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Abstract

Rindler wedges are fundamental localization regions in AQFT. They are determined by the
one-parameter group of boost symmetries fixing the wedge. The algebraic canonical construc-
tion of the free field provided by Brunetti-Guido-Longo (BGL) arises from the wedge-boost
identification, the BW property and the PCT Theorem.

In this paper we generalize this picture in the following way. Firstly, given a Zs-graded Lie
group we define a (twisted-)local poset of abstract wedge regions. We classify (semisimple) Lie
algebras supporting abstract wedges and study special wedge configurations. This allows us
to exhibit an analog of the Haag-Kastler one-particle net axioms for such general Lie groups
without referring to any specific spacetime. This set of axioms supports a first quantization net
obtained by generalizing the BGL construction. The construction is possible for a large family
of Lie groups and provides several new models. We further comment on orthogonal wedges and
extension of symmetries.
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1 Introduction

Quantum Field Theory (QFT) lives in a tension between the locality principle and the underlying
group of symmetries characterizing the theory. On one hand, it is a physical principle that every
interesting quantity of a theory should be deducible by local measurements, namely—in the language
of Algebraic Quantum Field Theory (AQFT)—by the structure of the local algebras (see e.g. [Ha96]).
On the other hand, the symmetries of a theory provide a feature to describe physical objects, a
“key to nature’s secrets,” as it happens in the standard model [We05, [Wel1].

In AQFT, models are specified by a net of von Neumann algebras associated to causally com-
plete spacetime regions satisfying fundamental quantum and relativistic principles, such as isotony,
locality, covariance, positivity of the energy, and existence of a vacuum state. An important bridge
between the geometry and the algebraic structure is the Bisognano—Wichmann (BW) property of
(A)QFT claiming that the modular group of the algebra associated to any Rindler wedge W inside
Minkowski spacetime with respect to the vacuum state implements unitarily the covariant one-
parameter group of boosts fixing the wedge W. As a consequence, the algebraic structure of the
model, through the Tomita—Takesaki theory, contains the information about the symmetry group
acting on the model. Starting with the BW property, one can enlarge the symmetry group of a
QFT [GLW9S8| IMT18], find new relations among field theories [GLW98, [LMPR19, [MR20], establish
proper relations among spin and statistics [GL95], and compute entropy in QFT [LX18| Wilg|. For
recent results on this property we refer to [Gul9l [DM20].

Particles are field-derived concepts that can be described as unitary positive energy representa-
tions of the symmetry group. They are building blocks to construct Quantum Field Theories. The
operator-valued distribution ®; defining the free field associated to any particle U is not provided by
a canonical construction, see e.g. [BGL02, LMR16]. On the other hand, the von Neumann algebra
net generated by ®y satisfies the Bisognano—Wichmann property and the PCT Theorenl]. These
properties provide the tools for a canonical construction of the free algebra net [BGL02|]: Segal’s
second quantization gives the vacuum representation of the Weyl algebra on the Fock space asso-
ciated with the one-particle Hilbert space. The Araki lattice of von Neumann algebras is uniquely
determined by the local one-particle structure encoded in the lattice of closed real subspaces, the
first quantization [Ar63]. As a result of the Tomita—Takesaki modular theory for real subspaces, the
set of real states for a particle U localized in a wedge region is uniquely determined by the couple
(e=2™Kw U(jw)) where U(jw ) is the antiunitary implementation of the wedge reflection and Ky
is the generator of the one-parameter group of boosts associated to the wedge W. They satisfy
the Tomita relation U (jw )e2™ WU (jiw) = e 2™Xw . The one-particle states and the local algebra

IThe spacetime reflection ji (t, 1, ...,2n) = (—t, —21,...,%x) is implemented by the modular conjugation corre-
sponding to the standard right wedge W7.



associated to bounded causally complete regions are obtained by wedge state spaces and algebra
intersection, respectively.

Conversely, every pair (x,0), consisting of an element of the Poincaré-Lie algebra and an in-
volution o satisfying Ad(c)z = x specifies for every (anti-)unitary representation (U,#H) of the
Poincaré group a pair (A, J) = (e?™V®) (7)) that in turn defines a standard subspace V C H.
This construction, called the BGL construction, was introduced in [BGL02] and allows us to ob-
serve: The algebraic construction of the free fields is uniquely determined by its symmetries and the
correspondence between spacetime regions and their relative position with symmetries. In this sense,
due to the one-to-one correspondence between boosts and the corresponding wedges, one should be
able to specify the underlying symmetry structure of a quantum field theory without any reference
to the spacetime. Then one can reconstruct the spacetime features, such as locality and region
inclusions from the symmetry group.

With this claim in mind, we generalize the above picture as follows. Given a suitable Lie
group G, we first define an abstract wedge space. We then endow the wedge space with a G-action,
a notion of causal complement and an order structure. Eventually, starting from an (anti-)unitary
representation of a graded Lie group G, we construct the analogue of the BGL one-particle net by
the abstract setting.

We now collect the motivation and additional explanations of the fundamental structure we will
use. In order to obtain a one-particle net by the Tomita—Takesaki theory we need to start with a
graded Lie group G = G xZs, such as the improper Mébius group PGL2(R) or the proper Poincaré
group P.. For the moment, we assume that Z(GT) = {e} and that G is connected.

The key features of our approach are the following:

o Abstract boost generator. The abstract one-parameter group of boosts are generated by elements
x in the Lie algebra g of G defining a three grading g = g1 @ go P g—1 in the adjoint representation
by g; = ker(adx — jidg). To see how this complies with the well known models, see Examples
We call such elements x € g Euler elements because they corresponds to the linear Euler vector
field on the open embedding g1 < G/P,z — exp(z)P, where P C G is the connected subgroup
corresponding to the Lie algebra gg + g_1. For more on the underlying geometry of theses spaces,
we refer to [BNO4].

e The wedge reflection is obtained by analytic continuation of the one-parameter group of boosts
associated to the wedge at im. For instance, on Minkowski space, the wedge reflection j; = A (im)
is obtained by analytic extension of the one-parameter group of boosts in the first direction A;(t) =
exp(o1t) where (0;)i=1,2,3 are the Pauli matrices. In our general setting, the reflection o, called
Euler involution, associated to an Euler element z is determined by the analytic continuation of
the one-parameter group in the adjoint representation of the Lie algebra via Ad(c) = e™24% (see
@I0).

o Euler wedge. An Euler wedge is defined as a couple W = (zw,ow) of an Euler element and
the related Euler involution. The need to use the couple is to implement the G-action on the wedge
space (see (Z8)) and to establish the relation with the standard subspaces V and the corresponding
modular objects (Ay, Jy). We further remark that, in principle, it is not necessary to assume that

the involution oy satisfies
Ad(Uw) — ™ ad zw

in the adjoint representation, but only satisfying the proper commutation relation Ad(ow )zw =
zw, cf. Proposition 211

e GT-covariance. There is an action of the group G on the wedge space given by an adjoint
action on both components that takes care of the grading (see (2.8))). In this way the language of
Fuler wedges is consistent with the one of the standard subspaces, cf. Section



e Locality. Complementary wedges correspond to inverted one-parameter groups of boosts.
For instance dilations associated to causally complementary intervals in chiral theory or boosts
associated to complementary wedges are inverse to each other. On the abstract wedge space this is
captured by defining the complementary wedge of W = (x,0) by W’ = (—z, o).

e Isotony. By the existence of a (positive) invariant cone C' in the Lie algebra g, it is possible
to define a wedge endomorphism semigroup defining the wedge inclusion relation. Given an Euler
wedge W = (z,0), the generators in the positive cone lying in the subspaces gi1 define proper
wedge inclusions as each of them generates with x a translation-dilation group (isomorphic to the
affine group of the real line); see [Bo92 (Wi92| [Wi93] and in particular [Bo00]. This is the case of
wedge endomorphisms in Minkowski spacetime given by lightlike shifting or M6bius transformations
mapping an interval into itself as the translations do for the half-lines. These properties define a
local partially ordered set of wedges that can support key features of an AQFT structure.

It is important to note that the wedge space only depends on the Lie group and its Lie
algebra, and the order structure on the invariant cone C' C g. The relations among the wedges
specify the abstract spacetime structure to a large extent. For example, PSLo(R) is the symmetry
group for the 2-dimensional de Sitter spacetime and for the chiral circle. If one considers PSLa(R)
with the trivial cone in sly(R)—no proper inclusions of wedges—then it describes a QFT on de
Sitter spacetime; if one considers C' C sly(R) as in (217, inclusion relations among wedges arise,
and we obtain the wedge space on S*. B This correspondence between isotony and and positivity of
the energy was also studied in [GL03]; see also [Bo92, [Bo00, [Wi92| [Wi93] and [NOl?, Nel9l [Nel9b).
For recent classification results for the triples (g, z, C), we refer to [Oeh20), [Oeh20b].

There is more interesting structure on the abstract wedge space:

e Orthogonal wedges: We call two abstract wedges Wi = (21, 01) and Wa = (23, 02) orthogonal
if o1(x2) = —x2, i.e., Wy is reflected into its complement W3. Examples of orthogonal wedges are
coordinate wedges on Minkowski spacetimdg, or the upper and the right half-circle in chiral theories
on S'. This notion, which immediately generalizes to the abstract setting, plays a central role in
spin-statistics relations [GLI5] and the nuclearity property in conformal field theory [BDLOT].

o Symmetric wedges. A wedge W is called symmetric if there exists ¢ € GT, such that ¢. W = W".
For instance, any couple of wedge regions, in 1+ s-dimensional Minkowski spacetime with s > 2, are
transformed one into the other by the action of the Poincaré group GT = 731. On the other hand,
in 1 + 1-dimensional Minkowski space, the right and the left wedges are not symmetric. Indeed

Wr={(tz) eR*™ :|t| <z} and W ={(t,r) e R :|t| < -2}

belong to disjoint transitive families with respect to the Pl-action. Further examples of symmetric
wedges are intervals in conformal theories on the circle. Half-lines in the real line are not symmetric
wedges with respect to the translation-dilation group. A transitive family of wedges has the feature
that algebras associated to complementary wedges are - by covariance - unitary equivalent. On
the other side, there is no contradiction in having a G'-covariant net of von Neumann algebras
on a transitive family of non-symmetric wedges with trivial algebras associated to the family of
complements.

In the first part of the paper we define and investigate the abstract structure we have described.
When the center Z(GT) is non trivial, for instances when covering groups are considered, a gen-
eralized notion of complementary wedges has to be introduced. Indeed, while Euler elements are
uniquely determined as generators of one-parameter groups in GT, several involutions o satisfying

2In [GL03] it is used that the 2-dimensional de Sitter space dS? 22 SO1,2(R)T/SO1,1(R)T has the same abstract
wedge space as the circle SO1,2(R)/P to set up a dS /CFT correspondence.
3For instance W; and W; for i # j, where W; = {(¢t,z) € R1T5 : |t| < z;}



Ad(c) = ™34 can be associated to the same Euler element z. In an analogous way, different
wedge complements can be labeled by central elements. We classify wedge orbits and define a
notion of a central wedge complement. Furthermore, if W’ does not belong to the G'-orbit of W,
a new action of G on the wedge space is defined. This happens for instance in fermionic nets.

Having specified the abstract structures, we are prepared to answer the following question:
“Which Lie algebras/groups support such a structure?” To this end, we first classify Euler elements
in real simple Lie algebras in Theorem[3.10l The key point of this classification is that Euler elements
are conjugate under inner automorphisms to elements in any given Cartan subspace of hyperbolic
elements. Here the restriction to simple Lie algebras is not restrictive because any symmetric Euler
element is contained in a semi-simple Lie subalgebra. Furthermore, an Euler element is symmetric
if and only if it is contained in an sly(R)-subalgebra (see Theorem for these results). As a
consequence, there is a large family of real Lie algebras supporting such wedge structures which
properly contains the well known models. Note that, for a Lie algebra g containing an Euler element
x € g, there always exists a graded Lie group G with Lie algebra g and a corresponding Euler wedge
(z,0).

The second part of the paper is devoted to nets of standard subspaces.

Is it possible to construct one-particle models supporting this abstract setting? Starting with a G'-
orbit W, in the wedge space, we describe a set of axioms which, for the well known models, reflect
fundamental quantum and relativistic principles corresponding to the one-particle Haag—Kastler
axioms. This set of axioms is fulfilled by extending the BGL construction to every graded Lie
group G, supporting a suitable wedge space. A twisted locality relation among complementary
wedges is introduced in order to relate central complementary wedges.

Do we get any new models out of this general construction? The answer is affirmative. All
the simple Lie algebras whose restricted root system appears in Theorem correspond to a
graded Lie group with a non-trivial wedge space. There are for instance Lie algebras of type E7
that do not correspond to any known models. In this context the Jordan spacetimes of Giinaydin
[Gu93l [Gu00, [Gu0I] and the simple spacetime manifolds in the sense of Mack-de Riese [MdRO7]
are homogeneous spaces of simple hermitian Lie groups whose Lie algebras contain Euler elements,
and the corresponding abstract wedges correspond to domains in these causal manifolds. These Lie
groups have many (anti-)unitary representations, some of them with positive energy with respect to
a non-trivial invariant cone C' in the Lie algebra. As a consequence, they support many one-particle
nets [NO2OJ and second quantization models of von Neumann algebras whose physical meaning has
to be investigated.

The structure of this paper is as follows: In Section 2 the wedge space is defined and its properties
are studied. A number of examples are discussed in detail to show how the abstract setting applies to
the known models and realizes the well known structure. In Section 3 we study the Euler elements
in Lie algebras. We relate orthogonal and symmetric wedges and provide a classification of Lie
algebras supporting (symmetric) Euler elements. In Section 4 we apply this structure to define
and construct one-particle nets associated to graded Lie groups supporting a wedge structure. We
further stress new models, orthogonal wedges and extension of symmetries. We hope this paper
is approachable for the Lie Theory community as well as the Algebraic Quantum Field Theory
community.
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2 The abstract setting

In this section we develop an abstract perspective on wedge domains in spacetimes, phrased com-
pletely in group theoretic terms. As wedge domains are supposed to correspond to standard sub-
spaces in Hilbert spaces, we orient our approach on how standard subspaces are parametrized.

Let Stand(#) denote the set of standard subspaces of the complex Hilbert space H. In Section [4]
we shall see that every standard subspace V determines a pair (Ay, Jy) of modular objects and

that V can be recovered from this pair by V = Fix(JvAé/ 2). This observation can be used to
obtain a representation theoretic parametrization of Stand(#): each standard subspace V specifies
a continuous homomorphism

UV:R* > AU(H) by U'(e) =A™ U'(=1):=J. (2.1)

We thus obtain a bijection between Stand(#) and the set Homg, (R*, AU(H)) of continuous mor-
phisms of graded topological groups.
The space Stand(#H) carries three important features:

e an order structure, defined by set inclusion
e a duality operation Vi— V' = {{ € H: (Vv € V) Im({,v) =0}
e the action of AU(H) as a symmetry group.

The order structure is hard to express in terms of the modular groups (see [Nel9b] for some first
steps in this direction), but the duality operation corresponds to inversion

U"(r)=U0"("") for reRX, (2.2)
and the action of AU(H) translates into
UY(r) = gU"(r*9)g~"  for ge AU(H),r € R%, (2.3)

where (g) = 1 if ¢ is unitary and e(g) = —1 otherwise. So unitary operators g € U(H) simply act
by conjugation, but antiunitary operators also involve inversion. In particular, JyV = V' corresponds
to

UV (r) = KU ' (r DIy =U"(r"Y)  for reRX.
We now develop the corresponding structures by replacing AU(#H) by a finite dimensional graded
Lie group.

