1], because they do not possess stress-energy tensor. In fact, one can
construct a stress-energy tensor which generate the Poincaré symmetry, but it turns out very
singular [DR03, Section 3]. Yet, the smeared stress-energy tensor gives a quadratic form
on the Wightman domain, which means that the Wightman-type assumptions are crucial.
Besides, the existence of stress-energy tensor in this sense does not depend on the scaling
dimension ∆, while the extension of U to the Möbius group (or the conformal group in the
case of (3 + 1)-dimensions) depends on ∆. Therefore, one might conclude that the absence
of conformal covariance in generalized free fields for certain ∆ is due to the representation
theory of the Möbius/conformal group, and not to the absence of stress-energy tensor.

5.3 Open problems

We do not know whether (HK10a) or (HK10b) can be dropped or weakened: (HK10a) is
surely a necessary condition for Möbius covariance, but we do not have an example where
(HK1)–(HK9) hold but (HK10a) fails. A natural candidate for a counterexample is the
generalized free field with the measure msdµ where s < 1. It is clear that the field cannot be
M̃öb× M̃öb covariant because such a field should possess negative scaling dimension, which
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violates unitarity. However, to show that the net generated by it cannot be extended to a
Möbius covariant net, one has to show that there is no extension of U which makes the net
covariant. The latter is more difficult than the (non-)covariance of the field, because the
possible extension is determined by the modular group, which is difficult to compute if it is
not a priori Möbius covariant.

One would naturally expect that a similar result should hold in d = 3 + 1. However, this
problem is widely open. Differently from d = 1+1 where the group of symmetry is a product
M̃öb×M̃öb, the conformal group in four dimensions is locally isomorphic to SU(1, 1), which is
a simple Lie group [Mac77]. In order to extend the representation U of the Poincaré-dilation
group, one might use the modular groups of double cones, but they must act in a compatible
way. To us it is unclear how this can be obtained from Poincaré-dilation covariance, even
with some additivity property or any other natural condition.

Another important problem raised by the examples in Section 4.2 is which nice properties
are expected to be inherited by the dual net, under which conditions. As we have shown that
the dual net of a Möbius covariant net in Section 4.2 fails to have the split property, it is a
natural question whether the dual nets of Virc have the split property (if not, they could not
be conformally covariant [MTW18]).

A The two-dimensional conformal spin-statistics theo-

rem

We saw in the proof of Theorem 3.3 that for a Haag-Kastler net (A, U,Ω) satisfying (HK1)–

(HK10a) U extends to M̃öb× M̃öb and the net A remains locally covariant with respect to
U . To conclude it, we have to show that U factors through G, where G is the quotient of
M̃öb× M̃öb by the normal subgroup generated by {ρ−2π × ρ2π} (see Section 2.2). A similar
statement for nets on R is known as the conformal spin-statistic theorem [BGL93, GL96],
and the two-dimensional version is known to experts (see e.g. [KL04, Proposition 2.1]), but
proof is missing in literature. For the reader’s convenience, we present a self-contained proof.

Let j denote the spacetime reflection, namely j(aL, aR) = (−aL,−aR). We denote by
jW := gjg−1 the spacetime reflection with respect to the wedge W , where W = gWR,
g ∈ P↑+.

Lemma A.1. Let (A, U,Ω) a Poincaré covariant net of von Neumann algebras on wedges
satisfying (HK1)–(HK6) of Section 2.4. Then U extends to the group P↑+oZ2 by the modular
conjugation:

U(j) := JA(WR),Ω = JA(WL),Ω

and wedge algebras are covariant with respect to this extension, namely, AdU(j)A(W ) =
A(jW ).

Proof. From the Bisognano-Wichmann property (HK6), wedge duality A(WR) = A(WL)′

follows (see e.g. [Tan12, Proposition A.2]). Locality (HK2) and wedge duality properties
together imply that JA(WR),ΩA(WR)JA(WR),Ω = A(WR)′ = A(WL). Again by (HK6), JA(WR)

commutes with the boosts and by Theorem 2.2 it satisfies the right commutation relations
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with translations. For a general wedge W = τ(a)WR, a ∈ R1+1, we have

Ad JA(WR)(A(W )) = Ad
[
JA(WR)U(τ(a))

]
(A(WR)) = Ad

[
U(τ(−a))JA(WR)

]
(A(WR))

= AdU(τ(−a))A(WL) = A(τ(−a)WL),

which is the covariance of wedge algebras.

