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Abstract

Rindler wedges are fundamental localization regions in AQFT. They are determined by the
one-parameter group of boost symmetries fixing the wedge. The algebraic canonical construc-
tion of the free field provided by Brunetti-Guido-Longo (BGL) arises from the wedge-boost
identification, the BW property and the PCT Theorem.

In this paper we generalize this picture in the following way. Firstly, given a Z2-graded Lie
group we define a (twisted-)local poset of abstract wedge regions. We classify (semisimple) Lie
algebras supporting abstract wedges and study special wedge configurations. This allows us
to exhibit an analog of the Haag-Kastler one-particle net axioms for such general Lie groups
without referring to any specific spacetime. This set of axioms supports a first quantization net
obtained by generalizing the BGL construction. The construction is possible for a large family
of Lie groups and provides several new models. We further comment on orthogonal wedges and
extension of symmetries.
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1 Introduction

Quantum Field Theory (QFT) lives in a tension between the locality principle and the underlying
group of symmetries characterizing the theory. On one hand, it is a physical principle that every
interesting quantity of a theory should be deducible by local measurements, namely—in the language
of Algebraic Quantum Field Theory (AQFT)—by the structure of the local algebras (see e.g. [Ha96]).
On the other hand, the symmetries of a theory provide a feature to describe physical objects, a
“key to nature’s secrets,” as it happens in the standard model [We05, We11].

In AQFT, models are specified by a net of von Neumann algebras associated to causally com-
plete spacetime regions satisfying fundamental quantum and relativistic principles, such as isotony,
locality, covariance, positivity of the energy, and existence of a vacuum state. An important bridge
between the geometry and the algebraic structure is the Bisognano–Wichmann (BW) property of
(A)QFT claiming that the modular group of the algebra associated to any Rindler wedge W inside
Minkowski spacetime with respect to the vacuum state implements unitarily the covariant one-
parameter group of boosts fixing the wedge W . As a consequence, the algebraic structure of the
model, through the Tomita–Takesaki theory, contains the information about the symmetry group
acting on the model. Starting with the BW property, one can enlarge the symmetry group of a
QFT [GLW98, MT18], find new relations among field theories [GLW98, LMPR19, MR20], establish
proper relations among spin and statistics [GL95], and compute entropy in QFT [LX18, Wi18]. For
recent results on this property we refer to [Gu19, DM20].

Particles are field-derived concepts that can be described as unitary positive energy representa-
tions of the symmetry group. They are building blocks to construct Quantum Field Theories. The
operator-valued distribution ΦU defining the free field associated to any particle U is not provided by
a canonical construction, see e.g. [BGL02, LMR16]. On the other hand, the von Neumann algebra
net generated by ΦU satisfies the Bisognano–Wichmann property and the PCT Theorem1. These
properties provide the tools for a canonical construction of the free algebra net [BGL02]: Segal’s
second quantization gives the vacuum representation of the Weyl algebra on the Fock space asso-
ciated with the one-particle Hilbert space. The Araki lattice of von Neumann algebras is uniquely
determined by the local one-particle structure encoded in the lattice of closed real subspaces, the
first quantization [Ar63]. As a result of the Tomita–Takesaki modular theory for real subspaces, the
set of real states for a particle U localized in a wedge region is uniquely determined by the couple
(e−2πKW , U(jW )) where U(jW ) is the antiunitary implementation of the wedge reflection and KW

is the generator of the one-parameter group of boosts associated to the wedge W . They satisfy
the Tomita relation U(jW )e2πKW U(jW ) = e−2πKW . The one-particle states and the local algebra

1The spacetime reflection j1(t, x1, . . . , xn) = (−t,−x1, . . . , xn) is implemented by the modular conjugation corre-
sponding to the standard right wedge W1.
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associated to bounded causally complete regions are obtained by wedge state spaces and algebra
intersection, respectively.

Conversely, every pair (x, σ), consisting of an element of the Poincaré–Lie algebra and an in-
volution σ satisfying Ad(σ)x = x specifies for every (anti-)unitary representation (U,H) of the
Poincaré group a pair (∆, J) = (e2πi∂U(x), U(σ)) that in turn defines a standard subspace V ⊆ H.
This construction, called the BGL construction, was introduced in [BGL02] and allows us to ob-
serve: The algebraic construction of the free fields is uniquely determined by its symmetries and the
correspondence between spacetime regions and their relative position with symmetries. In this sense,
due to the one-to-one correspondence between boosts and the corresponding wedges, one should be
able to specify the underlying symmetry structure of a quantum field theory without any reference
to the spacetime. Then one can reconstruct the spacetime features, such as locality and region
inclusions from the symmetry group.

With this claim in mind, we generalize the above picture as follows. Given a suitable Lie
group G, we first define an abstract wedge space. We then endow the wedge space with a G-action,
a notion of causal complement and an order structure. Eventually, starting from an (anti-)unitary
representation of a graded Lie group G, we construct the analogue of the BGL one-particle net by
the abstract setting.

We now collect the motivation and additional explanations of the fundamental structure we will
use. In order to obtain a one-particle net by the Tomita–Takesaki theory we need to start with a
graded Lie group G = G↑⋊Z2, such as the improper Möbius group PGL2(R) or the proper Poincaré
group P+. For the moment, we assume that Z(G↑) = {e} and that G↑ is connected.

The key features of our approach are the following:
• Abstract boost generator. The abstract one-parameter group of boosts are generated by elements
x in the Lie algebra g of G defining a three grading g = g1 ⊕ g0 ⊕ g−1 in the adjoint representation
by gj = ker(adx− j idg). To see how this complies with the well known models, see Examples 2.10.
We call such elements x ∈ g Euler elements because they corresponds to the linear Euler vector
field on the open embedding g1 →֒ G/P, x 7→ exp(x)P, where P ⊆ G is the connected subgroup
corresponding to the Lie algebra g0 + g−1. For more on the underlying geometry of theses spaces,
we refer to [BN04].