2.1 Group theoretical setting

The basic ingredient of our approach is a finite dimensional graded Lie group (G,eq), i.e., G is a
Lie group and eg: G — {£1} a continuous homomorphism. We write

Gl =e;'(1) and GY=e;'(-1),



so that GT < G is a normal subgroup of index 2 and G* = G\ G'. We also fix a pointed closed
convex cone C' C g satisfying

Ad(g)C =ec(g)C  for geG. (2.4)

As we shall see in the following, for graded Lie groups, it is more natural to work with the twisted
adjoint action

Ad®: G — Aut(g), Ad®(g) :=eq(g) Ad(g), (2.5)

so that (24]) actually means that C' is invariant under the twisted adjoint action. The cone C will
play a role in specifying an order structure. It is related to positive spectrum conditions on the
level of unitary representations. We also allow C' = {0}. For instance, the Lie algebra g = s01 4(R)

of the Lorentz group G = O1 4(R), the isometry group of de Sitter space time ds?, contains no
non-trivial invariant cone.

2.2 The space Hom, (R*,G) and abstract wedges

In this section we define the fundamental objects we will need in the forthcoming discussion. We
write Hom,, (R*, G) for the space of continuous morphisms of graded Lie groups R* — G, where
R* is endowed with its canonical grading by &(r) := sgn(r). On this space G acts by

(9-7)(r) == gy(r*o9)gt, (2.6)

where the twist is motivated by formula (2.2)). Elements of GT simply act by conjugation.
Since we are dealing with Lie groups, we also have the following simpler description of the space
Homg, (R*, G) by the set

G:={(z,0) € gx G*: 0% = ¢,Ad(0)z = z}.
Proposition 2.1. The map
U: Homg (R, G) = G, v+ (7/(0),7(=1)) (2.7)
is a bijection. It is equivariant with respect to the action of G on G by
9-(x,0) == (Ad“(g)z, gog™"). (2.8)

Note that center Z(GT) of GT acts trivially on the Lie algebra but it may act non-trivially on
involutions in G¥.

Remark 2.2. For every involution ¢ € G*, the involutive automorphism og(g) := ogo defines
the structure of a symmetric Lie group (GT,0¢), and G = G x {id, o}, so that we can translate
between G as a graded Lie group and the pair (G, 0¢), without loosing information.

To indicate the analogy of elements of G with the wedge domains in QFT, we shall often denote
the elements of G by W = («,0).

Definition 2.3. (a) We assign to W = (z,0) € G the one-parameter group
MR —=GT by Aw(t) = exp(tz) (2.9)
Then we have the graded homomorphism
iR =G oqw(el) =aw ),  w(=1):=o
Note that ¥(yw) = W in terms of (27).



Definition 2.4. (a) We call an element z of the finite dimensional real Lie algebra g an Fuler
element if ad z is diagonalizable with Spec(ad z) C {—1,0,1}, so that the eigenspace decomposition
with respect to ad z defines a 3-grading of g:

g=01(x) ®go(z) Pg_1(x), where g,(z)=ker(adz —ridy)

(see [BNO4] for more details on Euler elements in more general Lie algebras). Then o, (y;) = (—1)%y;
for y; € g;(z) defines an involutive automorphism of g.

For an Euler element we write O, = Inn(g)z C g for the orbit of x under the group Inn(g) =
(e249) of inner automorphismsfl  We say that = is symmetric if —z € O,.

We write £(g) for the set of non-zero Euler elements in g and Eym(g) C E(g) for the subset of
symmetric Euler elements.
(b) An element (z,0) € G is called an Euler couple or Euler wedge if

Ad(o) = emt2de, (2.10)

Then o is called an Euler involution. We write Gg C G for the subset of Euler couples and note
that the relation e™ 2% = ¢=72de jmplies that the subset G is invariant under the G-action.

For an Euler element x € £(g), the relation (ZI0) only determines ¢ up to an element z €
G'Nker(Ad) for which (02)? = e, i.e., 020 = z~1. Note that, if GT is connected, then GTNker(Ad) =
Z(G1) is the center of GT. The couples (x,0) that we have seen in the physics literature are all
Euler couples (cf. [NOl?, Ex. 5.15]). This ensures many properties, such as the proper relation
between spin and statistics, see for instance [GL95].

Definition 2.5. (a) (Duality operation) For W = (z,0) € G, we define W’ := (—z,0). Under ¥,
this operation corresponds to inverting the homomorphism R* — G pointwise. Note that (W')" =
W and (gW)" = gW' for g € G by [2.3).

(b) (Order structure on G) We now define an order structure on G that depends on the invariant
cone C from (2.4]). We associate to W = (z,0) € G

e the Lie wedge
L = L(z,0) = C4(W) & (g7 Nker(ad ) &C_ (W),
—

gw =

where

Ci(W)==2CngNker(adz T1) and g7 :={yeg: Ad(o)(y) = +y}.

e g(W) := Lw — L, the Lie algebra generated by Ly .
e the semigroup associated to the triple (C,z,0):
Sw = exp(Cy (W))Gly exp(C— (W) = Gl exp (C (W) + C_ (W),

where
Gly ={geG: gW=W}={g€G":0c(g) = g,Ad(g)x = 2}

is the stabilizer of W = (z,0) in G (cf. [NeI9, Thm. 3.4]). f

4For a Lie subalgebra s C g, we write Inng(s) = (e49) C Aut(g) for the subgroup generated by e2d*.
5In [Nel9b] it is shown that the different descriptions as a product of two sets (polar decomposition) and a product
of two abelian subsemigroups and a group yield the same set Sy which actually is a subsemigroup.



e the subgroups GT(W) := (exp g(W)>G€V and G(W) := GT(W){e, 7} with Lie algebra g(W).

As the unit group of Sy is given by Sy NSy, = G;, ([Nel19bl Thm. II1.4]), the semigroup Sy
defines a G'-invariant partial order on the orbit GT.W C G by

G W< gpW = g, lg €Sw. (2.11)

In particular, g.W < W is equivalent to g € Sy .
We have the following relations among these objects:
Lemma 2.6. For every W = (xw,ow) € G, g € G, and t € R, the following assertions hold:
Q) Aw (OW = W \w (W' = W' and ow . W = W'
ow' = ow and )\W’ (t) = Aw(—t).
ow commutes with Ay (R).
LW/ = —LW and SW/ = Sﬁ,l
Ci(9.W) = Ad(9)Clch(y)(W), Lyw = Ad(9)Lw, and Sy.w = gSwg ™.
(vi) For Wy, Ws € G, the relation W1 < Wy in G implies g. W1 < g.Wa.
Proof. (i) For W = (z,0) € G, the first two relations follow from the fact that exp(Rz) commutes
with z and o. The second follows from ow W = 0.(z,0) = (— Ad(0)z,0) = (—z,0) = W'.
(ii) is clear from the definition of W’.
(iii) follows from (i).
(iv) follows from Cy (W') = —C+(W).
(v) The assertion is clear for g € GT. For g € G¥, we have go € G, so that
Ci(g-W) = Ci(goW') = Ad(go)C(W') = — Ad(g9o)Cx(W) = Ad(g)Cx(W)
= Ad(9)Cleq () (W).

This implies in particular that Ly w = Ad(g)Lw. From G;.W = gG;,g_l, we thus obtain Sy =

9Swg™t.

(vi) If Wy < Wa, then Wy = s.Wy for s € Sw,. Then g.W; = gs.Wo = gsg~'.(9.Ws) with
9597 " € gSw,97 " = Sy.w, implies g. Wy < g.Ws. O

In this discussion we started with a Lie group. We remark that one can also start with a Lie
algebra as follows: Consider a quadruple (g, o4, h, C) of a Lie algebra g, an involutive automorphism
og of g, and a pointed closed convex invariant cone C' C g with 04(C') = —C. Then o4 integrates
to an automorphism o¢ of the 1-connected Lie group GT with Lie algebra g, so that we obtain all
the data required above with G := G x {idg, 06}

For two such quadruples (g;,7y,;,hj, Cj)j=1,2, a homomorphism ¢: g1 — g2 of Lie algebras is
compatible with this structure if

pOTg1 =Tg20p, @(h1) =hy and ¢(C1) C Cs.

We thus obtain a category whose objects are the quadruples (g, 74, b, C') and its morphisms are the
compatible homomorphisms.

A similar category can be defined on the group level, but there are some subtle ambiguities
concerning the possible extensions of the group structure from G' to G.



Remark 2.7. (Twisted extensions of G to G) We start with a graded group G for which G*
contains an involution o, so that G = G*¥ x {e,0}, where ¢ acts on G by the automorphism
oc(g) := ogo. This defines a split group extension

G' = G —Z
and we are now asking for other group extensions
GT — é — ZQ

for which the elements in G* define the same element in the group Out(G1) = Aut(G1)/ Inn(G")
of outer automorphisms of GT. These extensions are parametrized by the group

Z(GHT ={z€ Z(G"): 0g(2) = 2},
by assigning to z € Z(GT)* the group structure on G x {1, —1} given by
(971)(9/75/) = (99/751)7 (e,—l)(g/,l) = (Ug(g/),—l) and (67_1)2 = (Zvl)' (2'12)

We write CAv'z for the corresponding Lie group. Basically, this means that the element o := (e, —1)
has the same commutation relations with GT but its square is z instead of e:

695 ' =0c(g) for ge€G and 7%=z (2.13)

For two elements z, 2’ € Z(G")T, the corresponding extensions are equivalent if and only if
272 € B = {wog(w): we Z(GM}. (2.14)

This follows from [IN12, Thm 18.1.13], combined with [ANT2, Ex. 18.3.5(b)].

(a) For G = 0,(R), n > 3, and GT = SO, (R), the situation depends on the parity of n. If n is
odd, then Z(G") = {e} and no twists exist. If n is even, then Z(G") = {+1} = Z(G). Therefore
Z(GN* = {£1} # B = {e}. We therefore have one twisted group G = SO, (R){e,5}, where
o € O,(R) corresponds to a hyperplane reflection, and 52 = —1 in G.

(b) The same phenomenon occurs for Spin groups. Let G := Pin, (R) 2 Spin,, (R) x {e, o}, where
o corresponds to a hyperplane reflection. If n is odd, then Z(Spin, (R)) = {e, z} contains two
elements, and we have a twisted group

G = Spin, (R){e,57} with &%=z

(cf. [HN12, Rem. B.3.25]). If n is even, then the situation is more complicated because the center
of Spin,,(R) has order 4.

(c) For G = Mob x {e, o}, where o corresponds to a reflection o(x) = —x on R™® = S!| we have
Z(GN) 2 Z and og(z) = 27! for z € Z(G"). Hence Z(GT)* = {e}, so that there are no twists.
(d) If G = M&b®™ x {e, o}, where M&b™ is the covering of Méb of even order, then Z(G") & Zs,
and og(z) = 27! for 2 € Z(G"). Therefore Z(G")* = {e,7}, where v is the unique non-trivial
involution in Z(G") and B = {e}. Hence there exists a non-trivial twist G = G{e, 5} with 2 = .
(e) As we shall see in Example 2. T3 below, it may happen that, for the twisted groups éz, the coset
G} contains no involutions. In this example GT = SLy(R) and G = G'{e, v} with v = —1.
In general, elements in (A;JZ, are of the form ¢g& with g € G', and then
(99)* = 9595 = goc(9)5” = goc(g)2- (2.15)
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Hence éﬁ contains an involution if and only if
z€{oalg) g 1 g€ G} = {goc(g): g € GT}.

If z = gog(g) for some g € GT, then conjugating with g implies that ¢ and og(g) commute.

The discussion in Example 213 shows that (215]) is not satisfied for z = —1 and the Euler
involution of GT = SLy(R). For any odd degree covering SLy(R)(?**1) — SL,(R), the central
involution is mapped onto —1, so that this observation carries over to odd coverings of SLy(R).

The situation changes if we consider GT = SLy(C) instead. Then g := z(é _01> satisfies

g?> = —1, so that the group G = G™{1,5} with 62> = —1 contains the non-trivial involution
go € G*. As this involution is central, G =2 GT x Zj is a direct product.

2.3 The abstract wedge space, some fundamental examples

Definition 2.8. (The abstract wedge space) From here on, we always assume that G # 0, i.e., that
G*' contains an involution o. Then

G =G % {id, o}
(cf. Remark[2.2). For a fixed couple Wy = (h, o) € G, the orbits
Wy (W) :=G" Wy € G and W(Wy) :=G.Wy CG
are called the positive and the full wedge space containing Wy.

Remark 2.9. (a) As o.Wy = (—h,0) = W{, we have W(Wy) = W (Wy) U W, (W}), and W(Wy)
coincides with Wy (Wp) if and only if W = (—h,0) € W, (W). This is equivalent to the existence
of an element g € G with ¢.Wy = Wy, i.e., g € (GT)™ with Ad(g)h = —h.

(b) If Wy is an Euler couple, then W(W)) is a family of Euler couples, and we shall see below that
in this case we have W(Wy) = W4 (W) in many important cases.

We collect some fundamental examples, starting from the low dimensional cases, that we shall
refer to throughout the paper.

Examples 2.10. (a) The smallest example is the abelian group G = R x {£1}, where GT = R,
C ={0} and L = g. For Wy = (h,0) with h =1 and ¢ = (0, 1), we then have the one-point set
Wi ={(h,0)}, and W = {(h,0),(—h,0)}.

(b) The affine group G := Aff(R) & R x R* of the real line is two-dimensional. Its elements
are denoted (b,a), and they act by (b,a)r = ax + b on the real line. The identity component
G' = R x R} acts by orientation preserving maps, and GV consists of reflections r,(z) = 2p — ,
peR.
Let ¢(t) = (t,1) and §(t) = (0, ') be the translation and dilation one-parameter groups, respectively.
We write A = (0,1) € g = R x R for the infinitesimal generator of §, which is an Euler element.
Therefore W := (A, 1) is an Euler couple.

The cone C = Ry x {0} C g satisfies the invariance condition (2Z4]) and the corresponding
semigroup Sy is

Sw =[0,00) xR} ={g=(ba): g.0=b>0}={ge G": gR; CR,}.
Therefore the map
Wi (W) 2 g.(A\ro) = gW

11



defines an order preserving bijection between the abstract wedge space W, (W) C G and the set
Z.(R) = {(t,00): t € R} of of lower bounded open intervals in R. Accordingly, we may write
Witoo) = (Mt,00)5 7t) 1= C(E)W = (Ad(C(t))A,7¢) for t € R. Acting with reflections, we also obtain
the couples

Wicoo,t) = (M(—oo,t), 7t) = 6. Wit 00) = (= Ad(C(2))A, )

corresponding to past pointing half-lines (—oo,t) C R. We thus obtain a bijection between the full
wedge space W(W) and the set Z(R) of open semibounded intervals in R. We shall denote with d;
the one-parameter group of dilations with generator A\; corresponding to the half line I.

The set £(g) = Ad(GT){£A\} of non-zero Euler elements in g consists of two G'-orbits and,
for each non-zero Euler element + Ad(((¢))A € £(g), the reflection r, is the unique partner for
which (£ Ad(¢(t))A, ) € G. Accordingly, Euler couples in G are in one-to-one correspondence with
semi-infinite open intervals in R.

(¢) The Mobius group G := Méby := PGLy(R) = GLy(R)/R* acts on the compactification
R = RU {oc} of the real line by

ar+b

= b
gwi=_——— on R:=RU {0}, for g—(z d)EGLQ(R).

We write GT = Méb = PSLy(R) for the subgroup of orientation preserving maps. The Cayley

transform ]
1—x

i+

is a homeomorphism, identifying R with the circle. Its inverse is the stereographic map

C:R—=St:={zecC:|z|=1}, C(x):= C(0) == -1,

11—z
=1 .
1+z2

clis' SR, C7Y(2)

It maps the upper semicircle {z € S': Imz > 0} to the positive half line (0,+00). The Cayley
transform intertwines the action of M8b on R with the action of PSU; 1 (C) = SU; 1(C)/{£1}, given

by
a B _az+f a f
(B a) 2= Bz o for z € Sl, (B a) S SUll((C)

The three-dimensional Lie group Mob is generated by the following one-parameter subgroups:

e Rotations: p(0)(z) = fgfé?gf;;”jjgge(é%) for 6 € R; note that C(p()x) = ?C(x).

e Dilations: §(t)(z) = e'x for t € R.
e Translation: ((t)x =x +t for t € R.

