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CONFORMAL NETS FROM MINIMAL W-ALGEBRAS

SEBASTIANO CARPI AND TIZIANO GAUDIO

ABSTRACT. We show the strong graded locality of all unitary minimal W-algebras, so
that they give rise to irreducible graded-local conformal nets. Among these unitary ver-
tex superalgebras, up to taking tensor products with free fermion vertex superalgebras,
there are the unitary Virasoro vertex algebras (N = 0) and the unitary N = 1,2,3,4
super-Virasoro vertex superalgebras. Accordingly, we have a uniform construction that
gives, besides the already known N = 0, 1,2 super-Virasoro nets, also the new N = 3,4
super-Virasoro nets. All strongly rational unitary minimal W -algebras give rise to previ-
ously known completely rational graded-local conformal nets and we conjecture that the
converse is also true. We prove this conjecture for all unitary W-algebras corresponding
to the N = 0,1, 2, 3,4 super-Virasoro vertex superalgebras.

CONTENTS
1. Introduction 1
2. Preliminaries 4
3. Strong graded locality 9
4. Representation theory 14
4.1. Virasoro nets 18
4.2. N =1 super-Virasoro nets 18
4.3. N = 2 super-Virasoro nets 28
4.4. N = 3 super-Virasoro nets 34
4.5. N = 4 super-Virasoro nets 34
4.6. Big N = 4 super-Virasoro nets 35
References 35

1. INTRODUCTION

Quantum field theory (QFT) is a central branch of theoretical physics that has devel-
oped in an attempt to give a quantum description of systems with an infinite number
of degrees of freedom. It is well known that the quantization of interacting relativistic
fields naturally gives rise to divergent quantities. In favorable cases, they can be cured
by the procedure of renormalization, but often only from a perturbative point of view.
This naturally leads to the demand for axiomatic descriptions of QFT, so as to provide
it with a mathematically rigorous framework that allows a deeper understanding of the
theory. Two of the main axiomatic approaches to QFT are the Wightman one and al-
gebraic quantum field theory (AQFT), see [SW64, GJ87, BW92, Str93, Haag96, Aral0).
Although the connection between these two axiomatic settings has been studied for long
time, their mathematical relations are not yet completely understood.
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Conformal field theory (CFT) in two space-time dimensions describes a class of QFTs
that are quite specific. However, they give rise to an impressive number of connections
between various fields of physics and mathematics: from critical phenomena to string
theory; from finite groups and modular forms to subfactors and noncommutative geometry,
see [DMS97, EK98, Gan06, Kaw15]. Chiral CFTs are CFTs in two space-time dimensions
which are generated by fields depending on a single light-ray coordinate (the same for all
the generating fields), so that they can be considered as CFTs on the compactified light-
ray S'. They are the building blocks of two-dimensional CFTs. In the AQFT setting,
they are described in terms of conformal nets on S' or more generally Mobius covariant
nets on S'. Besides the conformal net and the Wightman axioms, a third mathematical
axiomatization for chiral CFTs, the one based on vertex algebras [FLM88, FHL93, Kac01],
is nowadays quite popular and very well established. The latter axiomatization can be
considered as a purely algebraic variant of the Wightman axioms, but it shares with the
conformal net setting a strong emphasis on representation theory aspects.

A systematic study of the connection between these different axiomatic settings for
chiral CFTs started with the work of Carpi, Kawahigashi, Longo and Weiner [CKLW18|
on the construction of local conformal nets from suitably well-behaved vertex operator
algebras (VOAs), called strongly local. The strategy in [CKLW18] can be described in
the following way. Assuming certain polynomial energy bounds for a unitary VOA V,
one can define operator-valued distributions acting on the Hilbert space completion Hy
of V from the formal distributions given by the vertex operators of V. These operator-
valued distributions satisfy a chiral CFT version of the Wightman axioms. Following a
traditional path, they can be used to define a net of von Neumann algebras. In order to
get a conformal net, the locality axiom for the latter is the only missing point. The strong
locality condition means exactly that, besides the already assumed polynomial energy
bounds, the net is local and hence a local conformal net. Many important examples of
unitary VOAs have been shown to be strongly local in [CKLW18]. Moreover, it has been
conjectured in the same paper that every unitary VOA is strongly local.

The correspondence in [CKLW18] has been recently extended to unitary vertex operator
superalgebras (VOSAs) and graded-local conformal nets in [CGH] in order to allow the
presence of fermionic fields that play an important role in many constructions. Following
the strategy in [CKLW18], a suitable class of unitary VOSAs called strongly graded-
local has been defined in [CGH]. Then the corresponding graded-local conformal nets
are defined through the graded-local family of Wightman fields on S! associated with the
vertex operators. Moreover, in the same paper, the strong graded locality is proved for
many examples of unitary VOSAs. As a consequence, many of the already known graded-
local conformal nets on S! are given back together with a remarkable family of new nets.
Further remarkable examples of strongly graded-local VOSAs have been recently given in
[Gau].