• The wedge reflection is obtained by analytic continuation of the one-parameter group of boosts
associated to the wedge at iπ. For instance, on Minkowski space, the wedge reflection j1 = Λ1(iπ)
is obtained by analytic extension of the one-parameter group of boosts in the first direction Λ1(t) =
exp(σ1t) where (σi)i=1,2,3 are the Pauli matrices. In our general setting, the reflection σ, called
Euler involution, associated to an Euler element x is determined by the analytic continuation of
the one-parameter group in the adjoint representation of the Lie algebra via Ad(σ) = eπi ad x (see
(2.10)).

• Euler wedge. An Euler wedge is defined as a couple W = (xW , σW ) of an Euler element and
the related Euler involution. The need to use the couple is to implement the G-action on the wedge
space (see (2.6)) and to establish the relation with the standard subspaces V and the corresponding
modular objects (∆V, JV). We further remark that, in principle, it is not necessary to assume that
the involution σW satisfies

Ad(σW ) = eπi ad xW

in the adjoint representation, but only satisfying the proper commutation relation Ad(σW )xW =
xW , cf. Proposition 2.1.

• G↑-covariance. There is an action of the group G on the wedge space given by an adjoint
action on both components that takes care of the grading (see (2.8)). In this way the language of
Euler wedges is consistent with the one of the standard subspaces, cf. Section 2.
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• Locality. Complementary wedges correspond to inverted one-parameter groups of boosts.
For instance dilations associated to causally complementary intervals in chiral theory or boosts
associated to complementary wedges are inverse to each other. On the abstract wedge space this is
captured by defining the complementary wedge of W = (x, σ) by W ′ = (−x, σ).

• Isotony. By the existence of a (positive) invariant cone C in the Lie algebra g, it is possible
to define a wedge endomorphism semigroup defining the wedge inclusion relation. Given an Euler
wedge W = (x, σ), the generators in the positive cone lying in the subspaces g±1 define proper
wedge inclusions as each of them generates with x a translation-dilation group (isomorphic to the
affine group of the real line); see [Bo92, Wi92, Wi93] and in particular [Bo00]. This is the case of
wedge endomorphisms in Minkowski spacetime given by lightlike shifting or Möbius transformations
mapping an interval into itself as the translations do for the half-lines. These properties define a
local partially ordered set of wedges that can support key features of an AQFT structure.

It is important to note that the wedge space only depends on the Lie group and its Lie
algebra, and the order structure on the invariant cone C ⊆ g. The relations among the wedges
specify the abstract spacetime structure to a large extent. For example, PSL2(R) is the symmetry
group for the 2-dimensional de Sitter spacetime and for the chiral circle. If one considers PSL2(R)
with the trivial cone in sl2(R)—no proper inclusions of wedges—then it describes a QFT on de
Sitter spacetime; if one considers C ⊂ sl2(R) as in (2.17), inclusion relations among wedges arise,
and we obtain the wedge space on S1. 2 This correspondence between isotony and and positivity of
the energy was also studied in [GL03]; see also [Bo92, Bo00, Wi92, Wi93] and [NÓ17, Ne19, Ne19b].
For recent classification results for the triples (g, x, C), we refer to [Oeh20, Oeh20b].

There is more interesting structure on the abstract wedge space:
• Orthogonal wedges : We call two abstract wedges W1 = (x1, σ1) and W2 = (x2, σ2) orthogonal

if σ1(x2) = −x2, i.e., W2 is reflected into its complement W ′
2. Examples of orthogonal wedges are

coordinate wedges on Minkowski spacetime3, or the upper and the right half-circle in chiral theories
on S1. This notion, which immediately generalizes to the abstract setting, plays a central role in
spin-statistics relations [GL95] and the nuclearity property in conformal field theory [BDL07].

• Symmetric wedges. A wedgeW is called symmetric if there exists g ∈ G↑, such that g.W = W ′.
For instance, any couple of wedge regions, in 1+s-dimensional Minkowski spacetime with s ≥ 2, are
transformed one into the other by the action of the Poincaré group G↑ = P↑

+. On the other hand,
in 1 + 1-dimensional Minkowski space, the right and the left wedges are not symmetric. Indeed

WR = {(t, x) ∈ R1+1 : |t| < x} and WL = {(t, x) ∈ R1+1 : |t| < −x}

belong to disjoint transitive families with respect to the P↑
+-action. Further examples of symmetric

wedges are intervals in conformal theories on the circle. Half-lines in the real line are not symmetric
wedges with respect to the translation-dilation group. A transitive family of wedges has the feature
that algebras associated to complementary wedges are - by covariance - unitary equivalent. On
the other side, there is no contradiction in having a G↑-covariant net of von Neumann algebras
on a transitive family of non-symmetric wedges with trivial algebras associated to the family of
complements.

In the first part of the paper we define and investigate the abstract structure we have described.
When the center Z(G↑) is non trivial, for instances when covering groups are considered, a gen-
eralized notion of complementary wedges has to be introduced. Indeed, while Euler elements are
uniquely determined as generators of one-parameter groups in G↑, several involutions σ satisfying

2In [GL03] it is used that the 2-dimensional de Sitter space dS2 ∼= SO1,2(R)↑/SO1,1(R)↑ has the same abstract
wedge space as the circle SO1,2(R)/P to set up a dS /CFT correspondence.

3For instance Wi and Wj for i 6= j, where Wi = {(t, x) ∈ R1+s : |t| < xi}
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Ad(σ) = eπi ad x can be associated to the same Euler element x. In an analogous way, different
wedge complements can be labeled by central elements. We classify wedge orbits and define a
notion of a central wedge complement. Furthermore, if W ′ does not belong to the G↑-orbit of W ,
a new action of G on the wedge space is defined. This happens for instance in fermionic nets.