Remark A.2. We do not know whether covariance holds for the whole net A including double
cones. It does if we assume Haag duality for double cones, but that assumption might be
too strong for Möbius covariant nets, as we saw in Section 4.2.3 that going to the dual net
may break Möbius covariance.

Consider the local action of M̃öb × M̃öb on the Minkowski space given by (gL × gR) ·
(aL, aR) = (gLaL, gRaR). We identify R with the universal covering of S1, and with this

identification, M̃öb×M̃öb acts on R2. The Minkowski space can be identified with (−π, π)×
(−π, π) ⊂ R ⊗ R and we denote it by M0. See [BGL93]. Any diamond with center in
(a, b) ∈ R2 of the form (a − π, a + π) × (b − π, b + π) is a copy of the Minkowski spacetime

and is denoted by M(a,b). Let θ 7→ ρθ ∈ M̃öb and t 7→ τt ∈ M̃öb be the lifts of the
rotation and translation groups, respectively. Copies {M(a,b)} of the Minkowski spacetimes

are transformed to each other by some element in R×R 3 (θ1, θ2) 7→ ρθ1×ρθ2 ∈ M̃öb× M̃öb.
Let t 7→ ΛW (t) be the lift of the boosts associated with the wedge W . Wedges and double
cones are diamonds with sides shorter than 2π, and in R2 they are indistinguishable. We call
then double cones (in R2).

aR−aL√
2

aR+aL√
2

M0

aRaL

Figure 6: The Minkowski space M0 in R2. The cylinder is obtained by identifying the dotted
lines. The dark grey region is the right wedge WR ⊂ M0 and the light grey region is a
doublecone O ⊂M0

Let (A, U,Ω) satisfy (HK1)–(HK6) and assume the local M̃öb× M̃öb-covariance:

(LM) U extends to M̃öb× M̃öb and U(g)A(O)U(g)∗ = A(gO), for g in a small neighborhood

UO of ι× ι ∈ M̃öb× M̃öb such that UOO stays in M0.

The net A of von Neumann algebras can be extended to any double cone in R2 (diamonds
with sides shorter than 2π) by covariance. Isotony (HK1) and locality (HK2) continue to hold
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for double cones included in one copy M of Minkowski space. For a double cone which is a
wedge W inM0, there are a priori two definitions: A(W ) =

∨
D⊂W A(D) and by covariance.

But actually they coincide by the continuity of U , hence we only have to deal with {A(D)}
where D is a “double cone” in R.

If AdU(ρ−2π × ρ2π)A(O) = A(O) holds for any double cone in R2, we can identify points

connected by ρ−2π × ρ2π and obtain a net on M̃ . In this case, we say that (A, U,Ω) reduces

to the cylinder M̃ .

Lemma A.3. Let (A, U,Ω) be a M̃öb covariant net satisfying (HK1)–(HK6) and (LM).

Then, it reduces to M̃ .

Proof. We show that for any double cone O ⊂ M0 it holds that AdU(ρ−2π × ρ2π)A(O) =
A(O). As any double cone on R2 are contained in a copy M of the Minkowski space, and
the net {A(O)} is defined by covariance with respect to ρ× ρ, this suffices to conclude that
AdU(ρ−2π × ρ2π)A(O) = A(O) holds for any double cone.

Let WR/L and W π
R/L be the right and left wedges in M0 and M(−π,π) = (ρ−π × ρπ)M0,

respectively. Note that WR coincides with the left wedge W π
L in M(−π,π), see Figure 7. There-

fore, by wedge duality, A(WR)′ = A(WL) and A(WR)′ = A(W π
L )′ = A(W π

R). Altogether,

A(WL) = AdU(ρ−2π × ρ2π)(A(WL)) = A(W π
R). (5)

M0 Mπ

Figure 7: Light grey areas are wedge regions in the two copies of the Minkowski spacetimes
M0 and Mπ. Equation (5) shows that algebras associated with these regions are the equal.

