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Abstract

We consider the classical Dirac operator on globally hyperbolic manifolds with timelike
boundary and show well-posedness of the Cauchy initial-boundary value problem coupled to
APS-boundary conditions. This is achieved by deriving suitable energy estimates, which play
a fundamental role in establishing uniqueness and existence of weak solutions. Finally, by
introducing suitable mollifier operators, we study the differentiability of the solutions. For
obtaining smoothness we need additional technical conditions.
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1 Introduction

The Dirac operator and spinors were introduced originally by Paul Dirac on Minkowski space
in order to find a Lorentz-invariant first order equation with finite speed of propagation that
is compatible with the Klein-Gordon operator [37]. Later these concepts were generalized to
(pseudo)-Riemannian manifolds and in the 60s Atiyah and Singer [2] showed that the index of
the Dirac operator — an analytical quantity of the Dirac operator build out of the dimensions
of its kernel and cokernel on ’positive spinors’— is equal to a topological quantity only depend-
ing on the underlying compact manifold. Their index theorem generalizes several results e.g.
GauB-Bonnet theorem, Riemann-Roch theorem or Hirzebruch’s signature theorem, and it has
numerous applications in analysis, geometry, topology, and mathematical physics. Less then 10
years later, this theorem was generalized to compact Riemannian manifolds with boundary in [3],
by introducing suitable non-local boundary conditions, dubbed APS boundary conditions, which



are based on the spectral decomposition of the operator induced on the boundary. While an ana-
log of index theorem for close Lorentzian manifolds is unknown and not to be expected, in [11]
Bar and Strohmaier provided an index theorem for the Dirac operator on globally hyperbolic
manifolds with spacelike boundary and closed Cauchy surfaces — see also [12] for recent devel-
opment. This is remarkable since, in this geometrical setting, the Dirac operator is hyperbolic
rather than elliptic. However, the operator induced on the boundary is still selfadjoint and el-
liptic and the Atiyah-Patodi-Singer boundary conditions (which is there a spacelike boundary)
still make sense. It was shown in [11] that under these conditions the Dirac operator becomes
Fredholm and its index is given formally by the same geometric expression as in the Riemannian
case. Besides significant contribution to the index theory, their results were used to provide a
rigorous geometric derivation of the gravitational chiral anomaly for a Weyl field [10], but only
in spatially compact case.

On the other hand and independent of the above, one could ask for the APS-boundary con-
dition on globally hyperbolic manifolds with timelike boundary where the boundary conditions
are prescribed on the (closed) boundary of the Cauchy surfaces. Since APS-boundary conditions
are non-local, one might ask whether this can be physically relevant at all. For that, let us point
out that the APS index theorem plays a key role in the description of the bulk-edge correspon-
dence of topological insulators, through the cancellation of the time-reversal symmetry anomaly
by Witten [55].

As a first step, we aim to investigate the well-posedness of the Cauchy problem for the
Dirac operator with APS-boundary conditions on globally hyperbolic spin manifolds with timelike
boundary (cf. Definition 2.1). Concretely this entails that for a certain choice of a time function
(M,g) ~ (R x £, —N2dt? + h;), being N € C®(R x ) strictly positive while {(3, ht)}ier is
a smooth family of Riemannian manifolds with smooth boundary 0. Within this setting the
Cauchy problem for the Dirac operator Dj; requires to consider suitable boundary conditions.
In fact, let Dy = —yar(eo)[VEM + iD; — 2H] be the decomposition (cf. equation (2.4)) which
relates the Dirac operator Djy; over SM to the family D, = {D;}wcr of Dirac operators on
SY.e = {SX;:}ter. The presence of a non-empty boundary 0% implies that, for each ¢ € R, Dy is
self-adjoint only if appropriate boundary conditions are imposed. Our choice is to require APS
boundary conditions, see Definition 2.6 (and for that we have to assume that dX is compact).
Per definition this entails that 1|ss, belongs to the negative part of spectrum of a self-adjoint
first order differential operator A; built out of D, (¢f. Definition 2.5). Loosely speaking, one may
think of A; as the Dirac operator associated with 0%;.

We stress that, differently from the wave equation, where the Cauchy problem has been in-
tensively investigated with local and non-local boundary conditions, see e.g. [28,33,44,54], the
Cauchy problem for the Dirac operator has been investigated only with local boundary condi-
tions, see e.g. [46,47]. On the contrary we are here considering boundary conditions which show
non-local features (¢f. Equation (2.6)). As a consequence proving smoothness of the solutions
cannot be achieved simply by localizing the problem with suitable partition of unity and us-
age of appropriate coordinates to reduce the operator to a symmetric hyperbolic system in the
classical PDE sense. Therefore, we have to introduce a different strategy to the one employed
in [46]. We use the idea in [5, Theorem 3.7.7] for the boundary-less situation using mollifiers to
regularize the problem. Differently from the boundaryless case where a suitable mollifier can be
constructed for any symmetric hyperbolic system, in this paper we can realize a mollifier only for
the Dirac operator with self-adjoint boundary conditions. It would be interesting to extend this
analysis to more general Friedrichs systems, including not only symmetric hyperbolic systems,
but also symmetric positive systems. As shown in [46], many parabolic PDEs can be rewritten
as a positive system, e.g. any diffusion-reaction systems with linear reaction terms. Since our
analysis does not require any localization technique, it could be possible to extend the analysis
of diffusion-reaction systems with nonlocal mobility which model a wide range of phenomena in
biology (see e.g. [40]) and which is up to now only performed on R"™ (see e.g. [39]) to manifolds.

Our first main result is the existence and uniqueness of L?-weak solutions in a time-strip. For



the definition of weak solution used here see (3.3).

Theorem 1.1. Let (M, g) be a globally hyperbolic spin manifold with timelike boundary and let
t: M — R be a Cauchy temporal function with gradient tangent to the boundary. Assume the
boundary of any Cauchy surface is compact. For anyt, < t, denote with My := t~[tq, ] a time
strip with 0 € [tq,tp]. If ker Ay = {0} for allt € R, then there exists a unique weak solution to the
Cauchy problem

Dyop = fe FCC(SM|MT)
w|20 = wﬂ € FCC(SM‘E()) )
Y € dom Dy®

where dom DAY := {4 € L?(SM|1,.) | ¥|x, € dom D} — ¢f. Equation (2.9). Here Yo = {0} x
while Tce(+) indicates the space of section compactly supported in the interior of the underlying
manifold.

Let us remark that assuming the boundary of any Cauchy surface to be compact is necessary
in order to formulate APS boundary conditions on Dy for all t € R. The condition ker A; = {0}
can be relaxed by assuming a decomposition ker A; = V; @ Vo which is flipped by the action of
op,(en), that is op,(en) V1 = Va.

In order to study the regularity of weak solutions, we need some extra technical assumptions.

Theorem 1.2. Let (M,g) = (R x X, —N2dt? + hy) be a globally hyperbolic spin manifold with
timelike boundary. As for Theorem 1.1, we assume that 0% is compact and ker Ay = {0} for all
t e R. If Nlopps = 1 and the unit normal e, to 0M is parallel transported along the vector field
eo := N~10, then there exists a unique smooth solution 1 € Typs(SM) — cf. Equation (2.6) — to
the Cauchy problem

Dyt = fele(SM)

¢|Eo :wOEFCC(SMk)o) (1'1)
€ Tpps(SM) .