It should be pointed out that the strong graded locality is not needed in order to
define conformal or M&bius covariant Wightman theories on S! from unitary VOSAs, see
[RTT22]. Actually, one can also drop the unitarity condition by generalizing the notion of
Wightman CFTs to the non-unitary setting, see [CRTT]. On the other hand, conformal
nets act on Hilbert spaces and they are intrinsically unitary. Accordingly, one has to
require that the associated VOSAs are also unitary. Concerning the polynomial energy
bounds, they play an important role in the known constructions of conformal nets on S?,
although they are expected to follow from unitarity. Finally, proving the strong graded
locality is essential because the graded locality for the nets of von Neumann algebras is
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presently not known to follow from the corresponding graded locality for the Wightman
fields. Actually, this problem is a central issue in the lack of a complete understanding of
the connection of Wightman QFT with AQFT.

In this article, we prove that all unitary minimal W-algebras are strongly graded-local
and hence they define a corresponding family of irreducible graded-local conformal nets
on S'. On the one hand, some of these nets, such as the N = 0, 1,2 super-Virasoro nets,
where already known by direct construction from the unitary vacuum representations of
the corresponding superconformal algebras. On the other hand, many of them appear to
be completely new. In particular, we can construct the new N = 3,4 super-Virasoro nets.

W-algebras are a remarkable family of vertex superalgebras. The paradigmatic family
of examples is given by the Zamolodchikov W3-algebras. Unitary W3s-algebras have been
classified in [CTW23] and proved to be strongly local in [CTW22]. An important family
of W-algebras is the one of universal affine W-algebras W¥(g, z, f) that is obtained by
quantization of the classical Hamiltonian reduction, and their simple quotients Wy(g, z, f),
see [FF90, FF90b, KRW03, KW04, DK06]. Here g is a simple finite-dimensional Lie
superalgebra with even elements = and f satisfying suitable properties. Through this
procedure of quantization, one gets the so called principal W-algebras when f is a principal
nilpotent element, whereas minimal W-algebras correspond to minimal nilpotent elements.
The Ws-algebras can be identified with principal W-algebras corresponding to g = sls.
The unitary ones with central charge ¢ < 2 correspond to the so called discrete series.
More generally, for g of ADE type the discrete series principal W-algebras can be shown
to be unitary and strongly local as a consequence of their coset realization, see [ACL19,
Ten24, Gui]. On the other hand, there seems to be no complete classification result for
unitary principal W-algebras besides the cases sl and sl3, corresponding to the Virasoro
vertex algebra and the Ws-algebras respectively, see [CTW23]. The situation appears to
be simpler in the case of minimal W-algebras. In fact, the unitary minimal W-algebras
have been recently classified in [KMP23| and their unitary representation theory has been
studied in detail in [KMP23, AKMP24, KMP].

In the present paper, beside the proof of the strong graded locality, we discuss some
aspects of the representation theory of the corresponding graded-local conformal nets. It
turns out that all the strongly rational unitary minimal W-algebras give rise to graded-
local conformal nets that are completely rational in the sense of [KLMO1]. In the converse
direction, we show that the N = 0,1,2, 3,4 super-Virasoro nets corresponding to non-
rational minimal W-algebras are not completely rational. We conjecture that a unitary
minimal W-algebra is strongly rational if an only if the corresponding conformal net is
completely rational.

This paper is organized as follows. In Section 2, we discuss some preliminaries on unitary
VOSAs and the corresponding graded-local conformal nets. In Section 3, we state and
prove our strong graded locality result for all unitary minimal W-algebras. In Section 4,
we discuss with some detail the notion of complete rationality for graded-local conformal
nets. Then we move to prove that the graded-local conformal nets associated with the non-
rational minimal W-algebras corresponding to the N = 0, 1, 2, 3, 4 super-Virasoro algebras
are not completely rational. This is achieved by proving the existence of infinitely many
equivalence classes of irreducible locally normal representations of these nets. In the same
section, we show that the main result in [MTW18] on the split property for local conformal
nets can be generalized to the graded-local case thanks to the results in [Dop82].
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2. PRELIMINARIES

We refer to [Kac01], see also [FLM88, FHL93, Xu98, LL04], for the basics of the theory of
vertex superalgebras and to [CGH, Section 3], see also [CKLW18, Section 4], for notations
and basic definitions.

For a vertex superalgebra V = V5 ® V1, we use I'y for the parity operator of V, that is
I'v(a) = (—1)Pa whenever a € V5 with p € {0,1}, where p(a) :=p € Z/27Z is called the
parity of a. Accordingly, vectors in V5 are called even, whereas vectors in V7 are called
odd. T is the infinitesimal translation operator and Y (a,z) = Y., oy a2z """ denotes
the vertexr operator associated to a vector a € V. As usual, 0 € V5 denote the vacuum
vector. A Virasoro vector v € Vg is a vector whose coefficients of the corresponding field
Y(v,2) = Y ez Lz~ ™2 satisfy the Virasoro algebra Uit commutation relations for a
given central charge ¢ € C:

3
Vn,m € Z [Ly, Lin) = (n— m) Ly + c(n12n)
If L_y =T and Ly is diagonalizable on V', then v is called a conformal vector. Accordingly,
V endowed with a conformal vector v is called a conformal vertex superalgebra. Let
V,, := Ker(Ly — nly) for all n € C be the Ly-eigenspaces. If a € V,, for some n € C,
then it is called homogeneous of conformal weight d, := n and we use to write Y (a,z) =
Znez_da anz "% where a, = U(ntd,—1) ifn € Z—d, and a, = 0 otherwise. In this way,

On,—mlv . (1)

one can write Y (250, 2) = > nec @nz” " for all a € V. Moreover, a homogeneous vector a
is said to be primary if Lya = 0 for all n > 0 and quasi-primary if Lia = 0. Therefore, €2
is a primary vector, whereas v is quasi-primary. A vertex operator superalgebra (VOSA) is
a conformal vertex superalgebra V' where the corresponding conformal vector v satisfies:
for all n € %Z, V., is finite-dimensional;

i=Pv.. =6 w

nez nez—1i

and there exists an integer N such that V,, = {0} for all n < N. If V§ = {0}, then we also
use the terminology vertex algebra, conformal vertex algebra and vertexr operator algebra
(VOA) respectively.