In the circle picture ¢ and ¢ will be denoted by d~ and ¢, referring to the upper semicircle with
endpoints {—1,1} = C({0,00}). Note that —1 is the unique fixed point of (~ and one of the two
fixed points {1} of d~. On the circle, p(7) maps 1 to —1 and exchanges the upper and the lower
semicircle. Accordingly, (, = p(7){p(w) is the subgroup of conjugated translations fixing the point
1esh

We write K = p(R), A = §(R), Nt = ((R) and N~ = (,(R) for the corresponding one-
dimensional subgroups of Mob, and P* = ANT = Mob,,, P~ := AN~ = Mobg for the stabilizer
groups of oo and 0 in Mob. We observe that R = Mob/P~ and that the circle group K = PSO3(R)
acts simply transitively on R.

12



On the compactified line, the point reflection 7(z) = —z in 0 acts on the Lie algebra by

o 5= ) DG ) ) e

Note that 7 € GV. )
—_ (2

The infinitesimal generator h := 5 _1 of 0 is an Euler element and W := (h, 7) is an Euler

couple. Since Mobs = PGL2(R) = Aut(s[i(R)), for any Euler couple (z,7), the involution 7 is
determined by the requirement that it acts on g = sly(R) by e™3%. We conclude that the action
of GT = M&b on the set of Euler couples is transitive, i.e., Gz = GT.(h, ).

To see the geometric side of Euler couples, let us call a non-dense, non-empty open connected
subset I C S! an interval and write Z(S') for the set of intervals in S'. It is easy to see that Mdb
acts transitively on Z(S'). To determine the stabilizer of an interval, we consider the upper half
circle, which corresponds to the half line (0,00) C R. Each element g € Méb mapping (0, c0) onto
itself fixes 0 and oco. Since it is completely determined by the image of a third point, it is of the
form 6(t) if g.1 = e'. Therefore the stabilizer of (0, 00) in Méb is the subgroup §(R), which coincides
with the stabilizer of h under the adjoint action. This already shows that W, (W) and Z(S') are
isomorphic homogeneous spaces of Mob. In particular, we can associate to an interval I = g(0, c0)
the reflection 77 = grg~! and the one-parameter group d; := gdg~'. Note that 7 is an orientation
reversing involution mapping I to the complementary open interval I’. We write x; := Ad(g)h for
the infinitesimal generator of dr, so that the assignment I — =z defines an equivariant bijection
Z(S') — &(g). The anticlockwise orientation of S, which can also be considered as a causal
structure, is used here to pick the sign of z; in such a way that the flow J; is counter clockwise
(future pointing) on I. Accordingly, z;» = —z corresponds to the complementary interval I'.

To identify the natural order on the abstract wedge space Gg = W (W), we counsider for

X = ((CL _ba) € g = slx(R) the corresponding fundamental vector field

Vx(z) = a

p exp(tX).x = (a — d)x + b — ca? = b + 2ax — ca’.

t=0

This shows that
b

C:_{XEQ:VXZO}—{X_<CCL ):sz,ch,QQS—bc} (2.17)

is a pointed generating invariant cone in g. The Lie wedge specified by the triple (h, 7, C) is

LW:L(h,T,C):R+<8 é)@Rh@M(_Ol 8):{(‘2 _ba):aeR,bZO,cgo}.
———— —_——— —
Cy c_

We further have G(W) = GT, and the associated semigroup is
Sw = exp(Cy.) exp(Rh) exp(C-) = {g € G": g(0,00) C (0,00)}.

Therefore the map
G =Wy (W) =WW) = Z(SY, ¢W — g(0,00) (2.18)
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defines an order preserving bijection between the abstract wedge space W(W) and the ordered
set Z(St).

(d) We now consider the universal covering of the Mdobius group Méb. Concretely, we put
G := M&b x {1,7}, where T acts on M&b by integrating Ad(7) from (ZI6) to an automorphism of
M&b. The group G is a graded Lie group and G := MG&b is its identity component. We have a
coverlng homomorphlsm qgc : G — Mobs whose kernel Z (l\/lob) Z is discrete cyclic We write p,
5, ¢ and CU for the canonical lifts of the one-parameter groups p, 8, ¢, (u of Mob, P+ := 5( )(( ),
and P~ := 5(R)G, (R). N

The action of Mob on S! lifts canonically to an action of the connected group GT = Méb on the
universal covering St R, where we ﬁx the covering map gg1: R — R, defined by gs1(6) = 5(6‘) 0,
which corresponds to the map § — e’ = C(p(6).0) in the circle picture. We may thus identify St
with the homogeneous space l\/Iob/ P~ ~R. As conjugation with 7 on Mab preserves the subgroup

f”, it also acts on S!. From 2.16) it follows that it simply acts by the point reflection 7.2 = —x
in the base point 0. We also note that Z := ker(qg) = p(27Z) is the group of deck transformations
of the covering gs:, which acts by

p(2mn).x =x+2mn for ne€Z. (2.19)

We call a non-empty interval I C R admissible if its length is strictly smaller than 27 and write
Z(R) for the set of admissible intervals. An interval I C R is admissible if and only if there exists an
interval I € Z(S') such that I is a connected component of ¢5;'(I). The group Z acts transitively
on the set of these connected components. As Mob acts transitively on Z(S!), it follows that the
group MGb acts transitively on the set Z(R), and that composition with gs1 yields an equivariant
covering map

Z(R) = M&b/S(R) — Z(S') = Méb/S§(R), I — gs: (I). (2.20)
We further have:
e The group P = §(R)((R) fixes the points {(2k + 1)7: k € Z}.

e For I € Z(S), let &7 be the lift of the one-parameter group d;. Then o1 preserves every
interval in the preimage qs\;l (I).

e The inverse images of 7 € Mdbs in W%Q are the elements 7,, := p(27n)7, n € Z. These are
involutions, acting by
To(z)=2mn—z for zeR (2.21)

which is a point reflection in the point 7n. All pairs (h,7,) are Euler couples in G (mg),
and from the discussion of the set of Euler couples Gg(M6bs) under (c), we know that the
involutions 7,, exhaust all possibilities for supplementing h to an Euler couple.

There is an interesting difference to the situation for Mobs, where Mob acts transitively on
the set Gr(M6bs) of Euler couples. To see what happens for Méba, recall that the stabilizer
of the element (h,7) € Gg(M&bs) in Mdb is the subgroup §(R). Its inverse image is the group

S(R)p(27Z) = R x Z.
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An element g € M&b fixes (h,7y) if and only if Ad(g)h = h and ¢g7,97! = 7,,. The first
condition is equivalent to g being of the form

g=06(t)p(2nk) for some teR k€.
The second condition is equivalent to Tg7T = 7,97, = ¢, which takes the form
o(t)p(—2rk) = 8(t)p(2mk),
and this is equivalent to k = 0. We conclude that the stabilizer of (h,7,) is
M&b(s 7,y = 6(R). (2.22)
We also note that
k). (h,7) = ((=1)"h, prk)7 p(=7k)) = ((=1)"h, p2mk)T0) = ((=1)°h, Foir)-

We conclude that the group M&b does not act transitively on the set Gg of Euler couples. It
has two orbits:

Ge(Mdby) = GT.WoUGT. Wy = Wy (Wo)UW,(Wy)  for Wy = (h, 7o), Wy = (h, 71).
(2.23)
We also refer to Example 2.14] for a discussion of this issue from a different perspective.

The subgroup S(R) preserves every interval which is a non-trivial orbit of S(R), acting on R.

If, conversely, g € Mdb preserves such an interval, then its image in Méb is contained in §(R),
so that _
g=0(t)p(2nk) for some teRkeZ.

As every open orbit of §(R) is an interval of length 7, the element g can only preserve such an
orbit if £ = 0. This shows that Mdb;, 7,) also is the stabilizer group of any open §(IR)-orbit
in R. We conclude that, for the Euler couple Wy = (h, 7)), the map

O W, (W) = I(R), g.(h,7) — g(0,7) (2.24)

defines a GT-equivariant bijection between the abstract wedge space W, (W) C G and the set
Z(R) of admissible intervals in R. Since the full group G acts on the space Z(R) of intervals,
® can be used to transport this action to a G-action on the space Wy (W), extending the
action of the subgroup G. Since 74(0,7) = (—7,0) = p(—7)(0, 7), we have

=N (10(0, 7)) = @7 (p(=m)(0,m)) = p(~m).@((0,7))~" = (=h, p(~2m)70),

so that 79.Wy := (—h, p(—=2m)79). By G'-equivariance of the map ®, we conclude that the
action of G* on W, (Wp) is given by

g *p(—2m) (z,0) == (Ad°(g), p(—2m)gog™") forevery g€ G*. (2.25)

Here we use that p(—27) € Z(GT). Note that we have chosen (0,7) to be the image of W,
throught ®. Further possible actions come from the identifications

S, W (W) = ZI[R), g.(h,7n)— g(0,7) with W, = (h,7,), (2.26)
and one can likewise see that
g *a, (z,0) = (Ad°(g),angog™) for geG¥ and o, =p((2n—1)27) € Z(G),

extends the action of GT on W, (W,,) to G and ® = ®; for n = 0 (see also [Z37) and
Section 2242 for this kind of action).
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(e) Let g: Msb(™ — Méb be the n-fold covering group of Méb and p(™, 5™ ¢ and C&n) be the
lifts of the corresponding one-parameter groups of Méb. We further put P— (") := §(") (R)C&") (R),
so that we obtain an n-fold covering

@n: SL = Meb™ /P 5 ST = Mob/P~, gP ™™ s ¢(g)P~
of the circle, and the action of the one-parameter group p(™ induces a diffeomorphism
R/27nZ — S, [t] = p™(£).0

The set of wedges can be described analogously to the case (d), but there is a difference depending
on the parity of n. If n is even, the group GT has two orbits in the set Gz of Euler couples, but
if 7 is odd, there is only one. Indeed, for n = 2k, the element p(™ (27k) acts as an involution on
SL. So it fixes all Euler couples (h,7,), even if it does NOT fix any proper interval in S} (see also

Example 2.14)).
(f) The example arising most prominently in physics is the proper Poincaré group
G =Py :=R" xS0 4R), G":=Pl =R xS0, 4(R)".

It acts on 1 4 d-dimensional Minkowski space R¢ as an isometry group of the Lorentzian metric
given by (z,y) = zoyo — Xy for = (z0,x) € RY4. Writing

V= {(z0,x) € RM: 29 > 0,22 > x?}

for the open future light cone, the grading on G is specified by time reversal, i.e., gV = e(z, g) V.
In particular C := V is a pointed closed convex cone satisfying (2.4)). For d > 1, this is, up to sign,
the only non-zero pointed invariant cone in the Lie algebra g.

The generator ki € 501 4(R) of the Lorentz boost on the (x¢, z1)-plane

ki(xo,z1,22,...,2q) = (21,0, T2, ..., Td)

is an Euler element. It combines with the spacetime reflection j; (z) = (—xo, —21, 22, ...,24) to the
Euler couple (k1,j1). We associate to (ki,j1) the spacetime region

Wi ={z e RM™: |zo| < 21},

the standard right wedge, and note that Wi is invariant under exp(Rk;). It turns out that the
semigroup S, j,) associated to the couple (k1, 1) in Definition satisfies

Stky 1) = 19 € G: gW C W1} =: Sw, (2.27)
(see [NO17, Lemma 4.12]). From (Z27) it follows that the map
W+ =W = GT.(kl,jl) = g.(kl,jl) — ng (228)

defines an order preserving bijection between the abstract wedge space W C G and the set of wedge
domains in Minkowski space R'*?. For an abstract wedge W = (kw, jw) € W, the Euler element
kw is the corresponding boost generator. For an axial wedge W; := {z € R : |zo| < x;},
i=1,...,n, the corresponding Euler couple will be denoted (k;, j;).
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2.4 Nets of wedges, isotony, central locality and covering groups

In the following sections we will focus on the description of relative positions of wedges, in particular
wedge inclusions and the locality principle.

2.4.1 Wedge inclusion
Firstly consider this wedge inclusion configuration called half-sided modular inclusion:

Definition 2.11. Let Wy = (z,0) € G and y € +C with [z,y] = +y. Then exp(y) € Sw,
(Definition 25(b)), so that
W1 = exp(y).Wo S Wo.

We then call W1 < Wy a Lhalf-sided modular inclusion.

The next lemma shows that any wedge inclusion can be described in terms of positive and
negative half-sided modular inclusions.

Lemma 2.12. If W, < W3 in G, then there exists an element Wy € G with Wy < Wy < W3 for
which the inclusion W1 < Wy is +half-sided modular and the inclusion Wo < W3 is —half-sided
modular.

Proof. That Wy < W3 means that Wi = sW3 for some
s € Sw, = exp(C—(W3)) exp(C(W3))Gly, -

Accordingly, we write s = g_g1go and observe that W1 = g_g W3 because goWs5 = W5. Put
Wy :=g_Ws3. Then Wy < W3 and g4 W3 < W3 implies Wi = g_g4 W3 < g_W3 = Ws.

Further, the inclusion Wy < W3 is —half-sided modular because g_ € exp(C_(W3)). Likewise
the inclusion g4 W3 < Wj is +half-sided modular, and therefore W7 < Wy is also +half-sided
modular. O

2.4.2 Central locality

For a wedge W = (z,0), the dual wedge W’ = (—xz, o) need not be contained in the orbit W, =
GT.W. If, however, GT has a non-trivial central subgroup Z such that, modulo Z, the complement
W’ is contained in Wy, then we use central elements « € Z to define “twisted complements” w'e
which are contained in Wy, and this in turn leads to a twisted action of the full group G on Wy .
We also obtain on W, a complementation map W +— w'e.

Let Z C Z(G") be a closed normal subgroup of G, and ¢: G — G := G/Z be the corresponding
surjective morphism of graded Lie groups with kernel Z. If Z is discrete, then ¢ is a covering map.
The morphism of graded Lie groups ¢ induces a natural map

45: G(G) = G = {(r,0) € g x G*: 0 = ¢, Ady(0)z =}, (2,0) = (z,4(0)), (2.29)

where Ady: G — Aut(g) denotes the factorized adjoint action which exists because Z = ker(q) acts
trivially on g. It restricts to a map

Gr(G) = G, = {(z,0) € £(g) x G*: ¢® = ¢,Ady(c) = ™17}, (2.30)

As the following example shows, neither of these maps is always surjective. The main obstruction
is that, although the differential L(q): L(G) — L(G) is surjective, there may be involutions 7 € G*
for which no involution ¢ € G* with g(¢) = 7 exists. This phenomenon is tightly related to the

twisted groups G. discussed in Remark 27l because these twists disappear for z € Z in é/Z ~G/Z.
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Example 2.13. We consider the graded Lie group

7

G :=SLy(R){1,7} C SLy(C), where ~:= <0

_Oz> satisfies % = —1.
It has two connected component and GT = SLy (]R)E The subgroup Z := {£1} is central and the

quotient map ¢: G — G := G/Z is a 2-fold covering. The Euler element z := % (é _01) €g=

sly(R) combines with the involution g(v) € G* to the Euler couple (z,¢(7)) € G. However, the set
G(G) is empty because G contains no involution. In fact, for g = (Z Z) € SLy(R), the condition

that gv is an involution is equivalent to

—a b\ . (d -b
e _gq)=rv=9"=\_. .

This is equivalent to a = —d and b = ¢ = 0, contradicting that 1 = det(g) = —a?. We conclude in
particular that the maps G(G) — G and Gg(G) — Gr(G) are not surjective.