Moreover the problem (1.1) is well-posed in the sense that the linear map
Lec(SM|s) x Tee(SM) 3 (v0, f) — ¥ € Taps(SM),
is continuous (see Section 5 for the involved topologies).

Theorem 1.2 in particular requires the rather strong conditions N|aops = 1 and Ve ep|onr = 0 —
later referred to as Assumption 3. However, we want to stress that, to the best of our knowledge,
this is the first result showing well-posedness of the Cauchy problem for the Dirac equation with
non-local boundary conditions on a class of manifolds which is not conformal to an ultrastatic
space-time. These assumptions are used in Section 4 to reduce the problem into a suitable
Hamiltonian form. In fact, in the study of the Dirac equation we may then always assume N =1
by applying a conformal transformation: N|sps = 1 guarantees that such transformation does not
spoil the boundary conditions. Similarly, recasting the Cauchy problem (1.1) into an Hamiltonian
form requires to identify all Cauchy surfaces ¥, (as well as the associated spinor bundles SM]|s, )
by parallel transport along the vector field eg = N~10;. Once again, Ve en|ons = 0 guarantees
that the boundary conditions are not messed up in the process.

Showing the well-posedness of the Cauchy problem is not the end of the story: Indeed ques-
tions about explicit construction of the evolution operator as in [26,27] and the quantization of
the theory are still to be investigated. Clearly, the well-posedness of the Cauchy problem will
guarantee the existence of Green operators (cf. Proposition 5.1) which play a pivotal role in the



algebraic approach to linear quantum field theory, see e.g. [22,45] for textbooks, [8,9,17,43, 48]
for recent reviews, [18-21] for homotopical approaches and [23-25,30-36] for some applications.
However, differently from [46,47], the Green operator will not have the usual support property
due to the non-local behavior of the APS boundary condition. It would be desirable to investigate
whether the APS Green operators can be employed in the quantization of fermionic field theories
following for instance [28-31,38,41,42,51].

The paper is organized as follows: Section 2 deals with the geometrical setting of globally
hyperbolic spin manifold as well as with the precise definition of APS boundary conditions.
In Section 3 we derive a suitable energy inequality for the Dirac operator with APS boundary
conditions which is the main ingredient to prove the existence of weak solutions, uniqueness of the
solution of the Cauchy problem (1.1) as well as to provide a bound on its support — which reduces
to the standard finite speed of propagation in the interior of M. Section 4 is devoted to prove the
existence part of Theorem 1.2 by suitably generalizing the proof presented in [5, Theorem 3.7.7].
Finally, using standard arguments, in Proposition 5.1 we prove the existence of Green operators.
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2 Geometrical setting

In this section we collect basic facts and conventions concerning spinors and Dirac operators on
Lorentzian manifolds. For a detailed introduction the reader may consult [7,16].

For a given vector bundle E — M on a smooth manifold with boundary ¢ M we shall denote
by I'(E), ['«(E) resp. T'ce(F) the vector spaces made by smooth sections, compactly supported
sections resp. sections that have compact support in the interior of M.

2.1 Globally hyperbolic spacetimes with timelike boundary

In the forthcoming discussion (M, g) shall denote an (n + 1)-dimensional Lorentzian manifold —
we shall adopt the (— + ...+) signature convention. Within this class, we shall focus on those
Lorentzian manifolds which are globally hyperbolic with timelike boundary: These provide a
suitable background where to analyze the Cauchy problem for hyperbolic operators.

Definition 2.1. A globally hyperbolic manifold with timelike boundary is an (n + 1)-dimensional,
oriented, time-oriented, Lorentzian smooth manifold (M, g) with smooth boundary 0 M such that

(i) the pullback of g with respect to the natural inclusion ¢: 0M — M defines a Lorentzian
metric ¢*¢g on the boundary;

(ii) M is causal, i.e. there are no closed causal curves;



(iii) for every point p,q € M, J*(p) n J (q) is either empty or compact, where J*(p) (resp.
J~(p)) denotes the causal future (resp. past) of p € M.

For convenience we recall the following theorem, which extends a known result on globally
hyperbolic manifolds without boundaries [13-15].

Theorem 2.2. [1, Theorem 1.1] Any globally hyperbolic manifold with timelike boundary admits
a Cauchy temporal function t: M — R with gradient tangent to OM. This implies that, up to
isometric isomorphisms, M = R x 3 with metric

g=—N2%dt> + hy,

where N € C*(R x X)) is a smooth strictly positive function, while {hi}tcr is a smooth family
of Riemannian metric on ¥.. Finally, for all t € R, ¥y := {t} x ¥ is a spacelike Cauchy smooth
hypersurfaces with boundary 0% := {t} x 0%, namely an achronal set intersected exactly once by
every inextensible timelike curve.

The scalar products induced by g and h; will be denoted by ( , )g, (', )n,. For later convenience
we set

e = Nﬁlﬁt, (2.1)

the globally defined unit normal to the foliation ¥, := {X¥;};er — notice that (eg,eq)y = —1.
Unless otherwise stated, in what follows a locally defined orthonormal frame {e;}_, will always

contain eg = N~10; while e, shall always refer to the unit normal to 0¥, = {03 }ser in Y.

2.2 Spin structure and Dirac operator

We shall now assume that (M, g) is a spin globally hyperbolic spacetime with timelike boundary.
Note that since hyperbolic manifolds are automatically orientable begin spin is not an additional
assumption in dimension 4. We will denote by SM the spinor bundle over M — similarly S
denotes the spinor bundle over ¥; for all t € R. We denote by (, )sam (resp. (, )sx,) the
indefinite (resp. positive definite) pairing over SM (resp. over SY;). The Clifford multiplication
v : TM — End(SM) (resp. vs,: TS — End(S%;)) is symmetric (resp. skew-symmetric) with
respect to (, )as (resp. (, )x,), moreover,

(X)) (Y) + v (Y)ym(X) = =2(X,Y),, (2.2)
for all X, Y e I'(TM).

Remark 2.3. We recall that, if n is even, SM|y, = S¥; with v (X) = —iyar(eo)ys, (X) for
all X € I'(T'Y;). Note that this choice differs from the one in [7] by the multiplication by ¢
which is compensated in the definition of the Dirac operator in (2.3) where there is an 4 in [7].
Moreover in this case (, )ss, = (,ya(eo) )sar- If nis odd then SM|s, = SEP? with vy (X) =
< 0 s, (X)
—iyy, (X) 0

01
where ypr(eg) = (1 O>'

>. The corresponding pairings are related by ( , ) sxp2 = ( ,yar(eo) Vsm

We shall denote by VM, V5%t the spin connection on SM and S¥; induced by the Levi-
Civita connections VM, V>t respectively. The Dirac operator Dy; on SM is defined by

D= Y, emmles) VEM (2:3)
j=0



where {e;}7_, is any locally defined orthonormal frame, while €; := (ej, €;)g. Similarly the family
Dy := {D,}er of Dirac operators D; = Dy, over SY; is defined by D; := Z?=172t (6]-)V§j2t.
Notice that D, is a family of elliptic operators.