Having specified the abstract structures, we are prepared to answer the following question:
“Which Lie algebras/groups support such a structure?” To this end, we first classify Euler elements
in real simple Lie algebras in Theorem 3.10. The key point of this classification is that Euler elements
are conjugate under inner automorphisms to elements in any given Cartan subspace of hyperbolic
elements. Here the restriction to simple Lie algebras is not restrictive because any symmetric Euler
element is contained in a semi-simple Lie subalgebra. Furthermore, an Euler element is symmetric
if and only if it is contained in an sl2(R)-subalgebra (see Theorem 3.13 for these results). As a
consequence, there is a large family of real Lie algebras supporting such wedge structures which
properly contains the well known models. Note that, for a Lie algebra g containing an Euler element
x ∈ g, there always exists a graded Lie group G with Lie algebra g and a corresponding Euler wedge
(x, σ).

The second part of the paper is devoted to nets of standard subspaces.
Is it possible to construct one-particle models supporting this abstract setting? Starting with a G↑-
orbit W+ in the wedge space, we describe a set of axioms which, for the well known models, reflect
fundamental quantum and relativistic principles corresponding to the one-particle Haag–Kastler
axioms. This set of axioms is fulfilled by extending the BGL construction to every graded Lie
group G, supporting a suitable wedge space. A twisted locality relation among complementary
wedges is introduced in order to relate central complementary wedges.

Do we get any new models out of this general construction? The answer is affirmative. All
the simple Lie algebras whose restricted root system appears in Theorem 3.10 correspond to a
graded Lie group with a non-trivial wedge space. There are for instance Lie algebras of type E7

that do not correspond to any known models. In this context the Jordan spacetimes of Günaydin
[Gu93, Gu00, Gu01] and the simple spacetime manifolds in the sense of Mack–de Riese [MdR07]
are homogeneous spaces of simple hermitian Lie groups whose Lie algebras contain Euler elements,
and the corresponding abstract wedges correspond to domains in these causal manifolds. These Lie
groups have many (anti-)unitary representations, some of them with positive energy with respect to
a non-trivial invariant cone C in the Lie algebra. As a consequence, they support many one-particle
nets [NÓ20] and second quantization models of von Neumann algebras whose physical meaning has
to be investigated.

The structure of this paper is as follows: In Section 2 the wedge space is defined and its properties
are studied. A number of examples are discussed in detail to show how the abstract setting applies to
the known models and realizes the well known structure. In Section 3 we study the Euler elements
in Lie algebras. We relate orthogonal and symmetric wedges and provide a classification of Lie
algebras supporting (symmetric) Euler elements. In Section 4 we apply this structure to define
and construct one-particle nets associated to graded Lie groups supporting a wedge structure. We
further stress new models, orthogonal wedges and extension of symmetries. We hope this paper
is approachable for the Lie Theory community as well as the Algebraic Quantum Field Theory
community.
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2 The abstract setting

In this section we develop an abstract perspective on wedge domains in spacetimes, phrased com-
pletely in group theoretic terms. As wedge domains are supposed to correspond to standard sub-
spaces in Hilbert spaces, we orient our approach on how standard subspaces are parametrized.

Let Stand(H) denote the set of standard subspaces of the complex Hilbert space H. In Section 4
we shall see that every standard subspace V determines a pair (∆V, JV) of modular objects and

that V can be recovered from this pair by V = Fix(JV∆
1/2
V

). This observation can be used to
obtain a representation theoretic parametrization of Stand(H): each standard subspace V specifies
a continuous homomorphism

U V : R× → AU(H) by U V(et) := ∆
−it/2π
V

, U V(−1) := JV. (2.1)

We thus obtain a bijection between Stand(H) and the set Homgr(R
×,AU(H)) of continuous mor-

phisms of graded topological groups.
The space Stand(H) carries three important features:

• an order structure, defined by set inclusion

• a duality operation V 7→ V′ = {ξ ∈ H : (∀v ∈ V) Im〈ξ, v〉 = 0}

• the action of AU(H) as a symmetry group.

The order structure is hard to express in terms of the modular groups (see [Ne19b] for some first
steps in this direction), but the duality operation corresponds to inversion

U V
′

(r) = U V(r−1) for r ∈ R×, (2.2)

and the action of AU(H) translates into

UgV(r) = gU V(rε(g))g−1 for g ∈ AU(H), r ∈ R×, (2.3)

where ε(g) = 1 if g is unitary and ε(g) = −1 otherwise. So unitary operators g ∈ U(H) simply act
by conjugation, but antiunitary operators also involve inversion. In particular, JVV = V′ corresponds
to

U V
′

(r) = JVU
V(r−1)JV = U V(r−1) for r ∈ R×.

We now develop the corresponding structures by replacing AU(H) by a finite dimensional graded
Lie group.

2.1 Group theoretical setting

The basic ingredient of our approach is a finite dimensional graded Lie group (G, εG), i.e., G is a
Lie group and εG : G → {±1} a continuous homomorphism. We write

G↑ = ε−1
G (1) and G↓ = ε−1

G (−1),

6



so that G↑ E G is a normal subgroup of index 2 and G↓ = G \ G↑. We also fix a pointed closed
convex cone C ⊆ g satisfying

Ad(g)C = εG(g)C for g ∈ G. (2.4)

As we shall see in the following, for graded Lie groups, it is more natural to work with the twisted
adjoint action

Adε : G → Aut(g), Adε(g) := εG(g)Ad(g), (2.5)

so that (2.4) actually means that C is invariant under the twisted adjoint action. The cone C will
play a role in specifying an order structure. It is related to positive spectrum conditions on the
level of unitary representations. We also allow C = {0}. For instance, the Lie algebra g = so1,d(R)

of the Lorentz group G = O1,d(R), the isometry group of de Sitter space time dSd, contains no
non-trivial invariant cone.