We now discuss GT-orbits in G(G). In the examples we have in mind, the central subgroup Z is
discrete.
Involution lifts and central wedge orbit. Each element o € G+ acts in the same way on the
abelian normal subgroup Z by the involution

oz: 2 —Z, ~v—~° =0y0

which restricts to an involution oz € Aut(Z) because Z is central in GT and a normal subgroup
of GG. In the following we shall need the subgroups

Z7={yeZ:7" =4y D7 =y liye Z}. (2.31)

~1 is contained in Zi, so that the quotient group Z~/Z; is

an elementary abelian 2-group, i.e., isomorphic to ZgB) for some index set B.
For an involution o € G¥ and 8 € Z(GT), the element S0 € G¥ is an involution if and only if
B € Z~. Therefore

For v € Z~, the element 72 = (y7y~1)

ax(z,0):= (z,a0) (2.32)
defines an action of Z~ on G(G), commuting with the conjugation action of GT and satisfying
g.(ax(z,0))=a % (g.(x,0)) for geGraecZ . (2.33)
For W = (z,0) € G(G), the fiber over W := (z, q(c)) is thus given by
Z=xW :={(z,a0): € Z7}. (2.34)
The subgroup Z C G acts by conjugation on the fiber Z~ % W:
v.(2,0) = (2,907 71) = (2,9(y7) o),

so that the quotient group Z~/Z; parametrizes the Z-conjugation orbits in the fiber Z~ « W. [
Here is an example.

6This is the twisted version of the 2-fold cover of the extended Mébius groups; see Remark Z7(d).

"Considering Z as a module Za-module via the involution oz, we have Z'(Z2,Z) = Z~ and B'(Z2,2) = 71,
so that the cohomology group is H'(Zz, Z) := ZY(Z2,Z)/B (%2, Z) = Z~ /Z1. We refer to [AN12, Ex. 18.3.15] or
[IML63, Thm. IV.7.1] for more on group cohomology.
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Example 2.14. (a) If Z =2 Z and n° = —n, then Z~ = Z and Z; = 2Z, so that Z~ /7, = Z/27Z.
(b) If Z = Z,, and n° = —m, then Z~ = Z,, and Z, = 2Z,, so that

77 Z/2Z ifn is even
' {0} if n is odd.

Wedge GT-orbits. Let W = (z,0) € Gg(G) and W = (z,q(c)) € G. In general the group GT
does not act transitively on the inverse image of the orbit W, := G'W C G under gg. We now

describe how this set decomposes into orbits. By the transitivity of the G'-action on W ., it suffices
to consider the orbits of the stabilizer

Gly ={9€G": qlg) W =W}

on the fiber Z~ * W. That g € G fixes W implies in particular that gog~'o = g(g°)~! € Z. This
leads to a homomorphism

0: GTm -7, g—g(g°)"" with g.(z,0) = (Ad(9)z,g09™") = (2,0(g)0). (2.35)
As Z C GTE, the image Zs := B(GTE) is a subgroup containing Z;.

Example 2.15. (An example where Z; # Z;) We consider the group G = M&b {1,7} from
Example 2-I0(d) and the canonical homomorphism

q: G— G :=SLy(R) x{1,0}, o:= <_01 (1))

whose kernel is the central subgroup Z := 2Z(G") C Z(G") = Z of index two. Now W = (h,7) €
G(G) is an Euler couple mapped to W = (h,0) € G. As 27 = 271 for every z € Z, we have Z = Z~
and Z; = 27 is a subgroup of index 2. To calculate Z5, we observe that

QTE = G), = exp(Rh){£1} and GTm = exp(Rh)Z(GT).

We conclude that
Zy = 0(GL) = 0(2(G") =22(G") = 2~ # Zy.

The situation changes if we consider Z = Z(G") and the center-free group G = Mdb x {1, 7}
instead. Then Z = Z~ = Z(G") and Z, = Zy = 27.

As the GT orbits in qul (GT W) = qg_l(er) correspond to the GTm-orbits in the fiber qul W) =
Z~ % W, we obtain the following lemma.

Lemma 2.16. The quotient group Z~/Zo parametrizes the set of GT-orbits in qgl(w+).

a-twisted complement. The following definition generalizes the notion of complementary wedge
given in Definition 2] (a).

Definition 2.17. For a € Z~, we define the a-twisted complement of W = (z,0) € G(G) by

(z,0)* = (—z, a0).
We will refer to couples of the form W' as complementary wedges. We consider W' as a
“complement” of W because gg maps W * to W' (see item (a) below).
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Lemma 2.18. For each oo € Z~, the a-twisted complementation W W'e satisfies:

(a) Forae Z~, W' is mapped by qg onto the complement W' = (—z,q(0)) of W = (x,¢(0)).
(b) The a-twisted complementation is not involutive if o # e.

(¢) The map *: G(G) = G(G), (z,0) = (—x,a0) is G'-equivariant.

(d) In terms of the action [Z32)) of Z— on G(G), we have

We=axW' for WeGG),acZ . (2.36)

(e) The prescription
T
g *q (T,0) := g(a:,j) forged (2.37)
g.(a™ % (z,0)) = ax(g.(x,0)) forge G
defines an action of G on G(G). This action satisfies
We=gxqW for W=(z,0)€GG),acZ . (2.38)

If W'e e G'\W, then W, = GT.W is invariant under the full group G with respect to the
a-twisted action.

(f) There exists an o € Z~ with W' € Wy if and only if W' := (—x,q(c0)) € GV W. If this
is the case, then WP € W, for B € Z~ if and only if B~ a € Zy. In this case, the twisted
actions of g € G are related by gxp = (Ba™1) * gxq.

Proof. (a) and (b) are easy to see.

(c) follows from o € Z(GT) and the GT-equivariance of the complementation map.

(d) is immediate from the definition of a * W.

(e) That the prescription defines an action follows easily from the fact that gy (g2xo W) = (9192). W

for g1,92 € G* (cf. @33))). The relation Z38) follows from o.W = o.(z,0) = (—z,0). For the
last statement, we note that by (2.38), the relation W * € W, implies

Gra Wy =W, Uo s Wy =W, UGT W =W, UGTW, =W,.

(f) AsqgW4) =W, = GT.W and qg(W'®) = W', the inclusion W'® € W, implies that W’ € Ww,.
If, conversely, W' € W, , then there exists a g € G' with

(—2,q(0)) = g.(z,9(0)) = (Ad(g)z,q(g097")),
so that a := gog~lo € ker(q) = Z satisfies
Wy s gW =g.(2,0) = (2,909 ") = (—2,00) =ax W =W,
Now suppose that W@ = ax W’ € W,. Then W'# = B« W’ € W, is equivalent to Ba~1 « W'® =

WP e W, and this is equivalent to 87 ta * Wy = W,. Next we observe that the relation
Ba~t « W € W, is equivalent to the existence of some g € G?,V with g.W = (x, 3 'ac), which

means that fa~! € Zy = 8(GTE). O
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Example 2.19. We show that for G = M&b x {1,7} as in Example[ZT0(d), we have to use twisted
complements to obtain a GT-orbit in G (G) invariant under complementation. We have already seen
that QE(I\Td/b) contains two GT-orbits, represented by the couples Wy = (h,7) and Wi = (h,71).
The complement W = (—h, T) satisfies

p(m)Wo = (h, p(m)7p(—7)) = (h, p(2m)7) = (h, T1) = WA,

so that complementation exchanges the two G'-orbits in QE(I\7I\o/b) On the other hand, for the
action #,, defined in (2337), the full group G preserves both GT-orbits.

Since Ad(p(—m))h = —h, the element g := p(—m) can be used to define a suitable a-twisted
conjugation as follows. We note that

is a generator of Z := Z(l\ﬁ?ﬂ)) = Z~. We now have
Wy = (=h,a7) = p(—7).(h, 7) = p(—7). Wy € GT. W

Thus gE('\//l\b-/bQ) consists of two GT-orbits, none of which is invariant under complementation, but
both are invariant under a-complementation. An analogous computation leads to the same picture
for even coverings of Mob, in particular for the fermionic case.

3 Euler elements and 3-graded Lie algebras

In this section we exhibit a general relation between two notions that are a priori unrelated: comple-
mentary and orthogonal wedges. For the sake of simplicity we consider in this introductory part the
case of the Poincaré group G = Py on R*? (cf. Example ZI0). We have seen that if W = (kw/, jw)
is a wedge of the group G, then W’ = (—kw, jw) is the opposite wedge. The m-spatial rotation
p(m) takes W onto W’ and vice versa. Thus there exists a group element g € GT = 771 such that
Ad(g)kw = —kw, and in this sense ky is symmetric. This ensures a symmetry between a wedge
and its opposite wedge, which corresponds to its causal complement in Minkowski spacetime.
Typical pairs of orthogonal wedges are the coordinate wedges

W; = {(t,x) e R™2: |t| < 3} = (ki ji) € Ge(G)  for i=1,2. (3.1)

The importance of this couple of wedges comes by the clear geometric relation: the wedge reflection
of W1 acts on the orthogonal wedge as

j1.We =Ws  resp. Ad(j1)(k2) = —ka.

In [GL95] the authors study the orthogonality relation in order to extend the unitary covariance
representation of the Poincaré group PI_ to an (anti-)unitary representation of the graded group
P and establish the Spin—Statistics Theorem. In this extension process, orthogonal Euler wedges
play a crucial role. This point will be discussed from our abstract perspective in Section .4 below.

In this section we will see how, in our setting, the existence of a symmetric Euler element in
the Lie algebra ensures the existence of an orthogonal pair. For symmetric Euler elements, the
orthogonality relation for Euler elements is symmetric, and orthogonal pairs of Euler elements
generate a subalgebra isomorphic to sla(R) in g.
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3.1 Preliminaries on Lie algebras and algebraic groups

In this subsection we collect some basic facts on finite dimensional real Lie algebras and on real
algebraic groups (see [HN12] for Lie algebras and [Ho&1] for algebraic groups).

A Lie algebra g is called simple if g and {0} are the only ideals of g. It is called semisimple if
it is a direct sum of simple ideals g = g1 @ - - - ® g,. On the other side of the spectrum, we have
solvable Lie algebras. These are the ones for which the derived series defined by D°(g) := g and
D"*1(g) := [D"(g), D"(g)] satisfies DV (g) = {0} for some N € N. Here

9, 8] = span{[z, y]: =,y € g}
is the commutator algebra of g.

The fundamental theorem on the Levi decomposition asserts that, if v is the maximal solvable
ideal of g, then there exists a semisimple subalgebra s (a Levi complement), such that

gETXSs

is a semidirect sum, i.e., a vector space direct sum of the ideal v and the subalgebra s.

A key feature in the structure theory of semisimple real Lie algebras is the concept of a compactly
embedded subalgebra. A subalgebra ¢ C g is said to be compactly embedded if the subgroup
Inng () = (e*) C Aut(g) has compact closure. We write Inn(g) := Inng(g) for the subgroup of
inner automorphisms of g.

An element z € g is called

o clliptic, if adz is semisimple with purely imaginary eigenvalues, which is equivalent to the
one-dimensional Lie subalgebra Rz being compactly embedded.

o hyperbolic, if ad x is diagonalizable.

e nilpotent, if ad x is nilpotent, i.e., (ad )™ = 0 for some n € N.

The Cartan—Killing form
k:gxg—R, k(z,y):=tr(adzady)
is a symmetric bilinear form on g invariant under the automorphism group Aut(g). Recall that a

finite dimensional real Lie algebra is semisimple if and only if £ is non-degenerate (Cartan’s crite-
rion). Note that k(z,z) = tr((ad x)?) > 0 if z is hyperbolic and r(x,z) <0 if z is elliptic.

In the proof of Proposition B2 below we shall use some results from the theory of linear algebraic
groups. We now recall the basic concepts. If V is a finite dimensional real vector space, then
GL(V) denotes the group of linear automorphisms of V. Any polynomial function on the linear
space End(V') defines a function on the group GL(V') and we call a subgroup G C GL(V) algebraic
if it is the zero set of a family of polynomial functions p;: End(V) — R. An algebraic group G is
said to be

e reductive, if each G-invariant subspace V73 C V has a G-invariant linear complement V5.
e unipotent, if there exists a flag of linear subspaces
Fo={0}Ckh C---CF, =V
such that (9 —1)F; CF;_y for j=1,...,nand g € G.

In this context one has a decomposition theorem (the Levi decomposition), asserting that every
algebraic subgroup G C GL(V) is a semidirect product G 2 U x L, where U is unipotent and L
is reductive. Moreover, for every reductive subgroup L; C G there exists an element g € G with
gL1g~* C L ([Ho81, Thm. VIIL.4.3]).
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3.2 Symmetric and orthogonal Euler elements

Definition 3.1. A pair (h,z) of Euler elements is called orthogonal if op(z) = —x (cf. Defini-

tion 2.4]).
Proposition 3.2. The following assertions hold:

(i) An Euler element h € g is symmetric, i.e., —h € Oy, if and only if h is contained in a Levi
complement s and h is a symmetric Fuler element in s.

(ii) If g =1t x s is a Levi decomposition.

(a) If h € g is a symmetric Euler element, then Oy = Inn(g)(OnNs) = Oy, where q: g — 5
is the projection map.

(b) Two symmetric Euler elements are conjugate under Inn(g) if and only if their images in
s are conjugate under Inn(s).

Proof. (i) As Op C h + [g,g] follows from the invariance of the affine subspace h + [g, g] under
Inn(g), the relation —h € O}, implies h € [g,g]. Let g = v X s be a Levi decomposition of g. As
5 = [s, 5], the commutator algebra is adapted to this decomposition:

[g,0) =[t+s,v+5 =[g,t]+s[g,t] xs.

Now h is an Euler element in the ideal [g,g] = [g,t] x s. This is the Lie algebra of an algebraic
group for which [g, t] is the Lie algebra of the unipotent radical and s the Lie algebra of a reductive
complement ([Ho81 Thm. VIIL.3.3]). As the algebraic group generated by exp(R ad h) is reductive,
the conjugacy of Levi decompositions ([Ho8T Thm. VIII.4.3]) implies that ad h is contained in some
Levi complement ads of ad([g,g]) = [adg,adg]. Replacing h by another element in Op, we may
thus assume that h € 3(g) + s for some Levi complement s of g. Then v and s are ad h-invariant, so
that the ad h-eigenspaces of the restrictions satisfy

t=1t1(h)+vo(h)+r_1(h) and s=s1(h)+so(h)+s_1(h),

and define 3-gradings of v and s. Further g4q1(h) C [h,g] C [g, 9] and s = [s,5] C [g, g] imply that
g = to(h) + [9,0]. As [g,g] is an ideal and to(h) a subalgebra of g, the subgroup Inng([g,g]) of
Inn(g) is normal, and Inn(g) = Inng([g, g]) Inn(ro(h)). As Inn(ro(h)) fixes h, this in turn shows that
Oy, = Inng([g, g])h = Inng([g,t]) Inng(s)h. Writing h = h, + hs with h, € 3(g) and hs € E(s), we
thus find z € [g,t] and s € Inng(s) such that

—h, —hs=—h=¢e"s.h =h, +e*1%s.h,.

Applying the Lie algebra homomorphism ¢ to both sides, we derive from ¢(h,) =0 and go erdr — ¢
that —hs = s.hg, and therefore
e%h, = hy + 2h,.

We conclude that the unipotent linear map e*d® preserves the linear subspace Rhg + Rh., and this
implies that ad z = log(e*1®) also has this property. We thus arrive at

[h,{E] = [hsv'r] c Rhs +ha c gO(h’)a

8Here we use that the Lie algebra [g,t] is nilpotent, so that the exponential function of the corresponding group
Inng([g, t]) is surjective, see [HN12].
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so that we must have z € go(h) = go(hs), which in turn leads to 0 = e*d®h, — h, = 2h,, i.e.,
h=hs € s.
To prove the second assertion of (i), we observe that the homomorphism ¢: g — s & g/v satisfies

9(0z) =Oy,) for zeg. (3.2)

Hence ¢(Eym(9)) € Esym(s). If, conversely, h € Eym(s), then we clearly have —h € Inng(s)h C
Inn(g)h, so that h € Eym(g).