A standard computation shows the relation between Dj; and D,: In particular we have,

cp. [7, (3.5)],
VMY = VY - %’YM(eo)VM(VA)geo)w,

for all ¢ € I'(SM) and X e I'(T'M) which is tangent to ¥, — that is, (X,eg)y = 0. A direct
inspection leads to

Dar = —yur(eo) [VfOM +iD. — gH] : (2.4)
where H; := —% Z?Zl(ej, Vé\f €0)h, is the mean curvature of ¥;. Actually, the latter formula holds

for n even, while for n odd we have to replace D, with (l(); _OD )

2.3 APS boundary conditions

In the rest of the paper we shall be interested in solving the Dirac equation D1 = 0 — possibly
with a suitable source term — where ¥ is constrained by appropriate boundary conditions. In
fact, we shall require that 1 satisfies the APS boundary condition with respect to the family of
operators D,. The following discussion mainly profit of the results of [6, Sec. 2.2]. To fit with
the geometrical setting presented therein the following assumption is compulsory.

Assumption 1. We shall assume that 0% is compact.

To introduce APS boundary conditions some preparations are in order. We shall denote by
L?(SM]s,) = {L*(SM|s,)}ter the family of L?-spaces associated with the scalar products

(Y1, ¥2) r2(sms,) = L (Y1, v (e0)2) smps,

where px, is the volume form associated with (3, h¢). Similarly we shall consider the family of
L2-spaces L2(SM|zx,) = {L?(SM]|ss,)}ter with scalar product defined by

(P15 P2) L2(5M|px,) = L (1,701 (e0)w2)sarptos, -

P

Finally we denote by Hoo(SMls,) = {HE,(SM|s,)}FY the family of local Sobolev spaces
associated with L2(SM|s,).

Remark 2.4. Notice that if n is even, we have L?(SM]ys,) = L?(SX.) = {L?(S%¢) }ter, while if
nis odd L?2(SM|s,) = L*(SX®?). Here L?(SY;) is the L?-space with scalar product defined by

(Y1, 92) L2 (5%,) = L (V1,92) 55,5, -

A similar comments holds for what concerns 0%,. Notice that, depending on the parity of n we
may need to consider copies of the latter spaces as

Yo € 02, .

G ap |55 = S, 0582 pe2z
6,592 = 50592 n¢2Z

This implies that L?(SM|ss,) = L?(S0X®?) where the L?-product on L?(S0%,) is given by

(1, 92) 12(505,) = Lz (¢1,92) 505, 1os, -
t

6



For later convenience we shall now recall the following technical Definition [6, Sec. 2.2]

Definition 2.5. For all ¢ € R, a formally self-adjoint linear differential operator A;: I'(SM|s5,) —
['(SM|zs,) is called adapted to Dy if for all p € 0% and § € T 0%,

04, (&) = op,(e) " oop,(€),  opler) oA = —Aoap,(e;), (2.5)

where 0 4,, op, denotes the principal symbols of A; and D; respectively, while we identified T 0%
with {§ € T3¢ [£(enlp) = 0}, e, being the normalized normal to 03¢ and e = glen, ) = hilen, ).

The existence of A; is guaranteed by [6, Lemma 2.2] while uniqueness holds up to addition
of any R; € End(SM|sx,) which anticommutes with op,(e?). Notice in particular that, as D;
depends smoothly on ¢, we shall tune the various choices of A; in order to get a smooth family
A := {At}4er of operators adapted to D,. (Here smoothness merely indicates that all involved
operators have coefficients smoothly depending in t.)

Assumption 2. In what follows we shall assume there exists a family As = {A;}i«cr of operators
adapted to De = {D;}er such that ker A, = {0} for all t € R.

Recalling Assumption 1 one has that, for all ¢t € R, A; is a densely defined linear operator
on L?(SM|sx,) which is essentially self-adjoint — c¢f. [6]. Up to considering the closure of such
operator — which we still denote by A; — we get a decomposition of L?(SM|zx,) into eigenvectors
of A;, namely

S M ‘ az ¢ @ (CQO
JEZ
where @Ej ) is an eigenfunction with corresponding eigenvalues )\Ej ),
Let H*(A;) = {H*(A;)}*® be the family of Sobolev spaces associated with A; — actually

H?®(A;) := dom({A;)®) where (z) := (1 + =z ) For any subset E of the spectrum of A; let II%
the corresponding spectral projection and let Hy(A;) := {1, H*(Ap)}ier. Finally let H(A;) :=

1
HE o) (A) @ Hyg? o (Ay).

Definition 2.6. We denote that space of sections satisfying the APS boundary conditions by

Pars(SM) = { € T(SM) [ os, € HE o) (A)}- (2.6)

For later convenience — cf. the proof of Proposition 3.1 — let us stress that, for any 1,9 €
[Caps(SM) we have

LZ (Y1, ym(en)P2)smpos, =0 VteR. (2.7)

The following result has been proved in a way more general setting in [6].

Proposition 2.7. [6, Theorem 3.2-3.11] Let t € R be arbitrary but fixed. Let D)™ be the closure
of the densely defined symmetric operator Di|r,.(sm|s,) On L?(SM|s,) and let r¢: Te(SM|s,) —
T(SM|ss,) be the standard restriction map. Then:

(i) The adjoint of DY™ coincides with the mazimal operator Dy'** defined by

dom DX := {¢p € L*(SM|x,) | Dy € L*(SM|x,)}, D%y .= Dy . (2.8)

(i3) the restriction map ry extends to a continuous surjection ry: dom DY* — H(Ay), where
dom D)"* is equipped wz’th the graph norm of D}** while the norm of H(A;) is the one

induced by the spaces H( ooO)(At)7 [0, +oo)(At) Moreover kerr, = dom D)™ so that

dom D]\[AX
H(Ar) ~ o pe-



(iii) the operator D}'S defined by
1
dom D" := {¢) € dom(D}"™) | rpp € HE o) (Ap)}, D}y = Dy (2.9)
is a self-adjoint extension of Dy"™.
(iv) denoting with XN := ¥,\0%; it holds

Vi) € dom Dy : op € Hydo (SM |spr) <= Dytp € Hyoo(SM|spr) (2.10)
Vep € dom DPPS: o € HdH(SM|s,) < Dy e HY..(SM]s,), (2.11)

where Hoo(SM|spr) = {HI’fOC(SM|ZItNT)}k€N is the famliy of local Sobolev spaces associated
to L*(SM|gw) — notice that Hoo(SM|sit) © Heoo(SMs,) is a strict inclusion.

Remark 2.8. Let us remark that Item (%) requires ker A; = {0} (Assumption 2). Furthermore
notice that for all ¥, 19 € Typs(SM) N T'.(SM) it holds using (2.7)

J (1, Dyb2) s b +J (Dppr, 2)smpins = 0,
M M

where pps is the volume form associated with (M, g).