2.2 The space Homgr(R
×, G) and abstract wedges

In this section we define the fundamental objects we will need in the forthcoming discussion. We
write Homgr(R

×, G) for the space of continuous morphisms of graded Lie groups R× → G, where
R× is endowed with its canonical grading by ε(r) := sgn(r). On this space G acts by

(g.γ)(r) := gγ(rεG(g))g−1, (2.6)

where the twist is motivated by formula (2.2). Elements of G↑ simply act by conjugation.
Since we are dealing with Lie groups, we also have the following simpler description of the space

Homgr(R
×, G) by the set

G := {(x, σ) ∈ g×G↓ : σ2 = e,Ad(σ)x = x}.

Proposition 2.1. The map

Ψ: Homgr(R
×, G) → G, γ 7→ (γ′(0), γ(−1)) (2.7)

is a bijection. It is equivariant with respect to the action of G on G by

g.(x, σ) := (Adε(g)x, gσg−1). (2.8)

Note that center Z(G↑) of G↑ acts trivially on the Lie algebra but it may act non-trivially on
involutions in G↓.

Remark 2.2. For every involution σ ∈ G↓, the involutive automorphism σG(g) := σgσ defines
the structure of a symmetric Lie group (G↑, σG), and G ∼= G↑ ⋊ {id, σ}, so that we can translate
between G as a graded Lie group and the pair (G↑, σG), without loosing information.

To indicate the analogy of elements of G with the wedge domains in QFT, we shall often denote
the elements of G by W = (x, σ).

Definition 2.3. (a) We assign to W = (x, σ) ∈ G the one-parameter group

λW : R → G↑ by λW (t) := exp(tx) (2.9)

Then we have the graded homomorphism

γW : R× → G, γW (et) := λW (t), γW (−1) := σ.

Note that Ψ(γW ) = W in terms of (2.7).

7



Definition 2.4. (a) We call an element x of the finite dimensional real Lie algebra g an Euler
element if adx is diagonalizable with Spec(adx) ⊆ {−1, 0, 1}, so that the eigenspace decomposition
with respect to adx defines a 3-grading of g:

g = g1(x)⊕ g0(x) ⊕ g−1(x), where gν(x) = ker(adx− ν idg)

(see [BN04] for more details on Euler elements in more general Lie algebras). Then σx(yj) = (−1)jyj
for yj ∈ gj(x) defines an involutive automorphism of g.

For an Euler element we write Ox = Inn(g)x ⊆ g for the orbit of x under the group Inn(g) =
〈ead g〉 of inner automorphisms.4 We say that x is symmetric if −x ∈ Ox.

We write E(g) for the set of non-zero Euler elements in g and Esym(g) ⊆ E(g) for the subset of
symmetric Euler elements.
(b) An element (x, σ) ∈ G is called an Euler couple or Euler wedge if

Ad(σ) = eπi ad x. (2.10)

Then σ is called an Euler involution. We write GE ⊆ G for the subset of Euler couples and note
that the relation eπi ad x = e−πi ad x implies that the subset GE is invariant under the G-action.

For an Euler element x ∈ E(g), the relation (2.10) only determines σ up to an element z ∈
G↑∩ker(Ad) for which (σz)2 = e, i.e., σzσ = z−1. Note that, if G↑ is connected, then G↑∩ker(Ad) =
Z(G↑) is the center of G↑. The couples (x, σ) that we have seen in the physics literature are all
Euler couples (cf. [NÓ17, Ex. 5.15]). This ensures many properties, such as the proper relation
between spin and statistics, see for instance [GL95].

Definition 2.5. (a) (Duality operation) For W = (x, σ) ∈ G, we define W ′ := (−x, σ). Under Ψ,
this operation corresponds to inverting the homomorphism R× → G pointwise. Note that (W ′)′ =
W and (gW )′ = gW ′ for g ∈ G by (2.8).
(b) (Order structure on G) We now define an order structure on G that depends on the invariant
cone C from (2.4). We associate to W = (x, σ) ∈ G

• the Lie wedge
LW := L(x, σ) := C+(W )⊕ (gσ ∩ ker(adx))︸ ︷︷ ︸

gW :=

⊕C−(W ),

where

C±(W ) = ±C ∩ g−σ ∩ ker(adx∓ 1) and g±σ := {y ∈ g : Ad(σ)(y) = ±y}.

• g(W ) := LW − LW , the Lie algebra generated by LW .

• the semigroup associated to the triple (C, x, σ):

SW := exp(C+(W ))G↑
W exp(C−(W )) = G↑

W exp
(
C+(W ) + C−(W )

)
,

where
G↑

W = {g ∈ G↑ : g.W = W} = {g ∈ G↑ : σG(g) = g,Ad(g)x = x}

is the stabilizer of W = (x, σ) in G↑ (cf. [Ne19b, Thm. 3.4]). 5

4For a Lie subalgebra s ⊆ g, we write Inng(s) = 〈ead s〉 ⊆ Aut(g) for the subgroup generated by ead s.
5In [Ne19b] it is shown that the different descriptions as a product of two sets (polar decomposition) and a product

of two abelian subsemigroups and a group yield the same set SW which actually is a subsemigroup.
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• the subgroups G↑(W ) := 〈exp g(W )〉G↑
W and G(W ) := G↑(W ){e, τ} with Lie algebra g(W ).

As the unit group of SW is given by SW ∩ S−1
W = G↑

W ([Ne19b, Thm. III.4]), the semigroup SW

defines a G↑-invariant partial order on the orbit G↑.W ⊆ G by

g1.W ≤ g2.W :⇐⇒ g−1
2 g1 ∈ SW . (2.11)

In particular, g.W ≤ W is equivalent to g ∈ SW .

We have the following relations among these objects:

Lemma 2.6. For every W = (xW , σW ) ∈ G, g ∈ G, and t ∈ R, the following assertions hold:

(i) λW (t)W = W,λW (t)W ′ = W ′ and σW .W = W ′.

(ii) σW ′ = σW and λW ′(t) = λW (−t).

(iii) σW commutes with λW (R).

(iv) LW ′ = −LW and SW ′ = S−1
W .

(v) C±(g.W ) = Ad(g)C±εG(g)(W ), Lg.W = Ad(g)LW , and Sg.W = gSW g−1.