Remark 2.1. An alternative, although equivalent, definition of vertex superalgebra is given
in terms of the \-bracket [-5-] in place of the usual (n)-product, see [DKO06, Section 1.5]
for details, which is defined by:
+00 4
A
Va,b eV [axb] =)
§=0

ﬁ(a(j)b) (2)
where A is indeterminate. For our purposes, it is sufficient to know the relation between

[‘A-] and the Borcherds commutator formula [Kac0l, Proposition 4.8], which we recall in
this equivalent form in the conformal case:

= p+d,—1
Vp,qe C VeeV lap, bglc = Z ( ja )(a(j)b)p+qc. (3)
j=0

A VOSA V is said to be unitary if, see [CGH, Section 3.1], cf. also [AL17, Section 2.1],
there exists a scalar product (that we assume to be linear in the second variable) (-|-) on
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V such that: it is normalized, that is (Q|Q) = 1; it is invariant, that is there exists an
antilinear VOSA involution 6 of V', called the PCT operator, satisfying

Ya,b,c eV (Y (0(a), 2)blc) = (b\Y(eZLl(71)2L3+L0z_2L0a, 2_1)0).

The above definition of unitarity is equivalent to the following, which will be mostly used in
this paper, see [CGH, Theorem 3.31], cf. also [CT23, Section 2|: there exists a normalized
scalar product and an antilinear vector superspace involution V' 3 a — @ € V such that
v =v and

1
Va,b,ceV Vn € §Z (anb|c) = (bla_nc) .

In this case, we have that = Q and there exists a unique antilinear VOSA automorphism
0 such that @ = e&1(—1)2L3+Log(q) for all a € V. Moreover, 6 turns out to be the PCT
operator of V. We say that a € V is Hermitian if @ = a. We note that for any two
homogeneous vectors a and b of any unitary VOSA, we have that (a|b) = 0 whenever
dg # dp. Moreover, a unitary VOSA V is simple, that is there are no non-trivial ideals,
if and only if it is of CF'T type, that is Vo = CQ and V,, = {0} for all n < 0, see [CGH,
Proposition 3.10]. If V' is a simple unitary VOSA, then its unitary structure is unique up
to unitary VOSA isomorphism, see [CGH, Proposition 3.14]. Recall that the even part Vj
of V' is a unitary VOA in the sense of [DL14] and [CKLW18, Section 5], and it is also a
unitary subalgebra of V| see [CGH, Section 3.5].

We recall the definition of a graded-local Mébius covariant net A from [CGH, Section
2], based on [CKLO0S8, Section 2|, [CHKLX15, Section 2] and [CHL15, Section 2]. This
is an isotonous, that is inclusion-preserving, map from the set J of intervals (non-dense
connected open subsets) of the unit circle S* to a family of von Neumann algebras A(I)
with I € J, acting on a separable Hilbert space H. The Mdbius covariance requires
the existence of a strongly continuous unitary representation U of the universal cover
M6b(S1)(>) of the Mébius group Mob(S') of S acting covariantly on A. This means
that for all I € J and all A € A(I), it holds that U(y)A(l)U(y)* = A(YI), where %
is the image under the covering map p : Méb(S1)(>) — Mo6b(S!) of v. We also assume
that: U is positive-energy, that is the generator Lg of the lift to Mé')b(Sl)(Oo) of the one-
parameter subgroup of rotations R 3 ¢ — U(r(%)(t)) is positive; there exists a vacuum,
that is a U-invariant vector 2 € H, which is also cyclic for the von Neumann algebra
A(S') generated by |, 7 A(I). The twisted or graded locality is realized by a self-adjoint
unitary operator I' on H, called the grading unitary, such that A(I') C ZA(I) Z*, where
7 = % We say that A is a graded-local conformal net if it is also diffeomorphism
covariant: there exists an extension of U, denoted by the same symbol, to a positive-energy
strongly continuous projective unitary representation of the universal cover Diff+(Sl)(°°)
of the group Diff*(S1) of orientation-preserving diffeomorphisms of S such that

¥y e Diff F(SH>®) vie g UR)ADNU(y)* = AGI)
¥y e Diff(1)™) VI e J YA e A(I')  U(y)AU(y)* = A

where: 7 is the image under the covering map from Diff¥(51)(*) to Diff*(S') of , still
denoted by p; whereas Diff (1 )(OO) is the connected component to the identity of the pre-
image under p of the subgroup of those diffeomorphisms acting as the identity map on
I'. A graded-local Mobius covariant or conformal net is said to be irreducible if Q is
unique, up to a constant factor, among the vectors in ‘H that are invariant for the action
of M&b(81)(*®) given by U. This is equivalent to every A(I) to be a II1; factor. Finally,
note that e??7Lo = U (r(>)(27)) = T, so that U factors through a representation of the
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double cover Diff7(S1)(?). We denote by A" the Bose subnet of A, that is the fixed
point subnet of A with respect to the adjoint action of I'. See [CGH, Section 2.3] for the
definition of covariant subnets and their related topics. If A is irreducible, then A" can
be considered as an irreducible local Mobius covariant or local conformal net acting on the
I-invariant subspace H of H. The Virasoro subnet Vir, of a graded-local conformal net
A is always a covariant subnet of Al see e.g. [Car04, KL04, CGH].