3 Energy estimates

The aim of this section is to derive suitable energy estimates for the Dirac operator coupled with
APS boundary conditions (c¢f. Proposition 3.1). This result will be employed to show that the
Cauchy problem (1.1) admits at most one solution (c¢f. Proposition 3.3). In the literature for other
boundary conditions, the energy estimates are also employed to show finite speed of propagation.
As APS boundary conditions are non-local it is in general not true that a smooth solution v of
the Cauchy problem (1.1) propagates with at most speed of light, however, Proposition 3.2 will
provide a bound on the propagation of the support supp(¢) of .

In the following Proposition we deduce an energy estimate for sections ¢ € T'yps(SM) (cf. [4,
Theorem 5.3] for the analogous result in the boundaryless case).

Proposition 3.1. Let tg,t1 € R, tg < t1, andp € M be such that J~(p) n ([to,t1]xX)ndM = &.
Then there exists C = Cyy 4, > 0 such that for all 1 € I'(SM)

t1
f (¥, v (e0)¥) snrpis,, < CeClito) J J (Dmtp, ym(e0) Dnip) smpis ds
J=(p)nZty to JJ(p)nZs

+ ec(tlt(])f (¥, vm(e0)¥)smps,, - (3.1)
J=(p)nZ,

Similarly let K < ¥ be a compact set such that 05X € K and let K; := {t} x K. Then there is a

constant C = Cy, 1, > 0 such that for all 1 € T'yps(SM) it holds

)

t1
(6, ar (o)) snrpis,, < Cecm—to)f f (Dasos ar (e0) Dagd) s s, ds
to JI~(Kiy)nSs

t

+ ec(tl_t())f (¥, v (e0)¥)smps,, - (3.2)
I (K )Ny

Let us remark on the differences between inequalities (3.1) and (3.2). The main difference
lies on the fact that in (3.1) we integrate over domains which have empty intersection with
0M. On the contrary, the domains used in (3.2) are such that they contain (¢1,%9) x 0¥ entirely.
Intermediate situations, where (¢1, tg) x 0% only partially intersects with the domain of integration
domain are not feasible: This is due to the non-locality of the APS boundary conditions — cf.
Definition 2.6.



Proof of Proposition 3.1. The proof of inequalities (3.1) and (3.2) is similar and is based on
standard techniques (c¢f. [5]). We shall focus on inequality (3.2) as this is the one where the
boundary conditions enters. For that, let ¢ € I'yps(SM) and let Vi, € I'(T'M) be the vector field
defined by

(Vy, X)g = (0, (X))sn, VX eT(TM).
By direct inspection one has
divar (V) = . e5(e5, V2IVy) = (Dastp, ) sas + (¢, D) sa
7=0

Let us now consider U := J~ (K, ) n ((to,t1) x X) and integrate the previous equality on U with
respect to pyr. We get

[ avaredar = [ 1Dsw )50 + 0 Darwdsarlins
U U
< JU[Cl(DM% Yar(eo) Dard) sar + Co(1h, var(€0)¥) sar]pns

t1
= f f [C1(Davp, yar(eo) D)) s + Coa(w, var (o)) s s, ds
to JJ (Ktl NYs

where C1,Cy > 0 do not depend on . Here, in the second line the inequality uses (Dpst), 1) sar =
(Db, v (eo)var(eo)) s, Cauchy-Schwarz for the positive definite pairing (,vas(eo))sy and
that vyas(ep) is a bounded operator with respect to the fiberwise scalar product (1, var(€o)w2)sar
By Stokes’ theorem, the left-hand side of the equation equals to

f divas(Vyp)unr = J vou (bvy binr) -
U oUu

In fact, since 0¥ < 0K we have oU = Ky, U (J7(Ky) N 3g,) U ((to, t1) x 08) U (0J 7 (Kt ) N
((to,t1) x (X\0%))) so that

|, sV = |

(v, yaa (€0) V) smpess,, — J (v, v (e0) V) sm sy,
K I (Kt )n3y

1

t1
f 1/1 'YM en )SMHESdS "‘J L:;U(LVwﬂM)'
to JOXs 6]*(Kt1)m((to,tl)x(z\aE))

The integral over 0% vanishes on account of the boundary condition of ¥ € T'yps(SM) — cf.
Equation (2.7). Moreover, since (,ya(X) )sas is positive definite for all future-pointed time-like
vectors X, the same holds true for future-pointed light-like vectors. This entails that

iy (v, par) = (W, (X)) expar =0,

LJ— (Kt;)((to,t1) x (E\0X)) LJ— (Kiy)n((to,t1) x (5\0X))

where X is some future-directed, light-like and tangent to 0J~ (K4, ). Overall we have

)

(v, var(e0) V) snrps,, —L(K . (v, var(e0) V) snrpisy,

1

1
f [(Daps yar(eo) Dvb) sm + (¥, v (eo)¥) sarlps ds
Kty )n3s
which leads inequality (3.2) by Gronwall’s Lemma applied to the function

F(t) = j (6, ar (o) sares, -
I (Kt )nXy

This concludes our proof. ]



We are now in the position to prove Theorem 1.1-—the existence of weak solution: Let us
recall that a weak solution 1 is an element 1 € L?(SMr) such that

(&, F)r2(sMiu,) = (D}, 0, V) L2(SM|ary) (3.3)

for all ¢ € T.(SM) n dom D{FS | where L2(SM|yy,) is as defined on page 6, i, being the
canonical volume form of (Mr,g), ey = g(ﬁt,&g)*%&g and DL = —Dj); denotes the formal
adjoint of D[, (s M) (This definition uses that the APS boundary condition are self-adjoint.
Otherwise ¢ would need to obey the corresponding adjoint boundary condition.)

Proof of Theorem 1.1. Let Mr be a time strip as in Theorem 1.1. Using Proposition 3.1 for
€ Te(SM|n,) N Taps(SM|ar,) such that ¢y, = 0 and 9, = 0, there exists a constant C such
that

[0 2(sn]p,) | < CHDLMB(SMWT) :

Finally, using the same argument in [47, Theorem 3.20] or [46, Theorem 4.2] we obtain the
existence of weak solutions. O

We conclude this section with some property of the support of smooth solutions of the Cauchy
problem.

Proposition 3.2 (Support property). Assume the setup of Theorem 1.2. Any solution 1 €
Caps(SM) of the Cauchy problem (1.1) satisfies

supp ¢ < J(supp f U supp o) U J(0%o) , (3.4)

where J(A) := JT(A) u J (A) denotes the union of the causal future and the causal past of a set
A.

Proof. Let V := J(supp f usupp o) u J(0X) and let p € M\V and let assume p € J¥(3g) — the
case p € J~(Xp) can be treated analogously. This means that there is no future-directed causal
curve contained in J T (X¢) which starts in V and terminates at p. Hence J~ (p)nJ ™+ (Xo)nsuppV =
. By inequality (3.1), ¢ = 0 on J~(p) n JT(X), in particular it vanishes as p. O

As byproduct of the energy estimate (3.1) we get uniqueness of smooth solutions.

Proposition 3.3 (Uniqueness). Assume the setup of Theorem (1.2). Then there exists at most
a unique solution 1 € T'yps(SM) to the Cauchy problem (1.1).