(ii)(a) As Oy, intersects s by (i), ¢(On) N O # B, and since Inn(s) acts transitively on ¢(Op) by
B2), we obtain ¢(Op,) C Oy, and thus ¢(O) = Op N's. This further leads to

Oy, = Inn(g)(Or Ns) = Inn(g)q(O) = Inn(g)O;(h) = Oqy(n)-
(ii)(b) follows immediately from (a). O

Proposition B2 reduces the description of symmetric Euler elements up to conjugation by inner
automorphisms to the case of simple Lie algebras.

Remark 3.3. Suppose that g is a finite dimensional Lie algebra containing a pointed generating
invariant cone C. If g is not reductive, then C' N 3(g) # {0} ([Ne99, Thm. VIL.3.10]). If 7 = oy, is
an involution defined by a symmetric Euler element &, then 7 fixes every central element, so that
we cannot have 7(C) = —C if g is not reductive.

Examples 3.4. (a) If 5 is a semisimple Lie algebra and h € s an Euler element, then it also is an
Euler element in the semidirect sum T's := |s| X 5, where |s| is the linear subspace underlying s,
endowed with the s-module structure defined by the adjoint representation.

(b) In the simple Lie algebra g := sl,,(R), we write n x n-matrices as block 2 x 2-matrices according
to the partition n = k + (n — k). Then

hk:_l((n—k)lk 0 >

n 0 _kln—k

is diagonalizable with the two eigenvalue "—;k =1- % and —%. Therefore hy is an Euler element
whose 3-grading is given by

go(h) = { (g 2) ca€gly(R),d € gl,_,(R),tr(a) + tr(d) = 0},

wim = (g M) am= (e o)

Example 3.5. For g = sl(R), the Euler element

1/1 0 . a b a —b
h = 3 (O _1) satisfies oy, (c d) = (—c d) .

0 o

Any element in Fix(—op) is of the form z = <c 0> , and it is an Euler element if and only if

be = —det(z) = 1. If g € SLy(R) commutes with h, then it is diagonal, i.e., g = <a 0 >, and

0 a !
0 b 0 a?b
Ad(g) c 0) \a2 o0 )"
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We thus obtain two representatives
Ty = :I:1 01
=731 0

of conjugacy classes of orthogonal pairs (h,z) of Euler elements for sl3(R). The involution corre-
sponding to x4 is given by

a b\ _ iz, fa b\ _giz, (0 4 a b 0 —¢\ _(d ¢
Tos\e q) =€ c d)° “\i 0)\e dJ\—-i 0) \b aj)’
which shows in particular that
oz, (h) = —h. (3.3)
As a consequence of the preceding discussion, we see that the orthogonality relation on £(slz(R))

is symmetric:

Lemma 3.6. If (x,y) is an orthogonal pair of Euler elements in sla(R), then oy(x) = —x, so that
(y,x) is also symmetric.

Example 3.7. For g = gl,(R), the Euler element

hlil() Hishi a b\ (-1 0\ fa b\(-1 O\ [(a —0b
=\o o) s ol gl = Vo 1)\e a)\o 1) " \=¢ a)°

and we see, as for slp(R), that the orthogonal Euler elements are given by
1/0 1 . a b\ [(d c
Ty = :|:§ <1 0> with oy, (c d) = <b a> .

0z (h) # —h. (3.4)
Therefore gl,(R) contains a pair (h,z) of orthogonal Euler elements for which o, (h) # —h. From
h ¢ [g,9] it immediately follows that A is not symmetric. We shall see in Theorem below
that this pathology of the orthogonality relation on the set of Euler elements does not occur for
symmetric Euler elements.

This shows that

Example 3.8. For g = sl3(R), the Euler element
2 0 0
1 _
hy = 3 0 -1 0 satisfies o, (z Z) = <_ac db> ,
0 0 -1

where we write matrices as 2 x 2-block matrices according to the partition 3 = 1 + 2. Up to
conjugacy under the centralizer of hj, the symmetric matrices in Fix(—op,) are represented by

0 0 a
z=(0 0 O
a 0 0

These matrices have three different eigenvalues, so that ad z has five eigenvalues, and thus = cannot
be an Euler elements of sl3(R). We conclude that, there exists no Euler element z € E(sl3(R)) for
which (hy,2) is orthogonal.

We shall see in Theorem BI3(b) below that this never happens for symmetric Euler elements,
but h; is not symmetric. It corresponds to hy for the root system A, in the notation of Section [3.3]
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Example 3.9. For g = sl4(R), the Euler element

3 0 0 0
1{0 -1 0 0 . a b a —b
hi = o o -1 o satisfies oy, (C d) = (_C d) ,
0 O 0 -1

where we write matrices as 2 x 2-block matrices according to the partition 4 = 1 + 3. Up to
conjugacy under the centralizer of hi, the symmetric matrices in Fix(—oy, ) are represented by

Q@ O oo
o O oo
o o oo
o O o e

They all have three different eigenvalues and ad = has five eigenvalues, so that they are not Euler
elements. We conclude that there exists no Euler element z € &£(sl4(R)) for which (hy,z) is
orthogonal.

This is different for the symmetric Euler element

0 o0

0 0 . a b [(a —b
-1 0 with o, (c d>_<—c d>’
0o -1

where we write matrices as 2 x 2-block matrices according to the partition 4 = 2 + 2. Up to
conjugacy under the centralizer of hs, the symmetric matrices in Fix(—op,) are represented by

1
hQ ::g

o oo
o o= O

o Q OO
O OO
o O o
OO O

and, for a = b = %, these are Euler elements orthogonal to ho.

3.3 Euler elements in simple real Lie algebras

In this section we take a systematic look at Euler elements in simple real Lie algebras. In particular
we determine which of them are symmetric and show that pairs of orthogonal ones generate sl,-
subalgebras (Theorem [3.13)). For the classification of 3-gradings of simple Lie algebras, we refer to
[KA88], the concrete list of the 18 types in [Kan98, p. 600] which is also listed below, and Kaneyuki’s
lecture notes [Kan00].

Let g is a real semisimple Lie algebra. An involutive automorphism 6 € Aut(g) is called a Cartan
inwvolution if its eigenspaces

t=¢g’={rcg:bx)=2) and p:=g?={rcg: z)=—a}

have the property that they are orthogonal with respect to x, which is negative definite on £ and
positive definite on p. Then
g=tdp (3.5)
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is called a Cartan decomposition. Cartan involutions always exist and two such involutions are con-
jugate under the group Inn(g) of inner automorphism, so they produce isomorphic decompositions
([HNI12, Thm. 13.2.11]).

If g = £®yp is a Cartan decomposition, then £ is a maximal compactly embedded subalgebra of g,
x € g is elliptic if and only if its adjoint orbit O, = Inn(g)z intersects ¢, and x € g is hyperbolic if
and only if O, Np # 0.

For the finer structure theory, and also for classification purposes, one starts with a Cartan
involution # and fixes a maximal abelian subspace a C p. As a is abelian, ad a is a commuting set of
diagonalizable operators, hence simultaneously diagonalizable. For a linear functional 0 # a € a*,
the simultaneous eigenspaces

go :={y €9: (Vz €0a) [r,y] = a(x)y}

are called root spaces and
Y :=%(g,a):={a€a"\{0}: go # 0}
is called the set of restricted roots. We pick a set
Im:={ay,...,ap} CX

of simple roots. This is a subset with the property that every root a € ¥ is a linear combination
o= Z?:l njo;, where the coefficients are either all in Z>( or in Z<g. The convex cone

I := {z € a: (Vo € II) a(z) > 0}

is called the positive (Weyl) chamber corresponding to II.
We have the root space decomposition

gzgo@@ga and go=m®da, where m=goNE&t
a€eX

Now 6(ga) = g-a, and for a non-zero element z, € g,, the 3-dimensional subspace spanned by
Ta,0(xo) and [zq,0(z4)] € a is a Lie subalgebra isomorphic to sly(R). In particular, it contains a
unique element a¥ € a with a(a") = 2. Then

To:ia—a, 7o(z):=1z—a(x)a’

is a reflection, and the subgroup
W= (ro: a € X) C GL(a)

is called the Weyl group. Its action on a provides a good description of the adjoint orbits of
hyperbolic elements: Every hyperbolic element in g is conjugate to a unique element in IT* and, for
x € a, the intersection O, Na = W is the Weyl group orbit ([KN96, Thm. II1.10]).

From now on we assume that g is simple. Then ¥ is an irreducible root system, hence of
one of the following types:

An7 Bn; Onv Dn; E65E77E87 F47 G2 or BOng 1

(cf. [Bo90al). If g is a complex simple Lie algebra, then it is also simple as a real Lie algebra, and
a Cartan decomposition takes the form
g==td it
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where £ C g is a compact real form. Then a = it, where t C £ is maximal abelian. In particular, the
restricted root system X (g, a) coincides with the root system of the complex Lie algebra g. This
leads to a one-to-one correspondence between isomorphy classes of simple complex Lie algebras and
the irreducible reduced root systems. If g is not complex, then neither the isomorphy class of g
nor of gc is determined by the root system X(g,a). For instance all Lie algebras so; ,(R) have
the restricted root system A; with dima = 1, but their complexifications $0,1(C) have the root
systems By, for n = 2k and Dy for n = 2k — 1.

The adjoint orbit of an Euler element in g contains a unique h € II*. For any Euler element
h € II*, we have a(h) € {0,1} for @ € II because the values of the roots on h are the eigenvalues
of ad h. If such an element exists, then the irreducible root system ¥ must be reduced. Otherwise,
for any root a with 2a € ¥, we must have a(h) = 0 because ad « has only three eigenvalues. As
the set of such roots generates the same linear space as ¥, this leads to the contradiction h = 0.
This excludes the non-reduced simple root systems of type BC),.

To see how many possibilities we have for Euler elements in a, we recall that II is a linear basis
of a, so that, for each j € {1,...,n}, there exists a uniquely determined element

1 for j=k

. (3.6)
0 otherwise.

h; € a, satisfying ay(h;) = {

A simple Lie algebra g = ¢ @ p is called hermitian if the center 3(¢) = {z € ¢: [z,€] = {0}} of a
maximal compactly embedded subalgebra £ is non-zero. For hermitian Lie algebras, the restricted
root system X is either of type C,. or BC, (cf. Harish Chandra’s Theorem [Ne99, Thm. XII.1.14]),
and we say that g is of tube type if the restricted root system is of type C,.

The following theorem lists for each irreducible root system ¥ the possible Euler elements in
the positive chamber IT*. Since every adjoint orbit in £(g) has a unique representative in IT*, this
classifies the Inn(g)-orbits in £(g) for any non-compact simple real Lie algebra. For semisimple
algebras g = g1 @ --- @ g, an element x = (z1,...,2,) is an Euler element if and only if its
components z; € g; are Euler elements, and its orbit is

O =04, X+ %X Op,.

Therefore it suffices to consider simple Lie algebras, and for these the root system ¥ is irreducible.
As every complex simple Lie algebra g is also a real simple Lie algebra, our discussion also covers
complex Lie algebras.

Theorem 3.10. Suppose that g is a non-compact simple real Lie algebra, with restricted root
system 3 C a* of type X,,. We follow the conventions of the tables in [Ba90a] for the classification
of irreducible root systems and the enumeration of the simple roots ay,...,ca,. Then every Fuler
element h € a on which 11 is non-negative is one of hy, ..., hy, and for every irreducible root system,
the Buler elements among the h; are the following:

An : hl, .. .,hn, Bn : hl, Cn : hn, Dn : hl,hn_l,hn, Eﬁ : hl,hﬁ, E7 : h7. (37)

For the root systems BC,,, Es, Fy and G2 no Euler element exists (they have no 3-grading). The
symmetric Fuler elements are

Asp_1: hy, By, @ hi, Cr 2 hy, Dy, : ha, Doy, i han—1, hop, E7: hr. (3.8)

n

Proof. Writing the highest root in ¥ with respect to the simple system II as apax = ijl cjo, we
have ¢; € Zsq for each j. If h € IT* is an Euler element, then II(h) C {0,1}, and 1 = amax(h) =
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> i1 cjerj(h) implies that at most one value a;(h) can be 1, and then the others are 0, i.e., h = h;
for some j € {1,...,n}. Moreover, h; is an Euler element if and only if ¢; = 1. Consulting the
tables on the irreducible root systems in [Bo90a], we obtain the Euler elements listed in 3.

To determine the symmetric ones, let wg € W be the longest element of the Weyl group, which
is uniquely determined by wgIl = —II for the dual action of W on a*. Then A := wo(—h;) is the
Euler element in the positive chamber representing the orbit O_j;. Therefore h; is symmetric if
and only if —h; € Wh;, which is equivalent to h;- = h;. Using the description of wg and the root
systems in [Bo90al, now leads to

An—l : h; = hn_j, Bn : hll = hl, Cn : h;l = hn, (39)
hp— f dd,
Dyt b, = hi, b, = oo (3.10)
hn for n even,
E6 hll :hﬁ, E7 h;:hq (311)
Hence the symmetric Euler elements are given by the list (3.8]). O

This theorem requires some interpretation. So let us first see what it says about complex simple
Lie algebras g. In [B.7) we see that only if g is not of type Eg, Fy or G, the Lie algebra g contains
an Euler element. As Euler elements correspond to 3-gradings of the root system and these in
turn to hermitian real forms g°, where ¢h; € 3(£°) generates the center of a maximal compactly
embedded subalgebra £° ([Ne99, Thm. A.V.1]). We thus obtain the following possibilities. In Table
1, we write g° for the hermitian real form, g for the complex Lie algebra, X for its root system, and
h; for the corresponding Euler element:

[ ¢° (hermitian) | X(g°, a°) | g=(g°)c | X(g,a) | Euler element ||
sty (C),1 <p<q | BCy(p<q), Cplp=q) slp1q(C) | Aprg1 | by
502)2n_1(R), n>1 Csy 502n+1((C) B, hy
spo, (R) Chn 5Py, (C) Ch b,
§02 9n—2(R),n >2 | Cs 502, (C) D, h1
50™(2n) BCy(n=2m+1), Cp(n =2m) | 502,(C) D, hn—1,hy
66(,14) BCQ (43} Eﬁ hl = h/6
e7(—25) Cs e7 Er h7

Table 1: Simple hermitian Lie algebras g°

In this correspondence, those hermitian simple Lie algebras corresponding to symmetric Euler
elements are of particular interest. Comparing with the list of hermitian simple Lie algebras of
tube type (cf. [FK94, p. 213]), we see that they correspond precisely the 3-gradings specified by
symmetric Euler elements, as listed in (88). Since the Euler elements h,_1 and h,, for the root
system of type D, are conjugate under a diagram automorphism, they correspond to isomorphic
hermitian real forms.

[ ¢° (hermitian) | X(g°,a°) [ 9= (g°)c | X(g,a) | symm. Euler clement h ||

sun,n((C) On 5[2n(C) Agnfl hn
5027271,1([@), n>1 OQ 502n+1((C) Bn hl
5p2n (R) Cn 5p2n ((C) Cﬂ hn
$502 9n—2(R),n > 2 | C 509, (C) D, h1
50%(4n) Cn 5045, (C) Dy, hon—1,hon
e7(—25) Cs e7 Er he




Table 2: Simple hermitian Lie algebras g° of tube type

In our context hermitian simple Lie algebras are of particular interest. We therefore collect some
of their main properties in the following proposition.

Proposition 3.11. For a simple real Lie algebra, the following assertions hold:
(a) g is hermitian if and only if there exists a closed convexr Inn(g)-invariant cone C # {0}, g.

(b) A simple hermitian Lie algebra contains an Euler element if and only if it is of tube type, and
in this case Inn(g) acts transitively on E(g).

Proof. (a) is a consequence of the Kostant-Vinberg Theorem (cf. [HO96, Lemma 2.5.1]).