Therefore, from a simple unitary VOSA V, it is possible to define an irreducible graded-
local conformal net Ay, if certain analytic assumptions are satisfied. In the following, such
analytic assumptions are briefly summarized, see [CGH, Section 4] for a detailed treatment.

Definition 2.2. Let (V,(-|-)) be a unitary VOSA. A vector a € V is said to satisfy k-
th order (polynomial) energy bounds for some non-negative real number k, if there exist
non-negative real numbers M and s such that

1
Vne L VbeV land|| < M (1 +|n|)®

(Lo + 1V)ka

where ||a|| := +/(ala) for all a € V. If k = 1, a is said to satisfy linear energy bounds;
whereas if k is not specify, a is simply said to satisfy energy bounds. Accordingly, V is
said to be energy-bounded if every element satisfies energy bounds.

We shall need the following proposition:

Proposition 2.3. Let V be a unitary VOSA and let b € V5 be any odd vector. Suppose
that there exist some non-negative real numbers M,s and k such that

1
VnEZ—EVCEV ’

[bn,g_n]CH < M(n|+1)*

(Lo + lv)kcH .
Then b satisfies the following g-th order energy bounds:

1 s
VneZ- o veeV |lbue| < VM(nl+1)3 /(Lo + 1v)2e

Proof. First, note that for all z,y € V and all n € %Z, the endomorphism z,y_, commutes

with Lg. Let ¢ be any vector in V. Then easy calculations together with the Cauchy-
Schwarz inequality in the fifth row do the job: for all n € Z — %,

lbnell® < [Bne]” +1buel> = B-nelbnc) + (buclbre)
= (e|brbnc) + (c[b_nbnc) = (c|[bns b_n]c)

(Lo + 1v) 72 (Lo + 1v) 2 ¢|[b, b-n]c)

((Lo+1v) 2cllbn, bn] (Lo + 1v)"%c

|(Zo +1v)%¢] |

(L() + 1v)§c

k

<| bus b-nl (Lo + 1) e

2
< M(n|+1)*

Then the result follows taking the square roots. O

Let C°°(S1) be the vector space of infinitely differentiable complex-valued functions on
S1. Set the function x(z) := €'2 for all z € S' such that z = €* for a unique z € (—, 7).
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Accordingly, we use C7°(S 1) to denote the vector space of functions of kind g = xh where
h € C*(S'). With the following definitions of derivative:

oy AT

f (Z) T dl' . ( )
' e =z . 4

/0= ) () + 1)

for all z € S, we equip C*°(S') and C°(S') with their natural Fréchet topologies.
Therefore, for all non-negative s € R, the following family of norms are well-defined:

11, =D (1 +Inl)? and gl =Y (1+[nl)°[Gal

nez nEZ—%

where we are using the Fourier coefficients

Vn e7Z ﬁz - f(z)z" / fle zz e~y
g1 2mz
Vn e Z— L G = han1 = ! h(e”)e 2oy
5 n n o | .

If V is a unitary VOSA, call H its Hilbert space completion with respect to its scalar
product (-|-). For all a € V, the coefficients a,, for all n € %Z are operators on H
with dense domain V. Moreover, thanks to the invariance property of (-|-), every a, has
densely defined adjoint and thus it is closable. We denote its closure with the same symbol.
Suppose further that V is energy-bounded and let a € Vi and b € V5, f € C*°(S') and
g € C°(S1). Then the following operators

Yo(a, f)c:= ananc and  Yy(b,g)c Z gnbnc (5)

nez nEfo

for all ¢ € V are well-defined thanks to the energy bounds. Furthermore, they have densely
defined adjoint in H thanks to the invariance property of the scalar product as just noted
above. Therefore they are also closable:

Definition 2.4. The closures of the densely defined operators Yy(a, f) and Yy (b, g) defined
in (5) are called smeared vertex operators and they are denoted by Y(a, f) and Y (b, g)
respectively.

It is proved, see [CGH, Proposition 4.13], that the subspace H> of H of smooth vectors
for Lp is a common invariant domain for the smeared vertex operators Y (a, f) and Y (b, g)
and their adjoints. Note that Y(a, f) C Y(a, f)* and Y (b,g) C Y (b, g)*, where g(z) :=
x(2)zh(z) for all z € S'. Tt follows that if @ and b are Hermitian, then the corresponding
smeared vertex operators are self-adjoint whenever f € C*°(S1 R) and g € cy (S, R),
that is whenever they are real-valued functions.