Proof. By linearity of the Cauchy problem (1.1), it suffices to prove that ¢» = 0 is the only
solution to the Cauchy problem (1.1) with vanishing initial data. Proposition 3.2 entails that
supp(¢)) < J(Xo). Let p € ¥y < JT(Xg) — a similar argument applies if p lies in J~(3g) —
and let K, c ¥; be a compact set containing 03; u {p}. Then inequality (3.2) shows that
SKp (¥, va(eo))sarits, = 0. The arbitrariness of p implies that ¢ = 0. O

4 Existence of smooth solutions

In this section we shall prove Theorem 1.2 and to this end, we assume the following:

Assumption 3. We shall assume that N|spsr = 1 and Vesenlonr = 0, that is, e, is parallel
transported along the integral curves of eg.

Our strategy is divided into two main steps. In the first one we shall prove Theorem 1.2 under
the additional assumption that ¥ is compact. This will be achieved by reducing the Cauchy
problem (1.1) into an Hamiltonian form (¢f. Equation (4.6): For that Assumption 3 will be
crucial). Once in Hamiltonian form, the existence of a smooth solution to the Cauchy problem
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will be proved by mimicking the proof presented in [5] for the case of symmetric hyperbolic
systems on globally hyperbolic manifolds without boundary. Such proof can be suitably modified
in the case of a boundary by exploiting the functional calculus associated with the self-adjoint
operator DS,

In the second step we shall drop the compactness assumption on 3. This can be done again
along the lines of [5], where the proof is based on finite speed propagation of the solution. In fact,
in our case the result of Proposition 3.2 will suffice for our purposes, together with the results
obtained in [47].

4.1 Reduction to the Hamiltonian form

In this section we shall reduce the Dirac equation to its Hamiltonian form. To this end, we shall
first perform a conformal transformation and then identify a family of spinor bundles. Finally,
we shall compare the Cauchy problems for the Dirac operator with the ones for the Hamiltonian
form.

4.1.1 Conformal transformation

We start by reducing the Cauchy problem (1.1) to the case where N = 1. This is achieved
by a conformal tAransformation G = N~2g. The corresponding Clifford multiplication J3; and
spin-connection VM are related to the previous one by

N

7X(N_1) )

S (VN - 2

I (X) = N1y (X)), VM = viM 4 5

while the fiber pairing (, )sas remains unaffected. The Dirac operator Dy for (M, g) is related
to the Dirac operator Dy for (M, g) by

-1

Dy =N"TDyN—"7 . (4.1)

Notice that €; = Ne; and therefore Equations (2.4) and (4.1) entail that D, = N D No N

This shows that Dysip = 0 is equivalent to DM”l/} = 0, where w N, = ¢. Moreover, the APS
boundary conditions for D, coincides with the APS boundary conditions for D, since N =1 at
the boundary.

Overall, under Assumption 3 we may reduce the Cauchy problem (1.1) to the case N = 1. In
what follows we shall implicitly assume that such a reduction has been made. As a consequence
the vector field e is geodesic, that is V¢ eg = 0, as

Q(Veoeo,e())g = Veo(eo,eo) = 0
(veoe()vej)g = (eo’veoej)g (eﬂav 60) + (60’ [60’63'])9 =0, J=1,

where in the last equality we used the hypothesis N|sys = 1 to ensure that we can choose the
local coordinate fields e; so that [eg, e;] = 0.

Remark 4.1. One may wonder what happens if the assumptlon N|opr = 1 is dropped. In this

n+1
case we may choose A; and At so that At N, 2 AN, = , therefore, the connection between

At APS boundary conditions and 4;-APS boundary condltlons is lost. It would be interesting to
see whether the A;-APS boundary induces At boundary conditions for which we can still apply
proposition 2.7 — ¢f. [6, Theorem 3.2-3.11].

4.1.2 Identification of X,

After reduction to the case N = 1 we shall proceed by identifying all Cauchy surface 3, =
{¥:}ter (and the associated spinor bundles) by eg-parallel transport. This allows to formulate

11



the Cauchy problem (1.1) in Hamiltonian form, where the unknown spinor 1; belongs to the space
C*®(R,I'(SM|x)). Within this setting we shall then be able to mimic the proof of [5].

The following discussion profits of the results presented in [53]. We start by identifying the
family SM|x, with SM|s, by parallel transport. This can be done as follows: for an arbitrary but
fixed t € R, let 70: ¥y — ¥ denote the translation (¢,2) — (0,2). Moreover, let p¥: SM|y, —
SM|s be the parallel transport which lifts 7, that is, the parallel transport along the inte-

gral curves of eg. Notice that @Y preserves (, )sas namely (v1,v2)sa = [72]* (90201, 292) s
Furthermore, it also preserves the positive definite form (,7yas(eo) )sa because eq is geodesic.

Let now p: M — R be such that, for all t € R, [r{]*us, = p7us where 7¢7P = 1. Then,
pe C®(M). We set

U:T(SM) - C*(R,T(SM[s)),  (Up)::= pgit. (4.2)

Notice that U is an isometry between L2(SM|s,) and L?(SM|x) as
((U1)e, (Ut2)e) L2(sm)s) = fz(@?¢laVM(GO)@g¢2)SMP?/~LZ
= L (1, ym(eo)v2)smps, = (Y1, ¥2) 12 (sms,) -
t

We shall now consider the differential operator UDy;U~!. Direct calculation leads to
(UP)e = Up; 'VEM (peth))s
which entails the identity
UVIMU™ = pdy o py = 0 — p ' [0n, pr]
where |hy| := det hy. At the same time, V., eo = 0 entails that
—nHy = divar(eo) = [he| 20 he2 = 20, (9epe) = 207 M[0r, 1]

Overall we have, using (2.4),

UDyU ™ = —ypr(e0)U [VfOM +iD,y — @H.] U™t = —yuleo) [0 +iUDJU ] .

2
It follows that Dy = f is equivalent to

(at n u’it) J=7, (4.3)

being 1 := Up € C*(R,T(SM]|s)), f := var(e)Uf € CP(R,Tee(SM|s)) while Dy := UD,UL.
Notice that, for all ¢ € R, lN)t\ Iee(SM|y) 18 @ densely-defined operator on L?(SM|x) with symmetric
closure. Therefore, as expected, the Cauchy problem associated with Equation (4.3) requires
appropriate boundary conditions. In fact, the results [6, Theorem 3.2-3.11] presented in the
particular case of Proposition 2.7 also hold true for the family ZNDt, in particular:

1. ﬁt|pcc( SM|ay) 1S & densely defined linear operator on L?(SM|s) with symmetric closure Dy
and adjoint D}*X defined on the domain

dom DX := {¢p € L*(SM|s)) | Dy € L*(SM|s)}, D¢ = Dyp.
2. the restriction map r: I'(SM|x) — I'(SM|sx) extends to a continuous surjection
7 dom DY — H(A,).
Here Ay is a differential operator on T'(SM|sx) adapted to Dy, while H(A;) is defined as
H(A).