(b) Since the restricted root system of a hermitian simple Lie algebra is of type C, or BC,., and the
first case characterizes the algebras of tube type, the assertion follows from Theorem [3.10] because
C, only permits one class of Euler elements. O

There are many types of simple 3-graded Lie algebras that are neither complex nor hermitian
of tube type; for instance the Lorentzian algebras so01 ,(R). We refer to [Kan98, p. 600] or [Kan00].
for the list of all 18 types which is reproduced below.

[ [ S(g.a) [ [0.(h) I
1 5[n(R) An,1 hj, 1 Sj <n-— 1 Mj,nfj(R)
2 5[n(H) An,1 hj, 1 Sj <n-— 1 Mj,nfj(H)
3 st n (C) Cy hn Herm,, (C)
5 Un,n (H) Ch hy, Aherm,, (H)
6 50,,4(R) B, (p<q), Dy (p=4q) | 11 Rpta—2
7 50*(4n) Cy b, Herm,, (H)
8 50, n(R) C, hy Alt,(R)
) ¢(R) Ee hi = hg M 2(Ospiit)
10| e6(—26) Ay h My 2(0)
11 27(R) E7 h7 Herm3 (@split)
12 27(_25) 03 hg Herm3 (@)
13 ﬁ[n((C) An,1 hj, 1 Sj <n-1 Mj,nfj((c)
14 | sp,y,(C) Cp hn Sym,, (C)
15a 502n+1 ((C) Bn hl cn
15b 5092y, ((C) Dn hl cn
16 | $02,(C) D, hpn_1,hp Alt,(C)
17 | e(C) Eg hy = hy M;.2(0)c
18 | ez(C) Er he Herm3(0)c

Table 3: Simple 3-graded Lie algebras

Remark 3.12. As h € a implies (h) = —h, the Cartan involution 6 always maps h into —h, but
this only implies that h is symmetric if # € Inn(g). This is the case if g is hermitian, so that in
these Lie algebras all Euler elements are symmetric.

We conclude this section with some finer results concerning orthogonality and symmetry of Euler
elements.
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Theorem 3.13. If g is simple and h € £(g), then the following assertions hold:
(a) If x € E(g) is such that (h,x) is orthogonal, then

(i) h and z are symmetric,
(ii) the Lie algebra generated by h and x is isomorphic to sla(R), and
(i) o, (h) = —h, so that (z,h) is also orthogonal.

(b) There exists an Euler element x such that (h,x) is orthogonal if and only if h is symmetric.

Proof. (a) We split the proof into the two cases, according to whether g is a complex Lie algebra
or not. We then reduce the second case to the first one.

Case 1: g is complex: A simple complex Lie algebra g contains an Fuler element, i.e., it possesses a
3-graded root system, if and only if it has a real form g° which is hermitian, i.e., g = (g°)c = g°Dig°.
This follows for example by comparing the list of irreducible root systems for which Euler elements
exist (see (B.0)) with the classification of hermitian simple Lie algebras g° (see [Ne99, Thm. A.V.1]
and Table 1). In this case the real Lie algebra g° has a Cartan decomposition g° = €° ¢ p° and the
center 3(¢°) is one-dimensional and generated by an element z with Spec(ad z) = {0, i} ([Ne99,
Thm. A.V.1]). Then h = iz is an Euler element in the complexification g for which £° = ker(ad z)Ng°
and [z, g°] = p°, where ad 2|0 is a complex structure on the real vector space p°. The corresponding
Euler involution o), = e™ 8" = emad2 ¢ Autc(g) thus restricts to the Cartan involution on g°,
corresponding to the decomposition €° & p°. Accordingly, we obtain

h:=Fix(op) = (£°)c  and ¢q:= Fix(—op) = (p°)c.

A Cartan decomposition of g is obtained by ¢ = £ 4+ ip® and p = p° 4+ i°. If t C ¢° is a
maximal abelian Lie subalgebra, then a := it C p is a maximal abelian subspace which contains
h =iz € i3(¢°) C it. The orthogonality of the pair (h,x) means that z € q = Fix(—oy). By
[IKN96, Cor. II1.9], 2 € £(g) N q is conjugate under the centralizer of h to an element in qNp = p°.
Fixing a maximal abelian subspace a® C p°, we may therefore assume that x is an Euler element
for the corresponding restricted root system %° := 3(g°, a°) C (a°)*, which is of type C,. or BC,
(cf. [Ne99l Thm. XTII.1.14]). As we have already observed above, the existence of an Euler element
x € a° implies that the restricted root system %° is reduced, which excludes the case BC,.. Therefore
g° is of tube type (cf. Proposition B.11]) and Table 2 thus implies that h is symmetric.

The fact that g° is of tube type implies that € a°® corresponds to the unique Euler element
h, for the restricted root system X° of type C, (see B1)). From B8] it now follows that x is
symmetric (see also Proposition BI1]). This proves (i).

To verify (ii) and (iii), we observe that the root system C, contains the maximal subset
{2e1,...,2¢e,} of strongly orthogonal roots, i.e., neither sums nor differences of these roots are
roots. The multiplicities of these restricted roots are 1 ([Ne99, Thm. XII.1.14]), and

T

s:= P05, + 0%, +R(2¢))Y) = 0° @ P05, +0%2,) = sb(R)

j=1 j=1

(cf. [Ne99, Lemma XII.1.11], [Ta79, p. 12]). As the roots 2¢; all take the value 1 on the Euler
element x € a°, we have z = 3 > j=1(2¢5)", which is the diagonal element in sl2(R)", corresponding

1
to <(2) _01> Likewise, ih is contained in s = slo(R)" as the diagonal element corresponding to
2
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_1
( 2). As the Lie subalgebra of gl,(C), generated by

0
_1 -]
2 2
G 0) = 68

is isomorphic to sly(R), the same holds for the real Lie subalgebra of g generated by h and x. Now
(ii) and (iii) follow from Lemma B.6l

Case 2: g is not complex: Then gc¢ is a simple complex Lie algebra to which all arguments in
Case 1 apply. In particular, the real Lie subalgebra s spanned by h, = and [h, z] is isomorphic to
5[2(R). This proves (ii) and (iii). As s C g and all Euler elements in sl3(R) are symmetric, we also
obtain (i).

(b) If there exists an Euler element = for which (h,z) is orthogonal, then (a)(i) implies that h is a
symmetric Euler element. Suppose, conversely, that h is a symmetric Euler element. For a Cartan
involution 6 with 6(h) = —h, we choose a maximal abelian subspace a C p = Fix(—6) containing h
and choose in the subset

= O

= O

¥ ={a€X(g,a): a(h) =1}

a maximal set {71, ...,7,} of strongly orthogonal roots (cf. [Ta79, p.13] or [Kan00, p. 134]). From
these references we further infer the existence of elements e; € g,, such that, for each j, the
subalgebra s; := spang{e;, on(e;), [ej, on(e;)]} is isomorphic to sla(R). We normalize e; in such a
way that, for z; := [e;, 01, (e;)], we have vj(z;) = 1. Then loc. cit. further implies that

ag:=ang=span{z;: j=1,...,r} for q:=g "

is maximal abelian in q,. Since h is a symmetric Euler element and the root system (g, a) is
irreducible, h corresponds to some h; in the list (3:8). The restricted root system X(g, aq) is always
of type C,. The explicit description of the restricted roots in [Kan98, p. 596] now implies that
x = 22:1 xj € a4 is an BEuler element. By construction, it satisfies o (x) = —x, so that (h,z) is
orthogonal. This completes the proof. o

Corollary 3.14. Let g be a finite dimensional Lie algebra and (h,z) be orthogonal Euler elements
such that h is also symmetric. Then the following assertions hold:

(a) There exists a Levi complement containing h and x.
(b) The Lie algebra generated by h and x is isomorphic to sla(R).
(¢) (x,h) is also orthogonal.

Proof. By Proposition B:2(i), there exists a Levi decompositions g = t x s with A € 5. We then
have for q := Fix(—oy,) the decompositions

qg=g1(h)®g_1(h)=q:®qs with ge=gNtr and qs=qNs,

and x € q is an Euler element, hence in particular hyperbolic. Let a. C . be a maximal hyperbolic
subspace, i.e., a, is abelian, consists of ad-diagonalizable elements and is maximal with respect to
this property. Then a, C [h,t] C [g,t] consists also of ad-nilpotent elements, hence is central. As
ad hlq is injective, it follows that a. = {0}. By [KN96| Prop. IIL.5], g, contains a maximal hyperbolic
subspace a of q and z is conjugate under Inng(h) to an element of a C q,. This proves(a).

(b) In view of (a), we may w.l.o.g. assume that g is semisimple, and by Theorem BI3] which
applies to each simple ideal, even that g = sl3(R)" for some r € N. As Aut(sl2(R)) = PGLy(R)
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acts transitively on the set of orthogonal pairs of Euler elements in slp(R) (Example B.H), we may
further assume that

1 1
h=(hg, -+ ,hg) and z=(xg,---,x0) for hoz(s _Ol>, $0:=<8 02>,
2 2

so that the Lie subalgebra generated by x and h is the diagonal in sl3(R)", hence isomorphic

to 5[2 (R)
(c) follows directly from (b) and Lemma O

4 Covariant nets of real subspaces

In this section we develop an axiomatic setting for covariant nets of standard subspaces parametrized
by GT-orbits in Gr(G).
4.1 Standard subspaces

Here we collect some fundamental notions concerning real subspaces of a complex Hilbert space H
with scalar product (-, -), linear in the second argument. We call a closed real subspace H C H cyclic
if H+4H is dense in H, separating if HNiH = {0}, and standard if it is cyclic and separating. The
symplectic “complement” of a real subspace H is defined by the symplectic form Im(-, -), namely

H = {¢ € H: (¥neH) Im(,n) =0}

Note that H is separating if and only if H' is cyclic, hence H is standard if and only if H’ is standard.
For a standard subspace H, we define the Tomita operator as the closed antilinear involution

Su:H+iH = H+iH, &+in— & —in.

1
The polar decomposition Sy = JyA}; defines an antiunitary involution Jy and the modular opera-
tor Ay. For the modular group (Aff)cr, we then have

JuH=H"and AlH=H for every teR

([Lo08l Thm. 3.4]). This construction leads to a one-to-one correspondence between Tomita oper-
ators and standard subspaces:

Proposition 4.1. ([Lo08, Prop. 3.2]) The map H — Sy is a bijection between the set of standard
subspaces of H and the set of closed, densely defined, antilinear involutions on H. Moreover, polar
decomposition S = JAY? defines a one-to-one correspondence between such involutions and pairs

(A, ), where J is a conjugation and A > 0 selfadjoint with JAJ = A~L.

The modular operators of symplectic complements satisfy the following relations
S = S5, Ay = Agl, Juw = Jy.
From Proposition [ we easily deduce:

Lemma 4.2. ([Mol8| Lemma 2.2]) Let H C H be a standard subspace and U € AU(H) be a unitary
operator. Then UH is also standard and UAQU* = AZ(,[_{) and UJuU* = Jyn.
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Lemma 4.3. (|[Lo08, Cor. 2.1.8]) Let H C H be a standard subspace, and K C H be a closed, real
linear subspace of H. If AiK = K for all t € R, then K is a standard subspace of K := K+ iK and
Anlk is the modular operator of K on K. If, in addition, K is a cyclic subspace of H, then H =K.

The following theorem relates positive generators and inclusions of real subspaces.

Theorem 4.4. ([Lo08, Thms. 3.15, 3.17], [BGL02, Thm. 3.2]) Let H C H be a standard subspace

and U(t) = e€** be a unitary one-parameter group on H with a generator P.

(a) If £P >0 and U(t)H C H for all t > 0, then

SERTI ) ASET = U (etst an rU()Jy =U(—t or a t,s € R. .1
ALEPTU) AL = U (et d JU@t)Jn=U for all R. (4

(b) If A;is/%rU(t)Af_f/27r = U(e*5t) for s,t € R, then the following are equivalent:
(1) U@)H CH fort>0;
(2) £P is positive.
Part (a) is also called the One-particle Borchers Theorem. Borchers originally proved it for von
Neumann algebras with a cyclic and separating vectors. Part (b) is in [BGL02].
With the notation introduced in Examples [ZT0(b), we have seen that any couple (U, H) of a
one-parameter group (Uyp)icg with positive (resp. negative) generator and a standard subspace H

satisfying the assumptions of Theorem 4|a) defines a unitary, positive energy representation of
the affine group Aff(R) 2 R x R* implemented by

UC@) =U®), UGBE)=As%, Ulo)=Ju for teR.

A representation of Aff(R) can also be obtained by looking at some peculiar relative positions of
standard subspaces: The half-sided modular inclusions.

Definition 4.5. An inclusion K C H of standard subspaces of H is called a +half-sided modular
inclusion (£HSMI) if _
A"KCK for +£t>0.

Theorem 4.6. ([Lo08, Cor. 3.6.6.], [NO17, Thm. 3.15]) K C H is a positive half-sided modu-
lar inclusion if and only if there exists an (anti- )unitary positive energy representation (U,H) of

AFE(R) 2 R x R* with U(5(t) = A, U(re) = Ju, U(0(1.00)(t)) = A", U(ry) = Jk. In this
picture

K=N((1,1).Wy) and H=N(Wy),
where Wy = (A, 19) corresponds to the half-line (0,00), the translations satisfy
K=U1)H and U(l—-¢")= Agit/%Aﬁ/% for teR.

As a consequence, negative half-sided modular inclusions K C H are in in 1-1 correspondence
with (anti-)unitary negative energy representation (U, H) of Aff(R) 2 R x R* with

K=N((=1,1).W}) = U(-=1)N(Wo)’ and H = N(W) = N(W)’
and with U(8(—t)) = Ay 27, U(ro) = Ju, U(0(—oery (£) = A >, Ur_y) = Jx.

Corollary 4.7. ([Lo08| Corollary 2.4.3.]). If K C H is +HSMI, then H' C K’ is -HSMI
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4.2 The axiomatics of abstract covariant nets
Hereafter we will make the following assumption on the group G.
Assumption 1. We assume that Gg(G) # 0 and write G = G x{e,c} for some Euler involution .

Example 4.8. Note that G¥ may contain involutions which are not Euler.

We consider the graded Lie group G := SOy, (R) with the identity component G = SO ,,(R)".
For n > 2, the Lie algebra g = s0;,(R) is simple, §(z) = —x' is a Cartan involution, and
a := s011(R) C p (acting on the first two components) is a maximal abelian subspace. As the
corresponding restricted root system is of type Aj, our classification scheme (see (B8] in Theo-
rem [310) implies that all Euler elements in g are conjugate to the one corresponding to the boost
generator

h(IOa"'aIn) = (xl,xo,O,...,O).

Accordingly, an involution o € G is Euler if and only if o or —o is the orthogonal reflection in a
2-dimensional Lorentzian plane.
However, G* contains all reflections of the type

7(x) = (0%, - -,Enxn) with e; € {£1} satisfying H g; = 1.
=0

In particular neither Fix(7) nor Fix(—7) must have dimension 2.

We now present the analogs of the one-particle Haag—Kastler axioms and further fundamental
properties in our general setting.

Definition 4.9. Let G = G x {e, 0} be as above, C C g be a closed convex Ad®(G)-invariant cone
in g, and fix a GT-orbit W, = GT.W C Gg(G). Let (U,H) be a unitary representation of G and

N: W, — Stand(H) (4.2)

be a map, also called a net of standard subspaces. In the following we denote this data as (W5, U, N).
We consider the following properties:

( ) Isotony: N(W;p) C N(Ws) for Wy < Wa.

(HK2) Covariance: N(gW) = U(g)N(W) for g € GT, W € W,..

(HK3) Spectral condition: C' C Cy :={z € g: —idU(z) > 0}. We then say that U is C-positive.
(HK4)

HK4) Central twisted locality: For a € Z(G")~ and W € W, with wW'e e W, there exists a
unitary Z, € U(G')’ satisfying

Z2=U(a) and JIyw)Zadnw) = Z5 ", (4.3)

such that )
N(W «) C Z N(W)'. (4.4)

Moreoever, such an « exists.