For a closed densely defined operator A on a Hilbert space K, the von Neumann algebra
W*(A) generated by A is given by:

W*(A):={B € B(K)| BAC AB, B*AC AB*Y

where -/ denotes the commutant in B(K). If % is a family of closed densely defined

operators on K, the von Neumann algebra W*(.%) generated by .# is the smallest von

Neumann algebra containing (J 4.z W*(A).
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Therefore, if (V, (:|-)) is a simple energy-bounded unitary VOSA, we define the isotonous
family of von Neumann algebras on H generated from (V, (-|-)) by

a€ Vg, feC>®(SY), suppf CI } (6)

.A(V,(.|.))(I) =W {Y(a, f)7 Y(bvg) be VT? g€ C;O(Sl), suppg C I

for all I € J. In [CGH, Section 4.2], it is proved that the vacuum vector Q of V is
a cyclic vector for the von Neumann algebra Ay, ..y)(S Y. Moreover, the positive-energy
unitary representation of the Virasoro algebra on V', arising from the coefficients of Y (v, z),

integrates to a positive-energy strongly continuous projective unitary representation U of
Diff 7 (51)(>) such that

U (exp®) (t£)) AU (exp™) (tf))* = ™Y 1)) 4=V (1])

where exp(®©) (tf) with ¢t € R is the one-parameter subgroup of Diff*(Sl)(oo) generated by
the smooth real vector field f on S'. Note that in this paper, we identify a smooth vector
field f (f—x with its corresponding smooth function f. In particular, U factors through a
representation of the double cover Diff *(S1)(?) as U(r(°®)(27)) = T, which is the extension
to H of I'y.. Therefore, it is proved that the family (6) satisfies Mobius covariance with
respect to U. It is also irreducible as the vacuum §2 is unique, V' being of CFT type.

Unfortunately, the graded locality of vertex operators is not in general enough to con-
clude the graded locality of the family (6) with respect to I and Z, that is the extension to
H of the vector space map Zy := % on V. Note that Z* = Z~! and that Z(a) = (—i)Pa
for all a € V. Then we come to the following:

Definition 2.5. A unitary VOSA V is said to be strongly graded-local if it is energy-
bounded and Ay,.|.)) satisfies the graded locality.

Therefore, if (V, (+])) is a simple strongly graded-local unitary VOSA, it can be proved
that Ay, () is also diffeomorphism covariant with respect to U and thus it defines a
proper irreducible graded-local conformal net on #H, which is also independent, up to
isomorphism, of the choice of the scalar product on V. Accordingly, we denote such net
simply by Ay .

Let V! and V2 be two VOSAs. Then we denote by V := VI&V? their graded tensor
product, see [CGH, Section 3.1] and references therein. We highlight that if those VOSAs
are also unitary, then the unitary structure ((-|-),0) on V is given by (-|-) := (-|)1(:|")2
and by 6 := 01 ® 02, where the indexes denote the unitary structures on the corresponding
VOSAsS, see [AL17, Proposition 2.4] and [Ten19, Proposition 2.20]. By [CGH, Corollary
6.6], V is strongly graded-local if and only if V! and V2 are. In this case, we also have
that Ay is isomorphic to the graded tensor product Ay1®.Ay2, see [CGH, Example 2.7]
and references therein.

Example 2.6. The easiest example of the correspondence between simple unitary VOSAs
and irreducible graded-local conformal nets is given by the real free fermion models, see
[CGH, Example 7.1] and references therein. We use F' for the real free fermion VOSA.
Recall that F' is a simple unitary VOSA with central charge %, which can be generated by
any Hermitian primary vector f € F'1 with norm one. Moreover, F' is strongly graded-local
and F := A is called the real free férmion net. The graded tensor product F™ of n copies
of F' is strongly graded-local and we denote the corresponding graded-local conformal net
by F". In particular, 2 and F? are known as the charged free fermion VOSA and net
respectively.
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Let V be a vertex superalgebra and let v be any Virasoro vector with Y (v,z) =
Y omez L,z7""2 Wecall T € Vi a super-Virasoro vector of V' (with respect to v) if the co-

efficients of Y'(7,2) =3 s 1 Gnz "3 satisfy with the ones of Y (v, z) the commutation
2
relations of the Neveu-Schwarz algebra NS for some central charge ¢ € C:

3 _
Vm,n €Z (L, Ln] == (m — 1) Lsn + C(mmm)am,_n
1
VmELVn €L~ (LGl <”; = n> Gonin (7)

1 1
Ym,n € Z — B (G, Gr] := 2Ly + g <m2 - 4) Om,—n -

Suppose that v makes V into a conformal vertex superalgebra. This means that the
Virasoro vector v is a conformal vector, that is L_; =T and Lg is diagonalizable. In this
case, 7 is called a superconformal vector, see [Kac01, Definition 5.9 and Proposition 5.9].
Then a VOSA V is a N = 1 superconformal VOSA if there is a superconformal vector
7 associated to the conformal vector v of V. If V is unitary, then it is called a unitary
N =1 superconformal VOSA if the vertex subalgebra generated by v and 7 is a unitary
subalgebra, see [CGH, Definition 7.7], which turns out to be equivalent to ask for 7 to
be Hermitian if V' is also simple, see [CGH, Theorem 7.9(i)]. Therefore, if V' is a simple
N = 1 superconformal VOSA which is also strongly graded-local, then V is unitary N =1
superconformal if and only if Ay is an irreducible N = 1 superconformal net in the sense
of [CGH, Definition 7.6], see [CGH, Theorem 7.9(ii)].

Now, we give a well-known criteria useful to prove the strong graded locality of a unitary
VOSA, based on linear energy bounds. Set Cgo(Sl) = C>(S1) and C’%’(Sl) = C(S1)
and corresponding symbols for their real-valued subsets.