12



3. the operator Efps defined by
dom D)™ := {4 € dom DY |79 € H( o)A}, D= D,

is a self-adjoint extension of D}'™ and moreover

Vip € dom DX : op € HEd L (SM|git) <= Dytp € Hey o (SM |sinr) (4.4)
Vip € dom D7 op € HFH(SM|s) <= Dy € HYo.(SMs) , (4.5)

These results call for a comparison between the Cauchy problem (1.1) and the Cauchy problem
@ +iD)y =F,  do=to, VeCP(R Tas(SMls)), (4.6)

where 1Z = U1, fz v (eo)U f while we denoted
1 ~
C*¥(R,Typs(SM|x)) := {tp € C*(R,T(SM|x)) | T2 € H(Q—oo,o)(At) , Vte R}.

Finally, for what concern boundary conditions for the Cauchy problems (1.1) and (4.6), w
observe that, on account of Assumption 3, we may set A, = UA, U, Notice that this preserves
Assumption 2, namely ker Ay = {0} for all t € R. A direct inspection shows that if 1) € T'yps(SM)
then Uy € CP(R,Typs(SM|y)).

4.2 Compact Cauchy surfaces and smooth solutions

In this section we shall prove that the Cauchy problem (4.6) has a (unique) solution 1 €
C*P(R, T yps(SM]x)) under the following additional assumption.

Assumption 4. We shall assume that 3 is compact.

4.2.1 Sobolev spaces

For later convenience we shall introduce the family of APS-Sobolev spaces Hypso(SM|s) :=
{prs,t(SM|E) rell, where prst(SM\g) ;= dom((D*$H) — here (z) := (1 + 2 )1. As usual
HEs(SMlx) := ArenHEq +(SM]x). We recall that prs7t(SM|g) can be characterized in terms

of the spectral calculus associated with DAPS. Indeed, if PD™) denotes the projection-valued
measure associated with DA™ then [52, Theorem 9.13]

Hygy(SMlx) = {¢ € L*(SM]x) | JR</\>2kduw(/\) < +o0}, (4.7)

where f1(E) = (¢, PéD?Ps)w)Lg(SMb) for any Borel set E of R.

Notice that H]fpS’t(SM\g) <> HF(SM|yx) is a closed inclusion for all K € N and t € R (cf.
Proposition 2.7). (As X is compact, we shall now drop the subscript oc to the Sobolev space
H*(SM]|s).) In fact, under Assumption 4 (3 being compact) and being D; an elliptic first order
differential operator, the norm | | ;x(gas),,) can be taken to coincide with || HHl’fps,t(SMlz) forallte R

— that is HwHHk (SMls) = = (¢, (1 + 5?)k¢)L2(5M\E)~ This also shows that any pseudo-differential

operator Dy of order ¢ induces a continuous map Dy: Hf;gzt(SMb) — H*(SM|x) as

1Dl g sy < ) = Crel ¥l e say) -

Moreover, as H¥T{(SM|s) < H¥(SM]|s) is compact for all £,k € N, then H* (SM|y) —

APS,t
Hfps ;(SM|x) is compact as well — here we are again using Assumption 4.
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For £,k € NU {o0}, we denote by C*(R, H*(SM|sx)) the space of functions u: R — H*(SM|x)
which are C* with respect to one (hence any) of the equivalent norm on H*(SM]y).

Similarly we shall denote by C*(R, H]fps (SM|s)) the subspace of C*(R, H*(SM|s)) made
of functions u such that u; € H ffpsvt(SM |g) for all t € R. If t — wu; is compactly supported
we shall write u € Cf(R,prsy,(SMb)). Notice that, for all interval I < R and k,¢ € N,
CY(I,H}5..(SM|5)), is a Fréchet space with seminorms defined by

|7 := Sup HatutHHfm(smz)-
o<yt

4.2.2 Mollifiers

For € > 0 we shall denote by Jt(e) the linear bounded self-adjoint operator on LQ(S M |2) defined by
Jt(e) = e~ =D Notice that th)w € H%s(SM|x), in fact, for all k, £ € N, Jt( e, Hfps ((SMs) —
H fps,t(SM |s;) is bounded. Indeed, this follows from (4.7) together with estimate

uﬁw@MWﬂ=Lw%*Wwww«wmwm (Stls) (4.8)

being cg(e) 1= supyer{ A2 *2€<’\>o<:52(k*£) In fact, a dominated convergence argument
shows that, for all k € N, J(E) Hfs ;(SM|s) — Hpg (SM]s) converges strongly to the identity
as ¢ — 0", This is equivalent to hm 7 Oy — QZ)HHAP”(SW ) = 0 for all 1 € HY,g ,(SM|s). (In

fact, Jt( ). gkt (SM|x) — APS t(SM|g) converges strongly to the embedding Hfget(SMb) —

APS,t

prs,t(SMb) as € — 0%.) Moreover, since e 25 < 1, Equation (4.8) shows that

| HB(H (sMmlx)) S 1

APS t

where | [ g

APS,t

(SM|s)) denotes the operator norm in the space B( Apst(SM|E)) of bounded

operators on HAps,t(SM|E)-

4.2.3 Existence of smooth solution with compact Cauchy surfaces

The existence of smooth solutions is performed in 3 steps. We first regularize the problem by
using the mollifiers from the last subsection and show existence of solutions of these regularized
problems. In the second step we show that the regularized solutions have a convergent sub-
sequence. Then, in the third step we prove that the corresponding limit is actually a smooth
solution of our Cauchy problem (for compact Cauchy surfaces).

1. Regularized problem: In order to prove the existence of a solution 1 € CP(R, Typs(SM]s))
of the Cauchy problem (4.6), we shall first consider the following regularized problem:

@0+ DS TN = Fo O = 0. (4.9)

(SM|x) and f € CL(R, Hyps,o (SM]x))
because f € I'cc(SM). We shall now prove existence and uniqueness of the solution J(E)
(4.9) and we will see that () € C1(R, Hg(SMlyx)). For that, let k € N be arbitrary but
fixed and let observe that

Notice that, by assumption ¢ € T'ce(SM|x) € HY

APS,0

t > L DS I

APS,t

(SM|y)) »18 continuous. (4.10)
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This follows from the fact that ZN?., A, are families of operators whose coefficients depend
smoothly on ¢, moreover, the spectrum of D} depends continuously in ¢ as well [49, Chap.
11, §5).

With this observation let 7 € R and let T' be the linear operator on C(Ir, Hf. .(SM|x))
defined by the integral equation to (4.9)

t
(Tu)ei= U+ [ [ = 10D s,
0
where I, = (0,7) is a short notation — notice that the integral is well-defined because
Jga)ﬁﬁszs(E)us is continuous in s. Notice that by construction Tu € C* (I, Hfys o (SM|5)),
moreover, C(1, prs7,(SM|g)) is a Banach space with norm

o, . smisy = S0P Nl (s -

7T)

Finally, provided 7 is small enough, 7" is a contraction as

ITu = Tol g, k. say <171 sup [ DT

o (0 SMlE) HU - UHC APb O(SM‘E))

APS, f(
where the supremum of | J,° DfPSJtE)H B(HE, (SM[5)) is finite because Jt(g)f)fps,]ts) depends
at least continuously in t. Therefore, for small enough 7 € R and for all k£ € N, the
Banach-Caccioppoli fixed-point Theorem entails the existence and uniqueness of P €
C(Ir, HYps J(SM|5)), in particular (&) = T4 e CY(I, HEs ,(SM|s)). The existence of
a global solution follows from the fact that (4.9) is a linear ODE.