(vi) For W1,W2 ∈ G, the relation W1 ≤ W2 in G implies g.W1 ≤ g.W2.

Proof. (i) For W = (x, σ) ∈ G, the first two relations follow from the fact that exp(Rx) commutes
with x and σ. The second follows from σW .W = σ.(x, σ) = (−Ad(σ)x, σ) = (−x, σ) = W ′.
(ii) is clear from the definition of W ′.
(iii) follows from (i).
(iv) follows from C±(W

′) = −C∓(W ).
(v) The assertion is clear for g ∈ G↑. For g ∈ G↓, we have gσ ∈ G↑, so that

C±(g.W ) = C±(gσ.W
′) = Ad(gσ)C±(W

′) = −Ad(gσ)C∓(W ) = Ad(g)C∓(W )

= Ad(g)C±εG(g)(W ).

This implies in particular that Lg.W = Ad(g)LW . From G↑
g.W = gG↑

W g−1, we thus obtain Sg.W =

gSW g−1.
(vi) If W1 ≤ W2, then W1 = s.W2 for s ∈ SW2

. Then g.W1 = gs.W2 = gsg−1.(g.W2) with
gsg−1 ∈ gSW2

g−1 = Sg.W2
implies g.W1 ≤ g.W2.

In this discussion we started with a Lie group. We remark that one can also start with a Lie
algebra as follows: Consider a quadruple (g, σg, h, C) of a Lie algebra g, an involutive automorphism
σg of g, and a pointed closed convex invariant cone C ⊆ g with σg(C) = −C. Then σg integrates
to an automorphism σG of the 1-connected Lie group G↑ with Lie algebra g, so that we obtain all
the data required above with G := G↑ ⋊ {idG, σG}.

For two such quadruples (gj , τg,j , hj, Cj)j=1,2, a homomorphism ϕ : g1 → g2 of Lie algebras is
compatible with this structure if

ϕ ◦ τg,1 = τg,2 ◦ ϕ, ϕ(h1) = h2 and ϕ(C1) ⊆ C2.

We thus obtain a category whose objects are the quadruples (g, τg, h, C) and its morphisms are the
compatible homomorphisms.

A similar category can be defined on the group level, but there are some subtle ambiguities
concerning the possible extensions of the group structure from G↑ to G.

9



Remark 2.7. (Twisted extensions of G↑ to G) We start with a graded group G for which G↓

contains an involution σ, so that G ∼= G↓ ⋊ {e, σ}, where σ acts on G↑ by the automorphism
σG(g) := σgσ. This defines a split group extension

G↑ → G → Z2

and we are now asking for other group extensions

G↑ → Ĝ → Z2

for which the elements in Ĝ↓ define the same element in the group Out(G↑) = Aut(G↑)/ Inn(G↑)
of outer automorphisms of G↑. These extensions are parametrized by the group

Z(G↑)+ := {z ∈ Z(G↑) : σG(z) = z},

by assigning to z ∈ Z(G↑)+ the group structure on G↑ × {1,−1} given by

(g, 1)(g′, ε′) = (gg′, ε′), (e,−1)(g′, 1) = (σG(g
′),−1) and (e,−1)2 = (z, 1). (2.12)

We write Ĝz for the corresponding Lie group. Basically, this means that the element σ̂ := (e,−1)
has the same commutation relations with G↑ but its square is z instead of e:

σ̂gσ̂−1 = σG(g) for g ∈ G and σ̂2 = z. (2.13)

For two elements z, z′ ∈ Z(G↑)+, the corresponding extensions are equivalent if and only if

z−1z′ ∈ B := {wσG(w) : w ∈ Z(G↑)}. (2.14)

This follows from [HN12, Thm 18.1.13], combined with [HN12, Ex. 18.3.5(b)].
(a) For G = On(R), n > 3, and G↑ = SOn(R), the situation depends on the parity of n. If n is
odd, then Z(G↑) = {e} and no twists exist. If n is even, then Z(G↑) = {±1} = Z(G). Therefore

Z(G↑)+ = {±1} 6= B = {e}. We therefore have one twisted group Ĝ = SOn(R){e, σ̂}, where

σ ∈ On(R) corresponds to a hyperplane reflection, and σ̂2 = −1 in Ĝ.
(b) The same phenomenon occurs for Spin groups. Let G := Pinn(R) ∼= Spinn(R) ⋊ {e, σ}, where
σ corresponds to a hyperplane reflection. If n is odd, then Z(Spinn(R)) = {e, z} contains two
elements, and we have a twisted group

Ĝ = Spinn(R){e, σ̂} with σ̂2 = z

(cf. [HN12, Rem. B.3.25]). If n is even, then the situation is more complicated because the center
of Spinn(R) has order 4.

(c) For G = M̃öb ⋊ {e, σ}, where σ corresponds to a reflection σ(x) = −x on R∞ ∼= S1, we have
Z(G↑) ∼= Z and σG(z) = z−1 for z ∈ Z(G↑). Hence Z(G↑)+ = {e}, so that there are no twists.

(d) If G = Möb
(2n)

⋊ {e, σ}, where Möb
(2n) is the covering of Möb of even order, then Z(G↑) ∼= Z2n

and σG(z) = z−1 for z ∈ Z(G↑). Therefore Z(G↑)+ = {e, γ}, where γ is the unique non-trivial

involution in Z(G↑) and B = {e}. Hence there exists a non-trivial twist Ĝ = G↑{e, σ̂} with σ̂2 = γ.

(e) As we shall see in Example 2.13 below, it may happen that, for the twisted groups Ĝz , the coset

Ĝ↓
z contains no involutions. In this example G↑ = SL2(R) and G = G↑{e, γ} with γ2 = −1.

In general, elements in Ĝ↓
z are of the form gσ̂ with g ∈ G↑, and then

(gσ̂)2 = gσ̂gσ̂ = gσG(g)σ̂
2 = gσG(g)z. (2.15)
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Hence Ĝ↓
z contains an involution if and only if

z ∈ {σG(g)
−1g−1 : g ∈ G↑} = {gσG(g) : g ∈ G↑}.