Theorem 2.7. Let V be a simple energy-bounded unitary VOSA. If a is a Hermitian quasi-

primary vector with given parity p(a) satisfying linear energy bounds, then W*(Y (a, f)) C

W*(ZY (b, g)Z*)" for all b € V with given parity p(b), all f € C’gfa)(Sl,R) and all g €

C’;E’b)(Sl) whenever f and g have disjoint supports. This is true in particular if either a

18 any vector in Vi U V1 or a is a Hermitian quasi-primary Virasoro or super-Virasoro
2

vector.

Proof. The first part of this theorem can be proved as in the last part of the proof of
[CTW22, Lemma 3.6], see the proof of [CGH, Theorem 7.15]. The second part follows
recalling that: any vector in Vi1 satisfies 0-th order energy bounds, see [CGH, Proposition

2
4.5]; vectors in V] satisfies %—th order energy bounds, see [CT23, Proposition 3.6]; Hermit-
ian quasi-primary Virasoro vectors satisfy linear energy bounds, see [CT23, Proposition
1

3.4]; Hermitian quasi-primary super-Virasoro vectors satisfy 5-th order energy bounds,

see [CKLO8, Eq. (27)]. O

3. STRONG GRADED LOCALITY

Let g = gg @ g7 be a simple finite-dimensional Lie superalgebra, see [Kac77], with a
non-degenerate even supersymmetric invariant bilinear form B(-,-). Let x and f be two
even elements in gy such that adx is diagonalizable on g with half-integer eigenvalues and
that [z, f] = —f. Note that these conditions imply that f is a nilpotent element of g. We
denote the eigenspaces of adx by g; with j € %Z. Then the pair (z, f) is called good if the
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centralizer g/ = {a € g | [f,a] = 0} of f in g decomposes as

o/ = @ gf where gfz{aegj][f,a]zo}.

jE%ZSO
In this case, adx realizes an equivalence between g1 and g_1, see e.g. [KWO04, Eq.s (1.10)—
2 2

(1.11)]. A pair (z, f) is automatically good if there is an element e € g such that
[z,e] = e, that is (z, f) is part of a sly-triple (e,z, f) with e € gg. In this case, e
is uniquely determined by (z, f). Moreover, (g,z, f) is called a Dynkin datum. Now,
suppose that g is also basic, which means that gg is reductive. Then it is not difficult to
see that e, z and f belong to the semisimple part of gg, so that x is uniquely determined,
up to conjugation, by the nilpotent element f, see [Kos59, Corollary 3.7 |. By a procedure
of quantum (Hamiltonian) reduction, see [KRW03, Section 2| and [KWO04, Sections 1-4],
see also [DKO06, Section 5.1], it is possible to associate to every Dynkin datum (g, z, f), a
family of vertex algebras, in the sense of [Kac01], W*(g, x, f) with k € C, called universal
W -algebras. Moreover, W¥(g, z, f) has a natural conformal vector v, making it into a
conformal vertex superalgebra, whenever k # —h", where h" is the dual Coxeter number
of g. In this case, we denote the simple quotient of W*(g,z, f) by Wi(g,x, f). It turns
out that W*(g, z, f) and its simple quotient Wy (g, z, f) depend, up to isomorphisms, only
on g, f and k. Accordingly, as usual, we will use the symbols W*(g, ) and Wy (g, f) to
denote W¥(g, z, f) and W;(g, z, f) respectively for a given choice of .

Minimal W -algebras, introduced in [KRW03, Section 4] and [KWO04, Section 5], see also
[AKMPP18, Section 2|, [KMP22, Section 7] and [KMP23, Section 7], arise for a particular
class of Dynkin datum, called minimal, characterized by the fact that adx gives a minimal
gradation of g, that is

g=9-199 1000Dg1 g, g1=Cf, g1=Ce. (8)

A key feature of universal minimal W-algebras is that they have explicit sets of free strong
generators, which we are going to describe in the following, after setting some notations.
Let g? be the centralizer of {e,z, f} in g, then by the property of B(-,-), one can see that

go=Crag", ¢ ={acgo|B(a,z)=0}.

It follows that if b is a Cartan subalgebra of the even part of go, then h = Cz @ h?, where
b := {a € b | B(a,z) = 0} is a Cartan subalgebra of the even part of gf. Moreover,
h is a Cartan subalgebra of gz too. We also normalize the bilinear form B(-,-) by the
condition B(z,z) = % This also fixes the Casimir operator of g and its eigenvalue 2h" on
g. Therefore, a complete list of minimal gradation for g, along with a description of g%,
g1 and RV, is given in [KWO04, Tables 1-3].

Remark 3.1. Let A C b* be the set of roots of h in g. Then, a minimal Dynkin datum
(g,z, f) can be obtained choosing f as the root vector of g attached to a minimal root, so
that e is the root vector attached to the corresponding maximal root. Actually, it can be
showed that there is a bijection between minimal gradations of g, up to automorphisms
of g, and highest roots of the simple components of gg, which can be made highest roots
of g for some ordering of A, up to the action of the Weyl group, see [KW04, Section 5.