By composing with an appropriate τt×τs, (5) holds for any wedge W in M0. It also holds
for double cones. Indeed, WR is a double cone in M(−ε,ε) with ε > 0 (see Figure 8) and by
covariance one can infer that for any double cone O ⊂M0

A(O) = AdU(ρ−2π × ρ2π)(A(O)) = A((ρ−2π × ρ2π)O).

Lemma A.4. Let (A, U,Ω) be a M̃öb covariant net satisfying (HK1)–(HK6) and (LM).
Then, for any wedge W in a copy of Minkowski space M , the wedge modular conjugation JW
implements jW on M .
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M0 M(−ε,ε)

Figure 8: The shaded region represents the right wedge in M0 and a double cone in M(−ε,ε)

Proof. The net can be extended to the cylinder by Lemma A.3. Let WL = (0, π) × (−π, 0)
and WL,1 = (1, π) × (−π,−1) = (τ(1) × τ(−1))WL ⊂ WL be wedges in M0. The restriction
of the net A on M0 satisfies the assumptions of Lemma A.1, hence we have

AdU(j)(A(WL,1)) = A(WR,1), (6)

where WR,1 = (−π,−1)× (1, π). Now, note that U(j) = JWL
= JWR

and that on M(−π,π) the
region WR,1 is a double cone (see Figure 9). Thus, by (6),

AdU(j)(A(WR,1)) = A(WL,1) = A((ρ−2π × ρ2π)WL,1),

where the last equality follows because the net is defined on M̃ . Note that (ρ−2π × ρ2π)WL,1

is the double cone which is obtained by reflecting WR,1 by jWπ
R

in M(−π,π), namely, this is
covariance of double cone algebras in M(−π,π). We obtain covariance for any other double

cone by P↑+-covariance, and this result can be brought back to M0 by AdU(ρ−2π × ρ2π).

M0 Mπ

Figure 9: U(j) transforms the algebras in light grey to dark grey regions (and vice versa).
They are wedge and doublecone algebras in the M0 and Mπ pictures, respectively.

Now we can prove the conformal spin-statistics theorem.
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Theorem A.5. Let (A, U,Ω) satisfy (HK1)–(HK6) and (LM). Then the representation U

of M̃öb× M̃öb factors through a representation of G.

Proof. We have to show that U(ρ−2π×ρ2π) = 1. Let O1 = (−π
2
, π

2
)×(−π

2
, π

2
) be a double cone

in M0 = (−π, π)×(−π, π). We saw in Lemma A.4 that Ad JA(WR),Ω implements the reflection
j, hence it is an antilinear automorphism of A(O1). In particular, JA(WR),Ω commutes with
JA(O1),Ω and the unitary JA(WR),ΩJA(O1),Ω is self-adjoint.

We are going to show that

JA(WR),ΩJA(O1),Ω = U(ρ−π × ρπ). (7)

Let L0,L be the generator of θ 7→ U(ρθ × ι), PL be the generator of t 7→ U(τt × ι) and P̄L be
the generator of anti-translations U((ρπ ◦ τt ◦ ρ−π)× ι). Analogously we introduce L0,R, PR

and P̄R. As operators on an appropriate domain,

L0,R =
PR + P̄R

2
, L0,L =

PL + P̄L

2
,

see e.g. [Kös02, Proposition 1]. By applying Theorem 2.2 to A(WR) and translations or
anti-translations, JA(WR),Ω commutes with each of PR, P̄R, PL, P̄L, thus by antilinearity of
JA(WR),

JA(WR),ΩU(ρθ1 × ρθ2)JA(WR),Ω = JA(WR),Ω · eiθ1L0,L+iθ2L0,R · JA(WR),Ω

= e−iθ1L0,L−iθ2L0,R = U(ρ−θ1 × ρ−θ2).

The claimed equation (7) follows since A(WR) = AdU(ρ−π
2
× ρπ

2
)A(O1), therefore,

JA(WR),Ω = U(ρ−π
2
× ρπ

2
)JA(O1),ΩU(ρ−π

2
× ρπ

2
)∗.