When Z, is trivial, for instance when (’“)(G&,) = {e}, then the central twisted locality reduces to
the more familiar locality relation. o
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¢) Locality: S is such that € W,, then C .
HK4.) Locali EWwWewi h that W' € W, then N(W’ N(W)’

Concerning (HK3), note that Cy is pointed if and only if ker(U) is discrete. Therefore the
assumption that C' is pointed is compatible with the possible existence of representations with
discrete kernel satisfying (HK3). Furthermore, if C' = {0}, then (HK3) trivially holds.

The following property will be central in our discussion because it connects the modular groups
of standard subspaces to the unitary representation U of GT.

(HK5) Bisognano—Wichmann (BW) property: U(Aw (t)) = Aﬁg/{,ﬁﬂ for W e Wi, teR.
We will see in Proposition that a consequence of (HK1-5) is the following stronger form of
(HK4):
(HK6) Central Haag Duality: N(W'®) = Z,N(W)' for o € Z(G")~, W € W, with W'® € W,
and Z, as in ([43).
If the representation U extends antiunitarily to G we can further require:

(HK7) G-covariance: For any a € Z(G")™ such that W'® € W, there exists an (anti-)unitary
extension U® of U from GT to G such that the following condition is satisfied:

N(g %o W) =U*(gIN(W) for g¢ge€G@G, (4.5)
where *, is the a-twisted action (237)) of G on W, defined in Lemma [2.18(e).

It is enough to provide an extension U® w.r.t. one o € Z(G")~ such that W' e W,. All the other
extensions come as described in Lemma 2ZT§(f). The modular conjugation of standard subspaces
can have a geometric meaning when the extension U* from (HK7) has the following specific form:

(HK8) Modular reflection: U*(ow) = ZoJnw) for o € Z(GT)™, W € W, with W'e € W, and
Zq as in (43).
In the next sections we will show that there exist nets of standard subspaces satisfying all the
above assumptions. It is the analog of the BGL construction in this general setting.

4.2.1 Wedge isotony and half-sided modular inclusions

Taking the wedge modular inclusion defined in Section 2.4 Tlinto account, we now prove that isotony
can be deduced from covariance, the Bisognano—Wichmann property and the C-spectral condition.
On specific models this has been checked in [BGL02| [Lo0§].

Proposition 4.10. Let (W,,N,U) be a net of standard subspaces. Then the spectral condition
(HK3), the BW property (HK5) and G'-covariance (HK2) imply isotony (HK1).

Proof. Let Wy = (h,7) € Gg and Hyp = N(W)). By covariance, the net N is isotone if and only if
Swy, = Gly, exp(Cy) exp(C-) € Su, = {g € G": U(g)Ho C Ho}.

As the stabilizer G;F,VO stabilizes Hy by covariance, isotony is equivalent to exp(z) € Sn, for every
T € C+ ucC_.

By the spectral condition (HK3), we have Fi0U(x) > 0. Therefore Theorem 4] shows that
isotony is equivalent to

UMo(e)U (expta)UM (e7%) = U(expe®*tz) for s,te R,z e Cy. (4.6)
By the BW property (HK5), U0 (e®) = A;{fs/zﬂ = U(expsh), so that [h,z] = +x for z € Cy
implies ([4.0)). O
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4.2.2 The Brunetti-Guido—Longo (BGL) construction

We have seen in the introduction to Section 2] that each standard subspace H specifies a homomor-
phism _
UM:R* - AU(H) by UWN(e") := A", UM (=1):= Jq, (4.7)

and that this leads to a bijection
®: Homg, (R*, AU(H)) — Stand(H), U"+H

between continuous (anti-)unitary representations of the graded Lie group R* and standard sub-
spaces ([NOl?, Prop. 3.2]). By Lemma 2] ® is equivariant with respect to the natural action of
AU(H) on Stand(#) and the action (Z3) on Hom,, (R*, AU(H)).

Now every (anti-)unitary representation U: G — AU(H) defines by composition a natural G-
equivariant map

-1 .
G—Y s Homg (R*, G)— 2 Homg, (R, AU(H)), W Uorw.
Combining this with ® leads to the so-called Brunetti-Guido—Longo (BGL) construction:

Definition 4.11. (Brunetti-Guido—Longo (BGL) net) If (U, G) is an (anti-)unitary representation,
then we obtain a G-equivariant map Ny : G — Stand(#H) determined for W = (kw,ow) by

it/2m

Ingowy = U(ow)  and Ay vy = U(exptkw) for t¢eR. (4.8)

This means that, with respect to Definition 23, UNvW) = U o yyy for W € G (see [BGL02], [NO17,
Prop. 5.6]).

The BGL net associates to every wedge W € G a standard subspace Ny (W). We shall denote
with (W4, Ny, U) the restriction of the BGL net to the GT-orbit Wy C Gg(G).

Theorem 4.12. The restriction of the BGL net Ny associated to an (anti-)unitary C-positive
representation U of G = GT x {e, 0} to a GT-orbit Wy C Gp satisfies all the azioms (HK1)-(HK3)
and (HK5).

We shall see in Proposition LT6 that the twisted locality (HK4), Central Haag Duality (HK6) and
(HK7-8) are also satisfied.

Proof. Let W, C Gg(G) be a GT-orbit. By construction, the restriction of the BGL net Ny to W
satisfies (HK2) and by construction it satisfies (HK5). By Proposition [.10] isotony (HK1) follows
from the Spectral Condition (HK3), which is the C-positivity of U. O

As a last remark in this section we stress that two (anti-)unitary extensions of a unitary rep-
resentation (U,H) of GT are unitarily equivalent, but the corresponding BGL nets depend on the
choice of the (anti-)unitary extension. The following proposition makes this dependence explicit
and provides a natural parameter space.

Proposition 4.13. (The space of (anti-)unitary extensions) Fiz (h,7) € G, let U: G — AU(H) be
an (anti-Junitary representation and let M := U(G")'. Then the following assertions hold:

(i) All (anti- Junitary representations (U, H) extending Ulgr are of the form U = TUT* for some
T € UM). The corresponding BGL nets are related by

Ny (W) = TNy (W) for W eGg. (4.9)
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(ii) (Parametrization of (anti-)unitary extensions) Let J := U(7), 7 € G¥. For every
NeUM) :={MecUM): JMJ=M""},

there exists a unique (anti- Junitary extension U of Ulgr with U(r) = N.J, and we thus obtain
a bijection between the set U(M)~ and the set of (anti-)unitary extensions of Ulgr to G.

Proof. (i) follows from Proposition [AJ] and the assertion on the BGL nets is an immediate conse-
quence of the definitions.

(ii) Let T € U(M), so that U = TUT~': G — AU(H) is an (anti-)unitary extension of Ul|g+ with
J:=U(r) = TJT". Since U and U extend the same representation of G,

N:=JJ=JJ'eUWM).

This element satisfies JNJ = JJ = N~!, so that N € U(M)~ and J = N.J.
If, conversely, N € U(M)~, then Lemma [A.2] implies the existence of an X = —X* € M with
N =¢** and JXJ = —X. For T :=eX € UM) and J := TJT~!, we then have

JJ=TJT7'J =T? =X = N.
Therefore the manifold U(M)~ parametrizes the (anti-)unitary extensions of U|gt. O

4.2.3 Twisted Locality

We have seen in Section 4.2 that it can happen that W’ ¢ W, = GT.W. One can anyway attach
to W' a real subspace by the BGL-net and by construction obtain the relation HW’) = H(W)’. On
the other hand one can define natural complementary wedges W'e indexed by central elements a.
In this section we will see that in the BGL construction, the complementary wedge subspaces satisfy
the central Haag duality condition (HK6), hence the twisted locality relation (HK4). We start with
a lemma on standard subspaces.

Lemma 4.14. Let H C H be a standard subspace, and U € U(H) be a unitary operator commuting
with Ay and satisfying JaU Jy = UL, Let Hy be the standard subspace defined by (An,UJnw). There
exists a unitary square root Z of U commuting with An such that JuZJy = Z~' and ZH = H,.
The standard subspace Hy does not depend on this choice of Z.

Proof. The existence of the square root and the commutation relation with the modular conjugation
and the modular operator follows by Lemma [A3l Then

Z(InANZ ™ = ZIwZ AP = Z2 A = UJuAY?
implies that Hy = ZH. It is clear that H; does not depend on the choice of Z. O

In order to conclude (HKG), hence the central locality condition on a BGL net Ny, we will need
an analogous statement relating complementary wedge subspaces.

Proposition 4.15. Let (U,H) be an (anti-)unitary representation of the graded group
G =G"x{e,a} and a € Z(G")~. Then the commutant U(G")" contains a unitary square root Z,
of U(a) satisfying

U(9)Z.U(g)" =21 for every g€ G*. (4.10)
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Proof. First we note that U(a) € M := U(G")". We fix 0¢ € Inv(G*) and observe that conjugation
with U(og) defines an antilinear isomorphism 3 of M. As B(U(a)) = U(a)~! follows from « €
Z(G")~, we find with Lemma [A3lc) in the appendix, a unitary square root Z, of U(a) satisfying

Ul(o0)ZaUl(oo) = B(Zs) = Z3 1. (4.11)
For any other o € G we have o = 0og with g € G7, so that
U(0)ZaU(0) = U(0)ZoU(0) ™" = U(00)U(9)ZaU(9) ' U(00) = U(00)ZoU(00) = 2,1, O

We are now ready to verify that the BGL net is compatible with the twistings appearing in
(HK4), (HK6) and (HKT).

Proposition 4.16. For every (anti- )unitary representation (U, H) of G, the BGL net Ny satisfies
(HK4) and (HK6). Moreover, for o € Z(GY)~, W € Wy with W'® € W,y and Z, € U(GY
satisfying [@3), the (anti-)unitary extension (U, H) of Ulgr to G, determined by U*(ow) :=
ZaU(ow), satisfies (HKT) and (HKS8).

Proof. Let o € Z(G")~ and W = (x,0) € W, be such that W'® = (—z,a0) € Wy. Proposi-
tion implies the existence of Z, € U(G")’ satisfying (3). Then

—it/27 _
A = Ulexp(—tw))  and Ty, qprey = Ul00) = Z2Ingw) = Zadnyw) Za "

imply that Ny (W'®) = Z4Ny(W)'. This shows that (HK6), hence also (HK4) are satisfied. We
also have )
Ny (o %o W) =Ny (W *) = ZoNy(W)' = Z,U(0)Ny (W).

Since Ny is G-equivariant on G, this leads for g € GT to

Ny (go o W) = Ny(g.(0 %o W)) = U(g)Ny (o %o W) = U(g) ZoNy (W)’
=U(9)ZU(o)Nu(W) = U(g)U*(o)Ny (W) = U*(go)Nu (W).

This proves (HK7). As Jy, w) = U(ow) by definition, we also have
Ua(Uw) = ZQU(Uw) = ZQJNU(W),
so that U® also satisfies (HKS8). O

Remark 4.17. (a)If U|g+ is irreducible, then U(Z(GT)) C T1, so that, we find for any a € Z(G")
that U(a) = (1 with || = 1. We may thus put Z, := 21 for any complex number z with 22 = (.
In this case JZ,J = Z} holds for any antiunitary operator J.

(b) Let (U,H) be an (anti-)unitary representation of G. For any other square root Z of U(«)
satisfying the same requirements as Z,, the unitary operator Z~1'Z, is an involution commuting
with U(G), so that it leaves all standard subspaces N(W) of the BGL net invariant.

(c) If o € Z(GT) satisfies a” = a for 0 € G¥, then « acts trivially on G(G) and, by covariance of
N, leaves all standard subspaces N(W) invariant. This happens in particular if o = e. Then also
a € Z(G")7, so that a-twisted complements are useful in the context of fermionic theories. Here
U(a) is an involution and one choice of a square root of U(«) is given by

_ 1+iU(a).

o 4.12
1+ ( )
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Given a net satisfying (HK1)-(HK5), the commutation relation among twist operators and the
wedge modular operators immediately hold.

Proposition 4.18. Let (W4, U,N) be a G-covariant net satisfying (HK1)-(HK5), suppose that U
extends to an (anti-Junitary representation of G, and let Z, € U(G) as in @&3). Then, for every
W e W4, we have

ZQAN(W)Z(;l = AN(W)-

The latter proposition allows to conclude that (HKG6) is a consequence of (HK1)-(HK5).

Proposition 4.19. Let W4, N,U) be a net of standard subspace satisfying (HK1)-(HK5). Then
it also satisfies central Haag duality (HK6):

NW'®) = Z,NW)  for a€Z(G)",WeW,, W*eWw,.
In particular, the right hand side does not depend on the choice of Z,,.

Proof. By (HK5), the unitary operator Z, € U(G")’ commutes with the modular operator of N(W),
by Proposition EEI8 Therefore the two standard subspaces N(W'®) and Z,N(W) have the same
modular operator. By twisted locality N(W,O‘) C Z4N(W)', so that Lemma [£3] implies that they
coincide. O

Remark 4.20. Let (W, N,U) be a net of standard subspaces with a unitary C-positive represen-
tation (U, H) of GT. Let Wy = (z,0) € Wy C G and Hg := N(Wp). We claim that (HK1-3) imply
that _

U(O’) = JHO
defines an (anti-)unitary extension of Ulgt ) to the graded subgroup G(Wy) = GT(Wo) x {e, 0}
of G. In fact, Ju, commutes with G;,O by LemmalL2l Further, the C-positivity and Theorem 4(b)

imply that it also has the correct commutation relation with exp(C4.), hence also with GT(Wy). We
shall see in Section 4] when we actually obtain an extension to the full group G.

Example 4.21. (The Poincaré case) Let G := P, = RY3 x 801,3(R)g be the proper Poincaré
group and _
G =Py =R % Spiny 5(R)o

be its simply connected covering. We write Ay for the one-parameter group lifting the boost group
Aw associated to a wedge W € W = G.W; (see e.g. [Mol8]). For G', a wedge is defined by a
pair W = (z,7,), where x generates Ay and r, = €™ is the spacetime reflection in the direction
of the wedge. Since Z = Z(G) = {£1} is a 2-element group, a wedge W € G has two lifts which
belong to two different GT-orbits in G(G). To see this, we note that Z = Z~ and Zy = {e}. For

the second equality we use the isomorphism Spin; 5(R) with SL2(C) and note that the centralizer
1

of any Euler element z, which may be assumed to be x = ((5) B 1), is connected and isomorphic
2

to the multiplicative group C*, on which the involution o, acts trivially. Therefore the central
elements d(g) = g°¢g~ %, g € ng_g > are all trivial, which leads to Z = {e}.

For o := —1, the twisted complement of W = (kw,ow) is W'~ = (—kw,—ow). Any lift
7: R — GT of a rotation one-parameter group p: R — SO5(R) < SO; 3(R) in G satisfying
Ad(p(m))kw = —kw now satisfies p(2m) = —1. This shows that, W' = (=kw,ow) € GT.W, but
that W =1 = (—kw, —ow) & GT.W.

Let (U, H) be an irreducible unitary positive energy representation of G* for which U(—1) # 1,
then U(—1) = —1 by Schur’s Lemma. For the BGL net N: G(G) — Stand(#) we therefore have
N(W'=1) = iN(W)’ and Z, = i1 is a suitable twist operator (cf. [MoI8, Thm. 2.8]).
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Example 4.22. (Finite coverings of the Mobius group) Consider the n-fold covering of the Mébius
group GT := Msb™ C G = Mébén), where G = Mdby (cf. Example[210(e)). This group is obtained
from Mabs by factorization of the subgroup nZ (I\//Igb) Then Z := Z(G") = Z,, is a cyclic group of
order n. Let a := p(27) € Z be a generator, where p: R — G is the lift of the rotation group.

Let (U, H) be an (anti-)unitary representation of G whose restriction to G is irreducible. Then,
by Schur’s Lemma, U(a™) = U(p(7n)) is an involution in T1, hence £1. We now define n-twisted
local nets of real subspaces as follows:

e niseven. As 7 = 37! for f € Z, we have Z~ = Z and Z; = Ly 2 is a subgroup of index 2.