By [KWO04, Theorem 5.1] with [KWO05], cf. also [DK06, Section 5.3], there are two linear
isomorphisms g > u — J{ € Wk(g, )1 and g_1 3 v — G} € W¥(g, f)_s such that
2 2

the images of the elements in any pair of bases of g% and of g_1 form together with the
2



CONFORMAL NETS FROM MINIMAL W-ALGEBRAS 11

conformal vector v a set of free strong generators for W¥(g, f). The A-brackets are as
follows:

0, G = Gl

[Jiudy g = glleell )

<k 4 h;) Blu,v) — %Kgo (u|v)] ©)

where kg, () is the Killing form of go and (see [KMP23, Eq. (7.7)], which is derived from
[KWO04, Theorem 5.1(e)], but with a correct version of the A?-term, recall [KWO05], from
[AKMPP18, Eq. (3.1)])
dim gf
[GHh G = —2(k 4+ 1Y) (u, v)v + (u,v) Z ; glutd jlue}
a=1
dim g"
+2 3 ([ua, ), [, u?]) : SOV o 1)Ly glllenel)
a,f=1 (10)
dim g?
4o | Jlllead o} Z ([ta, ], [0, uP]y g usl}
a,f=1

+ 207 (u, v)p(k)Q2
where: (u,v) := B(f,[u,v]) for all u,v € g 1 {ua} and {u®} are dual basis of g? with

respect to B(-,-); a — a? is the orthogonal projection from go to g% p(k) is a monic
quadratic polynomial from [AKMPP18, Table 4]. Note that these generators descend
to strong generators for the simple minimal W-algebras. The central charge is given by
[KW04, Eq. (5.7)]:

—6k+hY —4, d:=sdim(g) := dim(gy) — dim(gg) . (11)

Now, we move to the unitarity of minimal W-algebras. First of all, from [AKMPP18,
Theorem 3.3 and Proposition 3.4] we have that for some values of k, called collapsing
levels, the minimal W-algebra Wy(g, f) is either the trivial VOA CQ or it is isomorphic,
as a conformal vertex superalgebra, to a simple affine VOA, see e.g. [Kac01, Section 4.7
and Section 5.7]. In the former case, Wy(g, f) is trivially unitary, whereas in the latter
one it is unitary if and only if the corresponding affine VOA is; more details about these
cases will be given later in Remark 3.3. Therefore, we can restrict to the non-collapsing
levels. In this case, if k has non-zero imaginary part, then it follows from (9) that Wy(g, f)
cannot be unitary. If k is real, by [KMP22, Theorem 7.9], Wy(g, f) can be a unitary VOSA
only if the adz-gradation (8) is compatible with the parity of g, that is the parity of g;
is 27 mod 2 for j € {£1,0,£1}. In all these cases, for all k € C\{—h"}, W¥(g, f) has
a structure of VOSA, so that Wy(g, f) is a simple (possibly non-unitary) VOSA. The
above compatibility condition is equivalent to consider the entries of [KW04, Table 2| only
together with the case g = slo, see also Remark 3.2. Moreover, the adz-gradation (8)
is unique up to automorphisms of g, so that different choices for f produce isomorphic
VOSAs.

Remark 3.2. When inspecting [KWO04, Table 2], recall that: for all m € Z~( and all even
n € Zxa, osp(m|n) = spo(n|m); spo(2|2) = sl(2]1); spo(2]4) = D(2,1;1); for all m € Z>o,
gl,, =2 C & sly,; s04 = sly @ sly; spo(2]0) = sly 2 spy. Moreover, D(2,1;a) and D(2,1;4’)
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are isomorphic if and only if @ and @’ lie in the same orbit of the group generated by the
transformations b — b~! and b — —b — 1.

Among possible choices for g, there are three special cases which are the only ones
with g% abelian. These are Wi(sly, f), Wi(spo(2[1), f) and Wy(spo(2]2), f), giving rise
to the well-known Virasoro VOAs L(c(k)), N = 1 super-Virasoro VOSAs V) (NS)
and N = 2 super-Virasoro VOSAs Vek) (N2) respectively with corresponding central
charges as in (11), see e.g. [KRWO03, Remark 4.1] and [KWO04, Section 8]. Their unitary
series were already established in the ‘80s, see Sections 4.1-4.3 respectively and references
therein. The remaining non-trivial unitary minimal W-algebras Wy(g, f) with g% non-
abelian are classified by [KMP23, Corollary 11.2 and Proposition 8.10], cf. also [KMP,
Table 1]. Following [KMP23], for any g from [KWO04, Table 2] with g¢ non-abelian, we call
the unitary range of Wy(g, f) the set of k € R such that k # —h" and Wy(g, f) # CQ.

Remark 3.3. For the readers’ convenience, we collect here below some useful data about
these unitary ranges, also specifying those collapsing levels giving rise to unitary VOAs:
g=sl(2lm)forallm >3, k=—1,h" =2-m,d=m?—4m+3, W_1(g, f) = M(1);
g= pﬁ[(2|2), ke ZS,Q, hY = 0,d=-2, Wfl(g, f) = CQ;

g= 5]30(2‘3), ke %ZS—?H hY = %7 d= 07 Wfé(gaf) = CQ: ng(gmf) = ‘/1(5[2)
with ¢(—2) = 1;

g =spo(2/m) forallm >4, k€ 17 o hY =212 =34 mm=5) W_i(s, /) =
CQ;

e g = D(2,1;7) for all m,n € Z~g coprime and (m,n) # (1,1), k € e Lo,
Y =0,d=1, W (8, f) = Vin-1(sl2) with o(55) = 3D for all m € Zso;