From Equation (7) we conclude that U(ρ−2π × ρ2π) = (JA(WR),ΩJA(O1),Ω)2 = 1, hence the
Lemma.

B Basic properties of direct integrals

Here we follow [Dix81, Section II.1] and supply some additional results concerning direct
integral of real and complex Hilbert spaces.

Given a field of Hilbert spaces m 7→ Hm on a standard measure space (X,µ) we can
construct the direct integral Hilbert space

∫ ⊕
X
Hmdµ(m) if the field is µ-measurable: This

definition requires and depends on the choice of a linear subspace S of Πm∈XHm which are by
definition µ-measurable vector fields (S must (i) consist of fields whose norm is measurable,
(ii) be complete in the sense that it contains any vector field whose pointwise inner product
with any other field in S is measurable (iii) and contain a sequence which is total at any
point m ∈ X, see [Dix81, Section II.1.3, Definition 1]). Note that given a sequence of
measurable vector field ξn µ-a.e. pointwise converging to ξ, namely ‖ξn(m) − ξ(m)‖ n→∞−→ 0
for µ-a.e. m ∈ X, then ξ is a µ-measurable vector field. We also recall that a vector
field of bounded operators m 7→ Tm ∈ B(Hm) is µ-measurable if for any µ-measurable field
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m 7→ ξ(m) ∈ Hm then m 7→ Tmξ(m) ∈ Hm is µ-measurable. In our concrete case, we take
X = R,Hm = L2(R, dp

2ωm(p)
) and S consists of Lebesgue-measurable functions in R× R.

Most of the results [Dix81, Section II.1] which we need are written for complex Hilbert
spaces, but actually one can consider direct integral of real Hilbert spaces and similar results
hold7. If H =

∫ ⊕
X
Hmdµ(m) with the scalar product 〈·, ·〉 is the direct integral of complex

Hilbert spaces Hm with the scalar product Re 〈·, ·〉m, H as a real Hilbert space with Re 〈·, ·〉
can be seen as the direct integral of real Hilbert spaces Hm with Re 〈·, ·〉m: the µ-measurable
set S can be regarded as the set of real µ-measurable vector fields ((i) The norm does not
change. (ii) If ξ ∈ S, then also iξ ∈ S and 〈η, ξ〉m is measurable if and only if both of
Re 〈η, ξ〉m and Re 〈η, iξ〉m = −Im 〈η, ξ〉m are measurable. (iii) The metric does not change,
hence from a total sequence {ξn} with respect to the complex scalar product we can make a
sequence {ξn, iξn} which is total with respect to the real scalar product).

In order to properly describe the BGL-net associated to a direct integral representation in
Section 4.2.3, we need the following two propositions, see [Hal62] and [Dix81, Section II.1.7,
Proposition 9], respectively. The proofs work for C as well as for R.

Proposition B.1. Let K1, . . . ,Kk be closed subspaces of a Hilbert space H and K =
⋂
kKk.

Let PKj and PK be the associated orthogonal projections, then (PK1 , . . . PKk)
n strongly converge

to PK, as n→ +∞.

Proposition B.2. Let m 7→ Hm be a µ-measurable field of complex Hilbert spaces over a
measure space (X,µ). Let Hm be a closed linear subspace of Hm and EH(m) be the projection
onto Hm. Let SH be the set of all measurable vector fields m 7→ ξ(m) such that ξ(m) ∈ Hm.
Then the following are equivalent:

(i) the field of subspaces m 7→ Hm, endowed with SH , is µ-measurable;

(ii) There exists a sequence {ξn}n∈N of µ-measurable vector fields (m 7→ ξn(m) ∈ Hm) such
that {ξn(m)}n∈N is a total sequence in each Hm;

(iii) for any measurable vector field ξ with respect to S, the field m 7→ EH(m)ξ(m) is
measurable.

This proposition allows us to consider the direct integral
∫ ⊕
X
Hmdµ(m) of standard sub-

spaces. A vector ξ in this subspace is a L2-measurable field of vectors {ξ(m)} such that
ξ(m) ∈ Hm for almost all m. In our application, Hm is the closure of the Fourier transforms
of real compactly supported continuous functions on the Minkowski space R1+1, restricted
to the mass shell with mass m.