Finally the uniqueness of the solution ¢)() and the inclusion H f;”slt(S Mls) © Hfs ;(SM|5)

entails that, in fact, () € C1(R, Hs o(SMls)).

. Convergent subsequence: We shall now prove that 1;(5) admits a subsequence {IZ(sj )}j which
converges locally in C(R, H{ ¢ ,(SM|x)) — d.e. it converges in C(I, Hg,(SM]x)) for all

compact interval I < R. This will be a consequence of the relative compactness of U=
(1)) | e > 0} in C(I, H*(SM|y)) for all k € N, a fact which we will prove using the Arzela-
Ascoli theorem.

2.a Proof that W, is relatively compact: Let I < R be a compact interval and let ¢ € [
be arbitrary but fixed: We shall now prove that W; := {Jt(s) le > 0} < H¥(SM|x)
is relatively compact for all £ € Z. To this avail we shall prove that, for all k£ €
N, U, is bounded in H2*(SM|y): the compactness of the inclusion H2k(SM|2) —
H2k 1(SM|s) will then imply that W, is relatively compact in H2+~ 1(SJ\/[]g) for all

k € N. To prove that ¥ is bounded in H2*(SM|s;) we shall estimate H@ZJt 2k (s
by an e-independent constant.

A direct inspection leads to

O Pran sagyyyy = (DO (DY) 2sr15)
= 2Re([0s, (D101, (Dyy* 4y )L2(SMs)
+ 2Re((Dp)?* o™, (DY D(e),) r2(sMs) »

where (D;)?* = (1 + D2)*,
The term [d;,(D;»?*] is a differential operator of order 2k on I'(SM]|s) — notice that
0¢ only acts on the coefficients of (D;)?*. Therefore, it leads to a continuous map

[00,(DY**]: H*?*(SM|y) — H'(SM]s).
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2.b

It follows that the first term in the latter equation is bounded by

2Re([01, (D107 (D0 ) asany) < exO10 ronsary) -

where ¢;(t) depends smoothly on ¢ and it is e-independent. Together with (4.6) we
have

8tH?Z£E) H%I%(SM@) < C1

19 Im(<5?Ps>2kJ§€)ﬁ?Pth(6)1%6)7 <5?Ps>2k"%6))L2(SM\E)
+9 Re(<l~)fps>2kft, <ﬁ?ps>2kw£€))L2(5M|2) ,

< 2O Prawgsatiy + 1ol ron(sarrsy

O 2 ron 115

where co = ¢1 + 1 while in the last equality we exploited the self-adjointness of the
operator Jt(E)DfPSJt(e) as well as the bound

2Re((D*Y i, (D) raisants) < 1 Felangsany + 1087 Proegsanyy -

Integration over ¢ leads to

t t
I By < 100l Bimsaney + | 1Flnqsnnopds + | cal) 04 muqsagyds.

It follows by Gronwall’s Lemma that

t

t
8 Brncsaner < (1090 Bsany + [ 17 Brsanys) exo [ catoras.

0
and therefore U, := {QZf |e > 0} is bounded in H?!(SM|x). Since H?**(SM|s)
H?~1(SM|s) is compact it follows that ¥, is relatively compact on H 2k=1(SM|y).
Since this holds for all k > 1, we have found that W, is relatively compact in H*(SM|x)
for all k e N.

Proof that U s equicontinuous: In order to apply Arzela-Ascoli Theorem, we shall now
prove that the family ¥ := {4 |e > 0} ¢ C(I, H*(SM]|s)), I < R compact interval,
is equicontinuous for all £ € N. For that we shall consider

Hﬁﬂ/}t HH’“

APS,t

sty = Ve =7 DTG g (saai)

< | Fill

APS,t

(sMls) T H¢t HH}’I;Z}ASM@) <Cr,

where C7 > 0 does not depend on € and t?. Here we used that HJt(E) B, ,(sms)) <1
as well as 2z < (2) = 4/1 + |z|? for all z € R. It then follows that for all t,s € I,

~ ~ t ~
139 = 3 sy < f G

t
f (2Dt (snapsydr

S

APS,T

< |t — s S:éll) le(T )HW}T | geea (SM|s,u87)
<|t—s|Cr.

where 6’1 > 0 does not depend on €. In the second inequality we used the fact that

| Iz saas) and || g (sar)s) are equivalent for all ¢. Therefore W is equicontinuous

APS, T

in CO(R, H*(SM]|y)).
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2.c Application of Arzela-Ascoli Theorem:

Since VU is a bounded and equicontinuous family in C(I, H*(SM|s)) such that U, is
relatively compact in H ¥(SM|s) for all t € I, the Arzela-Ascoli theorem [50] ensures
that ¥ is relatively compact in C(I, Hk(SM|2)) — this holds for all k € N.

Therefore there exists a subsequence {1/1 J)}]EN of {J(a)} which converges to @Z €
C(I,H*(SM|s)) as j — +oo. This entails in particular that Jgej) converges in
H¥(SM|x) for all t € I. Tt follows that, 1%6) = lim %Ej) € prgt(SM|g) because

J—>+00
Hjps ;(SM|x) is closed in H*(SM|x). This implies that ¢ € C(I, H,s, (SM]Z)).
Finally, using a diagonal subsequence argument we can assume that w ) converges to
¥ locally umformly in C(R, Hffps (SMy)) for all k > 0. Since this holds for all k € N,
we have ¢ € C(R, HEg o(SMls)). In particular Yy € H®(SM|yx) for all t € R.

3. FEquation of motion: We shall now prove that zZ solves the Cauchy problem (4.6). For all
j € N we have

t t
v = [ Fs = =i [ APDH s
0 0

The left-hand side of this equation converges to Jt — Uty — Sé fsds in H*(SM|yx) for all
k € N. For all such k the norm of the right-hand side can be estimated as

t t
|f0 JS(EJ)DSJS(EJ)wgﬁj)dSHHk(SMlz) < L C(S)HJS(SJ)DSJS(EJ)wggj)||H/]\€PSVS(SM‘E)dS’

where we exploited that | |gx(gary,) and || | g

APS,s

Moreover, notice that the integrand is a continuous function of s which pointwise converges
to HDswsHHk (sMly) @ J — +o0. In fact, this follows from the estimate

APS,s

(sM|s) are equivalent on Hfos J(SM|s).

|7 D, gD G swsHHM(SM‘E < [T DI G = ) s snrrm)
+ [T DI = 1)l sarrg) + 17 = DDsDallzs, (sarrs)

<l - Vsl s sy + 20 (s I — DVsl st ()

APS, ¢

and therefore the claims follows from the convergence 1;(53') — 1; as well as the strong
convergence of JS( 7) to the identity operator in Hyps (SM|x).