If z = gσG(g) for some g ∈ G↑, then conjugating with g implies that g and σG(g) commute.
The discussion in Example 2.13 shows that (2.15) is not satisfied for z = −1 and the Euler

involution of G↑ = SL2(R). For any odd degree covering SL2(R)
(2k+1) → SL2(R), the central

involution is mapped onto −1, so that this observation carries over to odd coverings of SL2(R).

The situation changes if we consider G↑ = SL2(C) instead. Then g := i

(
1 0
0 −1

)
satisfies

g2 = −1, so that the group Ĝ = G↑{1, σ̂} with σ̂2 = −1 contains the non-trivial involution

gσ̂ ∈ Ĝ↓. As this involution is central, Ĝ ∼= Ĝ↑ × Z2 is a direct product.

2.3 The abstract wedge space, some fundamental examples

Definition 2.8. (The abstract wedge space) From here on, we always assume that G 6= ∅, i.e., that
G↓ contains an involution σ. Then

G ∼= G↑ ⋊ {id, σ}

(cf. Remark 2.2). For a fixed couple W0 = (h, σ) ∈ G, the orbits

W+(W0) := G↑.W0 ⊆ G and W(W0) := G.W0 ⊆ G

are called the positive and the full wedge space containing W0.

Remark 2.9. (a) As σ.W0 = (−h, σ) = W ′
0, we have W(W0) = W+(W0) ∪W+(W

′
0), and W(W0)

coincides with W+(W0) if and only if W ′
0 = (−h, σ) ∈ W+(W0). This is equivalent to the existence

of an element g ∈ G↑ with g.W0 = W ′
0, i.e., g ∈ (G↑)τ with Ad(g)h = −h.

(b) If W0 is an Euler couple, then W(W0) is a family of Euler couples, and we shall see below that
in this case we have W(W0) = W+(W0) in many important cases.

We collect some fundamental examples, starting from the low dimensional cases, that we shall
refer to throughout the paper.

Examples 2.10. (a) The smallest example is the abelian group G = R × {±1}, where G↑ = R,
C = {0} and L = g. For W0 = (h, σ) with h = 1 and σ = (0, 1), we then have the one-point set
W+ = {(h, σ)}, and W = {(h, σ), (−h, σ)}.

(b) The affine group G := Aff(R) ∼= R ⋊ R× of the real line is two-dimensional. Its elements
are denoted (b, a), and they act by (b, a)x = ax + b on the real line. The identity component
G↑ = R ⋊ R

×
+ acts by orientation preserving maps, and G↓ consists of reflections rp(x) = 2p − x,

p ∈ R.
Let ζ(t) = (t, 1) and δ(t) = (0, et) be the translation and dilation one-parameter groups, respectively.
We write λ = (0, 1) ∈ g = R ⋊ R for the infinitesimal generator of δ, which is an Euler element.
Therefore W := (λ, r0) is an Euler couple.

The cone C = R+ × {0} ⊆ g satisfies the invariance condition (2.4) and the corresponding
semigroup SW is

SW = [0,∞)⋊R×
+ = {g = (b, a) : g.0 = b ≥ 0} = {g ∈ G↑ : gR+ ⊆ R+}.

Therefore the map
W+(W ) ∋ g.(λ, r0) 7→ gW

11



defines an order preserving bijection between the abstract wedge space W+(W ) ⊆ G and the set
I+(R) = {(t,∞) : t ∈ R} of of lower bounded open intervals in R. Accordingly, we may write
W(t,∞) = (Λ(t,∞), rt) := ζ(t)W = (Ad(ζ(t))λ, rt) for t ∈ R. Acting with reflections, we also obtain
the couples

W(−∞,t) := (Λ(−∞,t), rt) = rt.W(t,∞) = (−Ad(ζ(t))λ, rt)

corresponding to past pointing half-lines (−∞, t) ⊂ R. We thus obtain a bijection between the full
wedge space W(W ) and the set I(R) of open semibounded intervals in R. We shall denote with δI
the one-parameter group of dilations with generator λI corresponding to the half line I.

The set E(g) = Ad(G↑){±λ} of non-zero Euler elements in g consists of two G↑-orbits and,
for each non-zero Euler element ±Ad(ζ(t))λ ∈ E(g), the reflection rt is the unique partner for
which (±Ad(ζ(t))λ, rt) ∈ G. Accordingly, Euler couples in G are in one-to-one correspondence with
semi-infinite open intervals in R.
(c) The Möbius group G := Möb2 := PGL2(R) ∼= GL2(R)/R

× acts on the compactification
R = R ∪ {∞} of the real line by

g.x :=
ax+ b

cx+ d
on R := R ∪ {∞}, for g =

(
a b
c d

)
∈ GL2(R).

We write G↑ = Möb ∼= PSL2(R) for the subgroup of orientation preserving maps. The Cayley
transform

C : R → S1 := {z ∈ C : |z| = 1}, C(x) :=
i− x

i+ x
, C(∞) := −1,

is a homeomorphism, identifying R with the circle. Its inverse is the stereographic map

C−1 : S1 → R, C−1(z) = i
1− z

1 + z
.

It maps the upper semicircle {z ∈ S1 : Im z > 0} to the positive half line (0,+∞). The Cayley
transform intertwines the action of Möb on R with the action of PSU1,1(C) = SU1,1(C)/{±1}, given
by (

α β

β α

)
.z :=

αz + β

βz + α
for z ∈ S1,

(
α β

β α

)
∈ SU1,1(C).

The three-dimensional Lie group Möb is generated by the following one-parameter subgroups:

• Rotations: ρ(θ)(x) = cos(θ/2)x+sin(θ/2)
− sin(θ/2)x+cos(θ/2) for θ ∈ R; note that C(ρ(θ)x) = eiθC(x).

• Dilations: δ(t)(x) = etx for t ∈ R.