Lemma B.3. With the definitions in Lemma B.2, let Hm be a µ-measurable field of subspaces,
and consider H =

∫ ⊕
X
Hmdµ(m),

(a) m 7→ H⊥m m 7→ H⊥m is a µ-measurable field and H⊥ =
∫ ⊕
X
H⊥mdµ(m). If H is a

real Hilbert space obtained from a complex Hilbert space and Re 〈·, ·〉, then m 7→ H ′m
m 7→ H ′m is a µ-measurable field and H ′ =

∫ ⊕
X
H ′mdµ(m).

7We use caligraphic letters (such as Hm) for complex Hilbert spaces and roman letters (such as Hm) for
real Hilbert spaces.
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(b) let {Hk}k∈N be a countable family of µ-measurable fields, then
⋂
k∈N(Hk)m is a µ-

measurable field and
⋂
k∈NHk =

∫ ⊕
X

⋂
k∈N(Hk)mdµ(m).

(c) let {Hk}k∈N be a countable family of µ-measurable fields, then
∑

k∈N(Hk)m is a µ-

measurable field and
∑

k∈NHk =
∫ ⊕
X

∑
k∈N(Hk)mdµ(m).

Proof. (a) By definition H⊥ = {ξ ∈ H : 〈ξ, η〉 = 0, η ∈ H}. Since Hm is a measurable
field, by Proposition B.2 (iii) for any ξ ∈ H, m 7→ EH(m)ξ(m) ∈ SH is a measurable map.
Then for every ξ ∈ H, the vector field m 7→ (1−EH(m))ξ(m) is clearly µ-measurable, hence
by implication (iii) ⇒ (i) in Proposition B.2, we have that m 7→ H⊥m is a µ-measurable
vector field of subspaces. We denote their direct integral by

∫ ⊕
X
dµ(m)H⊥m. The inclusion

H⊥ ⊃
∫ ⊕
X
dµ(m)H⊥m is obvious. Any ξ can be decomposed as EHξ + (1 − EH)ξ, hence∫ ⊕

X
dµ(m)H⊥m must coincide with H⊥.
Now consider m 7→ Hm µ-measurable field of real subspaces, then m 7→ iHm is also

a measurable of real subspaces. Indeed, let Em be the projection on Hm for any x ∈ H,
m 7→ iE(m)x(m) is a measurable vector field, as S is closed under the multiplication by i.
Therefore, (i) in Proposition B.2 holds and we obtain iH =

∫ ⊕
X
iHmdµ(m). We conclude by

recalling that H ′ = (iH)⊥, and combining the last comments, that H ′ =
∫ ⊕
X
dµ(m)H ′m.

(b) Let {Hk}k∈N be a family of measurable fields of subspaces. We need to show that
m 7→

⋂
k(Hm)k is a measurable field of real spaces and

∫ ⊕
X
dµ(m) (

⋂
k(Hm)k) ⊂

⋂
Hn.

Firstly, if the family is finite, namely if we have H1, . . . , HK , then for any ξ ∈ H, then

((PH1)m . . . (PHK )m)nξ(m)
n→+∞−→ (P∩kHk)mξ(m) for each m by Proposition B.1, and this is

measurable. Hence by implication (iii) ⇒ (i) in Proposition B.2 we conclude that m 7→⋂K
k=1(Hm)k is a measurable field of real spaces. If the family is countably infinite, we take

P̃K : m 7→ (P̃K)m as the projection on
⋂K
k=0(Hk)m. This is a µ-measurable family of de-

creasing projections, thus for any ξ ∈ H the limit (P̃K)mξ(m)
K→+∞−→ (P∩∞k=1Hk

)mξ(m) is still
measurable. Thus if Hk is a countable family of real subspaces, m 7→

⋂
k(Hk)(m) gives a mea-

surable family of real subspaces. The same sequence of projections shows that, if ξ ∈
⋂
kHk,

then ξ = P∩kHkξ and hence ξ(m) ∈ Hm, which concludes the claim.

(c) This follows by combining (a) and (b).
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