0=F@4), k€3l bV =-2,d=8W_:(g.f) =C

9=G@B3), k€ 3Z< o, hV =-3, d=3, W_s(g. f) = C;

where M (1) is the Heisenberg VOA with central charge ¢ = 1, see e.g. [Kac0l, Section
3.5 and Proposition 4.10(a)] and [DL14, Section 4.3], and Vj(slz) and V,,_1(sl2) are the
unitary affine VOAs [DL14, Section 4.2] associated to the simple complex Lie algebra sl,
at levels 1 and m — 1 respectively. As we have explained above, outside the unitary ranges
together with the Virasoro, N = 1 and N = 2 super-Virasoro cases, see [KW04, Table 1
and Table 2|, the unitary minimal W-algebras are all collapsing. The ones collapsing to
the trivial VOA are listed in [AKMPP18, Proposition 3.4], whereas the non-trivial ones
are given by [KMP22, Proposition 7.11 and Corollary 7.12], cf. [KMP23, Theorem 7.4]:

o W_i(Ga, f) = Va(sly) with o(-3) =1
o W_i(sl(m|n), f) = M(1) for all n > 1 and all m > 2 such that m & {n,n+1,n+2};
o W_s(0osp(mln), f) = Vinons (sly) with ¢(—2) = 3m=n=8) fo1 all m,n > 1 such that

m—n—4

m —n > 10 and even.

Remark 3.4. We point out some facts about the unitary structure of minimal W-algebras.
This is determined by a suitable involutive antilinear automorphism 6 of the Lie superalge-
bra g. In particular, # must fix the elements e, x and f of the sls-triple. This implies that
6 preserves the eigenspaces of adz, that is 0(g;) = g; for all j € {:I:%,O, +1}. Then, see
[KMP23, Proposition 7.1 and Proposition 7.2], the above involution 6 determines the PCT
operator, which we still denote by 6, of a unitary minimal W-algebra by 6(.J {“}) = Jiow}
and H(G{”}) = GV} Tt follows that we can choose a pair of bases of gf and of g1 in
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such a way that the corresponding generators are Hermitian, see also the discussion after
the proof of [KMP22, Lemma 7.3], that is 8(J{*}) = —j{*} and 9(G{"}) = g1},

We are now ready to prove the main theorem of this section about the strong graded
locality of unitary minimal W-algebras.

Theorem 3.5. Every unitary minimal W-algebra Wy(g, f) is strongly graded-local. Then
to every such W-algebra is associated a unique, up to isomorphism, irreducible graded-local
conformal net Ay, 4.5)-

Proof. First of all, note that if Wy (g, f) = C, then it is trivially strongly local. Moreover,
the Heisenberg VOA M (1) and the unitary affine VOAs are already known to be strongly
local, see [CKLW18, Exmaple 8.6 and Example 8.7] respectively. For the cases with g
abelian, the strong graded locality of Wy (g, f) is also already known, see Sections 4.1-4.3
and references therein.

Let Wi(g, f) be any unitary minimal WW-algebra such that & is not a collapsing level and
g% is not abelian. As explained in Remark 3.4, we can consider a set of Hermitian generators
v, J{ and G}, We are going to prove that these generators, with the A-brackets in (9)-
(10), satisfy linear energy bounds. It is well-known that the conformal vector v satisfies
linear energy bounds and the currents J{*} satisfy %—th order energy bounds, see the proof
of Theorem 2.7. Then it remains to prove it for the primary generators of type G{*}.

First, we have that G{*} = 9(G1"}) = G{¥}. Recalling the formula for the \-bracket

(2), we can calculate the vectors Gg)}G{“} appearing in the commutators [G#}, G{fﬁ ] for

all n € Z — 3, according to the Borcherds commutator formula (3). Indeed, from (10) we
have that G{T.})}G{”} =0 for all j > 2 and

(j
dimgh
GG = —2(k + W) (v, 0w + (v,0) D o g ylued
a=1
dim g
+ 2 Z ([ta, V], [o, wP]) + Y Jlus} - po(k 4 1)L glllewlol)
a,f=1
dim g
Gg)}a{v} _ g glllealaltt 4 o > ([t o], [, uf)) g1 sl
a,f=1

GLIGTY = (v, v)p(k)Q2.

It is then manifest that Gg))} Gt} and Gg)}G{”} satisfy %—th order energy bounds as cur-
rents do it. By [CKLW18, Eq. (102)], for any basis element u € gf, L_;J%} satisfies 3-th
order energy bounds; whereas for basis elements u, v € g?, : J14} J{*} : satisfies 2-nd order

energy bounds, see [CKLW18, Eq.s (102) and (104)] with the discussion thereafter. It

follows that Ggg)}G{”} satisfies 2-nd order energy bounds. To sum up, for all n € Z — %,

the commutator [G#},Givg | satisfies the estimate in the hypotheses of Proposition 2.3

with k& = 2 there. Then for all basis elements v € g_1, G} satisfies linear energy bounds
2

as desired.

By Theorem 2.7, W*(Y (a, f)) C W*(ZY (b, g)Z*)" with b € Wi(g, f) whenever a is any
of the generators of Wi(g, f), f and g are suitable test functions with disjoint supports.
Therefore, Wy(g, f) is strongly graded-local by [CGH, Theorem 6.4]. O
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4. REPRESENTATION THEORY

In this section, we investigate the representation theories of some of the minimal W -
algebra