• Translation: ζ(t)x = x+ t for t ∈ R.

In the circle picture δ and ζ will be denoted by δ∩ and ζ∩, referring to the upper semicircle with
endpoints {−1, 1} = C({0,∞}). Note that −1 is the unique fixed point of ζ∩ and one of the two
fixed points {±1} of δ∩. On the circle, ρ(π) maps 1 to −1 and exchanges the upper and the lower
semicircle. Accordingly, ζ∪ = ρ(π)ζρ(π) is the subgroup of conjugated translations fixing the point
1 ∈ S1.

We write K = ρ(R), A = δ(R), N+ = ζ(R) and N− = ζ∪(R) for the corresponding one-
dimensional subgroups of Möb, and P+ = AN+ = Möb∞, P− := AN− = Möb0 for the stabilizer
groups of ∞ and 0 in Möb. We observe that R ∼= Möb/P− and that the circle group K = PSO2(R)
acts simply transitively on R.
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On the compactified line, the point reflection τ(x) = −x in 0 acts on the Lie algebra by

Ad(τ)

(
a b
c −a

)
=

(
−1 0
0 1

)(
a b
c −a

)(
−1 0
0 1

)
=

(
a −b
−c −a

)
. (2.16)

Note that τ ∈ G↓.

The infinitesimal generator h :=

(
1
2 0
0 − 1

2

)
of δ is an Euler element and W := (h, τ) is an Euler

couple. Since Möb2
∼= PGL2(R) ∼= Aut(sl2(R)), for any Euler couple (x, τ), the involution τ is

determined by the requirement that it acts on g = sl2(R) by eπi ad x. We conclude that the action
of G↑ = Möb on the set of Euler couples is transitive, i.e., GE = G↑.(h, τ).

To see the geometric side of Euler couples, let us call a non-dense, non-empty open connected
subset I ⊆ S1 an interval and write I(S1) for the set of intervals in S1. It is easy to see that Möb

acts transitively on I(S1). To determine the stabilizer of an interval, we consider the upper half
circle, which corresponds to the half line (0,∞) ⊆ R. Each element g ∈ Möb mapping (0,∞) onto
itself fixes 0 and ∞. Since it is completely determined by the image of a third point, it is of the
form δ(t) if g.1 = et. Therefore the stabilizer of (0,∞) in Möb is the subgroup δ(R), which coincides
with the stabilizer of h under the adjoint action. This already shows that W+(W ) and I(S1) are
isomorphic homogeneous spaces of Möb. In particular, we can associate to an interval I = g(0,∞)
the reflection τI = gτg−1 and the one-parameter group δI := gδg−1. Note that τI is an orientation
reversing involution mapping I to the complementary open interval I ′. We write xI := Ad(g)h for
the infinitesimal generator of δI , so that the assignment I 7→ xI defines an equivariant bijection
I(S1) → E(g). The anticlockwise orientation of S1, which can also be considered as a causal
structure, is used here to pick the sign of xI in such a way that the flow δI is counter clockwise
(future pointing) on I. Accordingly, xI′ = −xI corresponds to the complementary interval I ′.

To identify the natural order on the abstract wedge space GE = W+(W ), we consider for

X =

(
a b
c −a

)
∈ g = sl2(R) the corresponding fundamental vector field

VX(x) =
d

dt

∣∣∣
t=0

exp(tX).x = (a− d)x+ b− cx2 = b + 2ax− cx2.

This shows that

C := {X ∈ g : VX ≥ 0} =
{
X =

(
a b
c −a

)
: b ≥ 0, c ≤ 0, a2 ≤ −bc

}
(2.17)

is a pointed generating invariant cone in g. The Lie wedge specified by the triple (h, τ, C) is

LW = L(h, τ, C) = R+

(
0 1
0 0

)

︸ ︷︷ ︸
C+

⊕Rh⊕ R+

(
0 0
−1 0

)

︸ ︷︷ ︸
C−

=
{(

a b
c −a

)
: a ∈ R, b ≥ 0, c ≤ 0

}
.

We further have G(W ) = G↑, and the associated semigroup is

SW = exp(C+) exp(Rh) exp(C−) = {g ∈ G↑ : g(0,∞) ⊆ (0,∞)}.

Therefore the map
GE = W+(W ) = W(W ) → I(S1), g.W 7→ g(0,∞) (2.18)
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defines an order preserving bijection between the abstract wedge space W(W ) and the ordered
set I(S1).

(d) We now consider the universal covering of the Möbius group Möb. Concretely, we put

G := M̃öb⋊ {1, τ̃}, where τ̃ acts on M̃öb by integrating Ad(τ) from (2.16) to an automorphism of

M̃öb. The group G is a graded Lie group and G↑ := M̃öb is its identity component. We have a

covering homomorphism qG : G → Möb2 whose kernel Z(M̃öb) ∼= Z is discrete cyclic. We write ρ̃,

δ̃, ζ̃ and ζ̃∪ for the canonical lifts of the one-parameter groups ρ, δ, ζ, ζ∪ of Möb, P̃+ := δ̃(R)ζ̃(R),

and P̃− := δ̃(R)ζ̃∪(R).

The action of Möb on S1 lifts canonically to an action of the connected group G↑ = M̃öb on the

universal covering S̃1 ∼= R, where we fix the covering map qS1 : R → R̃, defined by qS1(θ) = ρ̃(θ).0,

which corresponds to the map θ 7→ eiθ = C(ρ̃(θ).0) in the circle picture. We may thus identify S̃1

with the homogeneous space M̃öb/P̃− ∼= R. As conjugation with τ̃ on M̃öb preserves the subgroup

P̃−, it also acts on S̃1. From (2.16) it follows that it simply acts by the point reflection τ̃ .x = −x
in the base point 0. We also note that Z := ker(qG) = ρ̃(2πZ) is the group of deck transformations
of the covering qS1 , which acts by

ρ̃(2πn).x = x+ 2πn for n ∈ Z. (2.19)

We call a non-empty interval I ⊆ R admissible if its length is strictly smaller than 2π and write
I(R) for the set of admissible intervals. An interval I ⊆ R is admissible if and only if there exists an
interval I ∈ I(S1) such that I is a connected component of q−1

S1
(I). The group Z acts transitively

on the set of these connected components. As Möb acts transitively on I(S1), it follows that the

group M̃öb acts transitively on the set I(R), and that composition with qS1 yields an equivariant
covering map

I(R) ∼= M̃öb/δ̃(R) → I(S1) ∼= Möb/δ(R), I 7→ qS1(I). (2.20)

We further have:

• The group P̃+ = δ̃(R)ζ̃(R) fixes the points {(2k + 1)π : k ∈ Z}.