A dominated convergence arguments leads to
G = Ut~ | Juds = =i | Dudids.
0 0

which equivalent to the fulfillment of the reduced Dirac equation (4.3) together with the
initial value ¥y = Uy.
Finally we observe that ¢ € CY(R, H*(SM|s)) since duhy = f; — iDyhy € H(SM]s),
moreover,

Ot = 0ufe — i[ Dy, 0 — iDy fy — Dy

Since the right-hand side of the latter equation lies in H*(SM|sx) we find that s
C2(R,Hw(SMlz)). An induction argument shows that ¢ € C*(R, H*(SM]y)) for all
¢ e N, that is, yp € C*(R, H*(SM]|x)). We thus have 1) € C* (R, T'sps(SM|x)).

This shows the existence of smooth solutions.
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Remark 4.2. The proof presented above does not really depend on the actual form of APS
boundary conditions. In fact, the proof of Theorem 1.2 (under Assumption 4) is still valid
provided we consider any family B, = {B;}er of elliptic self-adjoint boundary conditions [6,
Definition 3.5-3.7] for D, such that (4.10) holds true.

This observation applies in particular in the following setting (which we shall consider in a
moment). Suppose 0% consists of two connected component XM 2@ and let oM = oMM U
OM® the associated decomposition of @M. In this situation we may consider the Cauchy problem
for the Dirac operator with APS boundary condition on M ™) and MIT boundary condition on
OM®@) . The latter boundary condition has been investigated in [47] and consist in requiring that
Ylap2) satisfies

(Id +i’7M(en))¢|aM(2) =0. (4.11)

Notice in particular that MIT boundary conditions are local and depend smoothly on time,
therefore, condition (4.10) is fulfilled and the proof of Theorem 1.2 (within assumption 4) still
holds true. Moreover, since MIT boundary conditions are local, the solution ¢ to the Cauchy
problem shares better propagation properties. In fact the bound (3.4) can be improved to

supp(v) < J(supp(f) v supp(vo)) L J(OE) (4.12)

where notice that no contribution from J (62(()2)) arises on the right-hand side.

4.3 Dropping Assumption 4

We shall now discuss the case when ¥ is non-compact — notice that we are still assuming that
0% is compact, c¢f. Assumption 1. To this avail we shall follow [5] — see also [46, Proposition 3.4].
On account of Proposition 3.2 any solution ¢ to the Cauchy problem (1.1) satisfies

supp(¢) € J(supp(¢o)) v J(supp(f)) v J(0%) .

Let K := supp(¢) u supp(f) and let T' > 0 be large enough to that K < (=7,T) x ¥ =: My —
Notice that My is again a globally hyperbolic spacetime with timelike boundary.

Let 3 be the » projection on ¥ of (J(K) v J(Xo)) n My with respect to My =T x X — X,
Let us consider U a relatively compact subset of & with smooth boundary and such that ScU
~ notice that the closure of ¥ is compact. Notice that by construction 0% < YcU.

Let V = (9U\(9E and consider a smooth change of the metric h; so that h; becomes a product
metric in a neighborhood of V' — notice that dist(V,0%) > 0 since 0% is closed. Such change can
be realized smoothly in ¢ and in a such a way that it does not affect the metric in 3.

We thus consider the doubling UofU along V. The resulting manifold ﬁ( TT) = (=T,7T) x U

is globally hyperbolic with timelike boundary and compact Cauchy surface U. However, the
boundary oU of U is made of two disconnected component Ut ), oU @ each of which is a copy of
0%. Therefore for each ¢ the APS boundary conditions do not Sufﬁce to make the D, self-adjoint
on U, as no boundary conditions have been imposed on the second copy of 0.

To cope with this problem we shall profit of Remark 4.2 and consider the Cauchy problem for
the Dirac operator on ﬁ(—T,T) with boundary conditions given by APS boundary conditions on

8(7((1)7,?) and MIT boundary conditions on oU (( )TT)

ﬁ(,T’T) c [/J\'(,T,T), it follows that ¥y and f can be regarded as data for the Cauchy problem (1.1)

Since supp(¢g) < U c U and supp(f) <

on Uc_r ). Since U is compact, we are reduced to the proof of Theorem 1.2 under Assumption

4. On account of Remark 4.2 such Cauchy problem has a unique solution ¢ € I'p(S ﬁ(,T,T)) -

here 5 is a short notation for the aforementioned boundary conditions. Moreover, the support
of vy fulfills

supp(yr) < J(supp(vo) u supp(f)) u J(EUWV) € My,

18



where J(0UW) = J(0%) (¢f. Equation (4.12)). It follows that, in fact, 1y € Tups(SM|pz,.)-
Finally, Proposition 3.3 implies that ¢ = ¢y for all 77 > T, therefore, we find ¢ € T'ps(SM)
such that 1|y, = ¢r for all T € R.

5 Well-posedness of the Cauchy problem

In this section we put everything together to prove Theorem 1.2. For that we still need to define
the involved topologies (compare [4, Section 2]):

The space of smooth sections T'(.) on a smooth vector bundle together with the standard
family of seminorms is a Fréchet topological vector space. We equip ' (SM|x) = {¢ €
'k (SMlx) | supp(yp) < K} for a closed subset K < ¥ with the subspace topology. Then,
Caps(SM) resp. I'ec(SMy) is equipped respectively with the relative locally convex topology of
I'(SM) and with the inductive topology of the system {I'x(SM|x)}Kek,y — here Koy contains
compact subsets K < 3 with K n 0% = . Similarly T'c.(SM) is equipped with the inductive
topology of the system {I'x (SM)} kek,,, -

Proof of Theorem 1.2. On account of Section 4.2.3 and 4.3, we have seen that there exists a
smooth solution of the Cauchy problem 1.1. Furthermore, on account of Proposition 3.3 it
follows that the solution is unique. To conclude our proof, it remain to show that the solution
depends continuously on the Cauchy data. For that we consider the linear map

DA’ : Taps(SM) —» T(SM|s) ®T(SM) , Y Yy, ® Dy,

which is continuous. Let K € Koy and Ks € Kgps. Then ', (SM|s) @ Tk, (SM) is closed (and
therefore Fréchet) and so is Vi, r, := (DA") "} (T, (SM|2)@®T i, (SM)) < T ps(SM). Moreover,
the previous part of the proof shows that D*": Vi, g, — I', (SM|x) @'k, (SM) is a bijection.
The open mapping theorem for Fréchet spaces entails that

(DAPS|VK1,K2)_1: Vi | = Laes(SM)
is continuous. The claim then follows from the arbitrariness of K; and Ks. O

A byproduct of the well-posedness of the Cauchy problem is the existence of Green operators
with similar properties to the ones found in [28,29].

Proposition 5.1. The classical Dirac operator on a globally hyperbolic manifold with timelike
boundary coupled with APS boundary conditions is Green-hyperbolic, i.e., there exist linear maps
G Tee(SM) — Taps(SM) satisfying

DMGAiPSf = f» G/;_FPSDMf = f (5'1)
forall f € Tec(SM).

Proof. Let f € Te.(SM) and choose ty € R such that supp(f) < J7(2,). By Theorem 1.2, there
exists a unique solution ¢ (f) € I'yps(SM) to the Cauchy problem

Duy =f, ¢|Zt0 =0, Y € Daps(SM).

Setting Gosf := 15 leads to the wanted operator. The existence of G4 is proven analogously.
O
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