As for Mdby, we have Zo = Z;. We therefore obtain for every Euler couple W = (z,0)€ Gg(G)
two GT-orbits G.(+x, ) covering GT.W C Gg(G). Choosing G'.(x, o), one obtains with the
BGL construction a net of real subspaces I — N(I), where I denotes an interval of length
smaller than 27 in the 3-covering S{, o~ R/mnZ of S'. We can realize the net on intervals
in S%n/2) because U (p(nm))N(I) = £N(I) = N(I). For the central element o = p(—27) € Z,
twisted complements look as follows. For I = (a,b) C R/mnZ with b — a < 2w, we have
I'® = I¢, where I¢ = (b — 2m, a) is the “complement” obtained by conformal reflection on the
left endpoint, cf. (Z25). All the other twisted complement, belonging to the same orbit, are
obtained by covariance.

The locality relation then is given by
N(I'®) =w*NI), kez,

where o = p(2rk) and w € T satisfies w?1 = U(p(2)). Since U is irreducible and Z is a
cyclic group of order n, U(p(27)) is an n-th root of the unity, hence w?” =1 and Z,, = w*1.

e n is odd. Then Z~ = Z; implies that G acts transitively on the inverse images of G'-orbits
in G. Fixing the orbit GT.(z,0), we have by the BGL construction a net of real subspaces
I — N(I), where, again, I is an interval of length smaller than 27 in the n-fold covering of
S!. Here the locality relation is

N(I'*) =w*N(IY,  keZ,

where o = p(27k) and w?* = 1, I'® and Z, are as above.

4.3 New models

Theorem [B.10] provides the list of restricted root systems for real simple Lie algebras containing
(symmetric) Euler elements, hence supporting (symmetric) Euler wedges. Any such Lie algebra g
is the Lie algebra of a simply connected Lie group GT. Then (2I0) defines an Euler involution on
the group GT, so that we obtain the extension to G = GT x {id, c}.

Such a Lie group G' has many unitary representations, possibly with positive energy if the
Lie algebra g is hermitian. By unitary induction, one can construct a unitary representation of
G' from a unitary representation of a subgroup, for instance from a covering of PSLy(R) C GT
[Ma52]. Tt is always possible, to extend a unitary representation (U, Hy) of G to an (anti-)unitary
representation of G by doubling the Hilbert space, if the representation does not extend on Hy
itself. Indeed, we can choose any conjugation C' on Hy and observe that the representation defined
by U(g) = U(g) ® CU(ogo)C on Hy @ Hy extends to G by U(o) = ( g g ) By the BGL
construction there exists a (twisted-)local one-particle net satisfying (HK1-8).

As a consequence we have the theorem:
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Theorem 4.23. Let g be a simple real Lie algebra containing an Euler element, i.e., whose restricted
root system space occurs in Theorem BI0. Then there exists a graded Lie group G = GTUGY as in
Section T with an (anti-)Junitary representations U, and these in turn define twisted G-covariant

BGL-nets W4, U, N).

This theorem shows, for instance, that it is possible to associate a covariant homogeneous net
of standard subspace to a Lie algebra g with restricted root system FE;. The subgroups G41 =
exp(g+1(x)) € GT are closed, and if Go = {g € GT: Ad(g)z = z}, then so is P := GoG_.
Then M := GT/P is a homogeneous space whose tangent space in the base point can be identified
with the eigenspace gi(z) = ker(adx — 1). If g is simple hermitian of tube type and C C g is a
pointed generating invariant cone, then C, := C N gi(z) defines a GT-invariant causal structure on
M. The so-obtained manifolds include the Jordan spaces-times of Giinaydin [Gu93| [Gu00, [Gu01]
and the simple spacetime manifolds in the sense of Mack—de Riese [MdROT7]. If the rank of the
restricted root system X of (g,a) is 2, then M is a Lorentzian manifold, but in general it is not. As
a consequence of Proposition B.I1] and Table 2, there exists a real form with a non-trivial positive
cone i.e., g is hermitian of tube type, for every root system appearing in Theorem[3.10l Thus models
with a proper notion of positive energy appear can be associated to every root system supporting
symmetric Euler elements.

Recently, in [NO20| it has been shown that irreducible (anti-)unitary representations (U, H) of
G which are of positive energy in the sense that —ioU(y) > 0 for y € C, lead to G-covariant nets
(Vo) of real subspace of H, indexed by open subsets O C M. If O # (, then Vo is generating, and
it is standard if O is not “too big”. In particular, the open subset O = exp(C?r)P C M corresponds
to a standard subspace with the Bisognano—Wichmann property for which the modular group is
represented by the one-parameter group (exptz)ier of G (see [NO20, §5.2]).

4.4 The SLy-problem, symmetry extension

In Section we have seen that the existence of orthogonal Euler wedges corresponds to the
existence of an sly-subalgebra containing both Euler elements. In this section we will discuss when
we can extend a covariant net of standard subspaces (W4, N, U) of Euler wedges satisfying (HK1)-
(HK5) to a G-covariant net.

We first look at the (anti-)unitary extensions of unitary representations of éig(R). In sl (R),
we consider the two Euler elements

1/1 0 1/0 1

Let (U,H) be a unitary representation of the group G := é\]ZQ(R) and consider the two selfadjoint
operators
H:= —-27ioU(h) and K :=—2midU(k).

Theorem 4.24. Every continuous unitary representation of é\]ZQ(R) extends to an (anti-)unitary
representation of the group ~ ~
GL2(R) := SLy(R) x {1, 7},

where T¢ is the involutive automorphism of é\ﬂg (R) induced by the Lie algebra automorphism

7-(c d

corresponding to the Fuler element h.
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In [GL95| [Lo08] this theorem was proved for SLy(R)-representations of the principal and discrete
series. Here the argument does not depend on the family of the representation.

Proof. Since §f,2 (R) is a type I group, every unitary representation has a unique direct integral
decomposition into irreducible unitary representations. This reduces the problem to the irreducible
case. We have to show that U o 7¢ = U* (the dual representation). Let

w = [h,k]_%G ‘01>.

Then h, k,u is a basis of sl(R) and
w:=h?+k* —u? €U(sla(R))
is a Casimir element, so that
OU(w)=cl for some ceR.

The antilinear extension 7 of 7 to slz(R) satisfies 7(iu) = su and the operator iU (u) is selfadjoint
and diagonalizable. We have
U (u) = —0U (u) = U (1(u)),

so that U* o7¢ is an irreducible with the same u-weights and the same Casimir eigenvalue c. Below
we argue that U is uniquely determined by any pair (u,c), where p is an eigenvalue of iQU (u)
occurring in the representation ([Sa67], [Lo08]), and this implies that U o ¢ = U*.

To see that U is determined by the pair (u,c), we first recall that H decomposes into one-
dimensional eigenspaces of iOU (u) and, by irreducibility, it is generated by any eigenvector ¢, of
eigenvalue p. Let U(g) denote the complex enveloping algebra of g. Then V, := U(g)¢, is a
dense subspace consisting of analytic vectors, so that the representation U is determined by the
g-representation on this space. In U(g) the centralizer C, of u is generated by u and the Casimir
element. Therefore ¢, is a C,-eigenvector and the corresponding homomorphism x: C, — C is
determined by x(u) = p and x(w) = ¢. It is now easy to verify that these two values determine the
U(g)-module structure on V,,, hence the unitary representation U. O

Remark 4.25. Here the determination of the representation is obtained by considering in the
enveloping algebra U (sly(R)), the centralizer subalgebra Clw, u| of u. Any cyclic weight vector &, .
defines a character x of this subalgebra by x(iu) = p and x(w) = ¢, and U(g)¢,,. is isomorphic to
the quotient of U(g) by the left module generated by pl — iu and w — cl.

Now, we consider the positive selfadjoint operator

Ay = e~ H = 2mi0U(R)

By Theorem .24 U extends to an (anti-)unitary representation of GL, (R), and we put
Ji=Ulrg), S:=JAY?=Je™0UM  and V= Fix(S).

Lemma 4.26. For a unitary operator T € U(H), the following assertions are equivalent:

(a) STS C T holds on a dense subspace.

(b) T=V NV is standard.

43



If these conditions are satisfied, then (a) holds on T~V NV.

Proof. If (b) holds, then any £ € T~V NV satisfies ST S¢ = STE = T¢, so that (a) holds.
Conversely, assume that
D:={£eD(S): STS,=T¢}

is dense in H. For any £ € D we then have T¢ € R(S) = D(S) and
STS(S¢) = STE = S(STSE) = T(S¢),

so that D is S-invariant. This implies that D = (D NV) 4+ (D N V), so that D NV is standard. For
£ €V, we have T¢ € V if and only if £ € D, so that DNV = T~V = V. This proves the lemma. O

Proposition 4.27. The following assertions are equivalent:
(a) A;l/2e”KA,1L/2 C e K holds for every t € R on a dense subspace of H.
(b) SetK S C K holds for everyt € R on a dense subspace of H.
(c) e BV NV is standard for every t € R.
If these conditions are satisfied, then (a) holds on J(e “5vVNV) and (b) on e~ KV V.
Proof. (a) < (b): From 7(k) = —F it follows that
JU (exptk)J = U(rg(exptk)) = Ul(exp(—tk)),

so that conjugating with J translates (a) into (b).
(b) < (c) follows from Lemma .26 O

From [GLI95, Thm. 1.1, Cor. 1.3(c)] one can deduce that the equivalent conditions in Proposi-
tion are satisfied for principal series representations and lowest and highest weight representa-
tions, but it is not known for complementary series representations.

The following theorem shows that an isotone, central twisted local GT-covariant net of standard
subspaces satisfying the BW property extends is actually G-covariant. The argument needs the
density property described in Proposition for SLy(R). The extension is done by (HKS8).The
proof generalizes the argument in [GLI5].

Theorem 4.28. (Extension Theorem) Let G = GT x {id,o} be a graded Lie group, where o is
an Euler involution. Let (U,H) be a unitary C-positive representation of GT, Wy C Gr(G) be a
GT-orbit, and (W ,N,U) be a net of standard subspaces satisfying (HK1-4) and the BW property
(HK5). If h1,...,hn, n > 2, is a pairwise orthogonal family of Fuler elements generating the
Lie algebra g, and the conditions in Proposition 27 hold for the representations of the connected
subgroups corresponding to the sly-subalgebras generated by hi and h; for j =2,...,n, then U ex-
tends to an (anti-)unitary representation of G such that G-covariance (HK7) and modular reflection

(HKS) hold.

Proof. Let W4, N, U) be a net of standard subspaces satisfying (HK1-5). The Bisognano-Wichmann
property (HK5) implies Central Haag Duality (HK6) by Proposition Let H; := —i0U(h;)
be the selfadjoint generators of the unitary one-parameter group corresponding to h;. By Corol-
lary B.14) every pair (h1, hj) generates a subalgebra isomorphic to sl (R) and the generators H; and
H; integrate to a representation of §i:2 (R). Consider the Euler wedges Wi, W; € W, associated to
hi and hj, respectively.
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We claim that Proposition implies that U(op,) := Jnw,) associated to the standard sub-

space N(W7) extends the ﬁQ(R)—representation to an (anti-) unitary representation of PGL, (R).
Indeed, by Proposition E27(b) we have that

Alzll/QeitHj A]II{Z c JN(Wl)eitHj INGY) (4.14)
on the dense domain Jyw,)(e” VN V) with V = FiX(JN(Wl)Ah/(QWI)) = N(W), cf. condition (c)
in Proposition On the previous domain we then have

AR AR C Ulon,)e U (on,).
With Proposition 27(a) we can now conclude that
Ulon,)e™iU(op,) =e ™ for teR (4.15)

because both sides are bounded operators which coincide on a dense subspace. Since the Lie algebra
g is generated by hq,..., hy,, we obtain

U(op,)U(g)U(op,) = U(on,gop,) forall ge€ G'. (4.16)

In particular, U defines an (anti-)unitary representation of G. Pick o € Z(G")~ such that (HK4) is
satisfied and consider the twisted representation of G defined by U (on, ) := Zadnw,y) = ZaU(on,).
Since N coincides with the restriction to Wy of the BGL net of the (anti-)unitary representation U
of G, the representation U® satisfies (HK7) and (HKS8) by Proposition TGl O

Note that the density property as well as the existence of orthogonal wedges are sufficient
but not necessary to have a G-covariant action: Consider the BGL net associated to the unique
irreducible positive energy representation U of the G = Aff(R) on the real line. Then the standard
subspaces Ny (a,o00) and Ny (—oo,b) are associated to positive and negative half-lines and satisfy
(HK1)-(HK5). There are no-orthogonal wedges in this case but the extension to an (anti-)unitary
representation of G is given by

U(Uw) = JNU(W)'

We further remarks that in this case oy does not preserve the wedge family W, .
For the Poincaré group, with the identification of wedge regions and Euler elements (see (2:28)),
the axial wedges
Wi ={(t,z) e R t| <}, j=1,....d,

define a family of orthogonal wedge regions, namely wedge regions associated to orthogonal Euler
elements. Considering wedges as subsets of Minkowski spaces one can define further regions by
wedge intersection. Spacelike cones are particularly important: they are defined, up to translations
by finite intersection of wedges obtained by Lorentz transforms of W;. Analogously one can define,
by intersecting wedge subspaces, subspace associated to any spacelike cone. In principle this can
also be trivial, but if they are standard, the cyclicity assumption of E.27(c) is ensured, cf. [GL95].

Consider G = M&b x {id, 7}. Let W4, U,N) be a net of standard subspaces satisfying (HK1)-
(HK5). Let fD C R be an interval with q(fD) = I5 where the latter is the right semicircle with
endpoints (—i,7) C S'. Then the dilation generators 6n and - define orthogonal Euler elements
generating M&b. Considering the wedges Wn = (2, 0n) and W = (25, 05) with Wr = p(7/2)W-,
the intersection is again a wedge interval I=1n ﬂfD. In particular, by isotony, N(fm)ﬁN(fD) D N(f)
is standard and condition (c) in Proposition .27 holds.
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A Toolbox

Proposition A.1. ([NO17, Thm. 2.11(a)]) If (U,H) is a unitary representation of GT, then any
two (anti-)unitary extensions (ﬁj,H), i=1,2, of U to G are unitarily equivalent, i.e., there exists
I e UG with

Poli(g) =Us(g)oT  for geG.

Lemma A.2. Let M C B(H) be a von Neumann algebra and J € Conj(H) such that JMJ = M.

Then the exponential function of the Banach symmetric space
UM)'~ :={U e UM): JUJ =U""}

is surjective, i.e., for every U € U(M)”?~ there exists an element X = —X* € M with JXJ = - X
such that U = eX.

Proof. We consider the antilinear automorphism
aM—->M, oM):=JMJ

of the von Neumann algebra M. Let N/ C M be the abelian von Neumann algebra generated by
a fixed element U € U(M)7~. Then a(U) = U=t = U* implies that a(N) = N with a(A4) = A*
for every A € N. Any spectral resolution of U in N and any bounded measurable function
f: T — iR with ef = idy yields an element X := f(U) € N with X* = —X and X = U. Then
JXJ=a(X)=X*=—X. O

The following lemma is [NO17, Lemma A.1]:

Lemma A.3. Let M CH be a von Neumann algebra, a: M — M a real-linear weakly continuous
automorphism and U € U(M) be a unitary element. Then the following assertions hold:

(a) If a is complex linear and a(U) = U, then there exists a V. € UM) with a(V) =V and
Vi=1U.

(b) If o is complez linear and a(U) = U~" with ker(U + 1) = {0}, then there exists a V € U(M)
with a(V) =V~ and V2 =U.

(c) If a is antilinear and o(U) = U~!, then there exists a V. € U(M) with o(V) = V=1 and
VZ=U.

(d) If « is antilinear and a(U) = U with ker(U + 1) = {0}, then there exists a V € U(M) with
a(V)=V and V?=U.
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