• For I ∈ I(S1), let δ̃I be the lift of the one-parameter group δI . Then δ̃I preserves every
interval in the preimage q−1

S1
(I).

• The inverse images of τ ∈ Möb2 in M̃öb2 are the elements τ̃n := ρ̃(2πn)τ̃ , n ∈ Z. These are
involutions, acting by

τ̃n(x) = 2πn− x for x ∈ R (2.21)

which is a point reflection in the point πn. All pairs (h, τ̃n) are Euler couples in G(M̃öb2),
and from the discussion of the set of Euler couples GE(Möb2) under (c), we know that the
involutions τ̃n exhaust all possibilities for supplementing h to an Euler couple.

There is an interesting difference to the situation for Möb2, where Möb acts transitively on

the set GE(Möb2) of Euler couples. To see what happens for M̃öb2, recall that the stabilizer
of the element (h, τ) ∈ GE(Möb2) in Möb is the subgroup δ(R). Its inverse image is the group

δ̃(R)ρ̃(2πZ) ∼= R× Z.
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An element g ∈ M̃öb fixes (h, τ̃n) if and only if Ad(g)h = h and gτ̃ng
−1 = τ̃n. The first

condition is equivalent to g being of the form

g = δ̃(t)ρ̃(2πk) for some t ∈ R, k ∈ Z.

The second condition is equivalent to τ̃ gτ̃ = τ̃ngτ̃n = g, which takes the form

δ̃(t)ρ̃(−2πk) = δ̃(t)ρ̃(2πk),

and this is equivalent to k = 0. We conclude that the stabilizer of (h, τ̃n) is

M̃öb(h,τ̃n) = δ̃(R). (2.22)

We also note that

ρ̃(πk).(h, τ̃n) = ((−1)kh, ρ̃(πk)τ̃nρ̃(−πk)) = ((−1)kh, ρ̃(2πk)τ̃n) = ((−1)kh, τ̃n+k).

We conclude that the group M̃öb does not act transitively on the set GE of Euler couples. It
has two orbits:

GE(M̃öb2) = G↑.W0∪̇G
↑.W1 = W+(W0)∪̇W+(W1) for W0 := (h, τ̃0),W1 := (h, τ̃1).

(2.23)
We also refer to Example 2.14 for a discussion of this issue from a different perspective.

• The subgroup δ̃(R) preserves every interval which is a non-trivial orbit of δ̃(R), acting on R.

If, conversely, g ∈ M̃öb preserves such an interval, then its image in Möb is contained in δ(R),
so that

g = δ̃(t)ρ̃(2πk) for some t ∈ R, k ∈ Z.

As every open orbit of δ̃(R) is an interval of length π, the element g can only preserve such an

orbit if k = 0. This shows that M̃öb(h,τ̃n) also is the stabilizer group of any open δ̃(R)-orbit
in R. We conclude that, for the Euler couple W0 = (h, τ̃0), the map

Φ: W+(W0) → I(R), g.(h, τ̃0) 7→ g(0, π) (2.24)

defines a G↑-equivariant bijection between the abstract wedge space W+(W0) ⊆ G and the set
I(R) of admissible intervals in R. Since the full group G acts on the space I(R) of intervals,
Φ can be used to transport this action to a G-action on the space W+(W0), extending the
action of the subgroup G↑. Since τ0(0, π) = (−π, 0) = ρ(−π)(0, π), we have

Φ−1(τ0(0, π)) = Φ−1(ρ(−π)(0, π)) = ρ(−π).Φ((0, π))−1 = (−h, ρ(−2π)τ0),

so that τ0.W0 := (−h, ρ(−2π)τ0). By G↑-equivariance of the map Φ, we conclude that the
action of G↓ on W+(W0) is given by

g ∗ρ(−2π) (x, σ) := (Adε(g), ρ(−2π)gσg−1) for every g ∈ G↓. (2.25)

Here we use that ρ̃(−2π) ∈ Z(G↑). Note that we have chosen (0, π) to be the image of W0

throught Φ. Further possible actions come from the identifications

Φn : W+(Wn) → I(R), g.(h, τ̃n) 7→ g(0, π) with Wn = (h, τn), (2.26)

and one can likewise see that

g ∗αn
(x, σ) := (Adε(g), αngσg

−1) for g ∈ G↓ and αn = ρ̃((2n− 1)2π) ∈ Z(G↑),

extends the action of G↑ on W+(Wn) to G and Φ = Φ0 for n = 0 (see also (2.37) and
Section 2.4.2 for this kind of action).
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(e) Let q : Möb
(n) → Möb be the n-fold covering group of Möb and ρ(n), δ(n), ζ(n) and ζ

(n)
∪ be the

lifts of the corresponding one-parameter groups of Möb. We further put P−,(n) := δ(n)(R)ζ
(n)
∪ (R),

so that we obtain an n-fold covering

qn : S
1
n := Möb

(n)/P−,(n) → S1 = Möb/P−, gP−,(n) 7→ q(g)P−

of the circle, and the action of the one-parameter group ρ(n) induces a diffeomorphism

R/2πnZ → S1n, [t] 7→ ρ(n)(t).0

The set of wedges can be described analogously to the case (d), but there is a difference depending
on the parity of n. If n is even, the group G↑ has two orbits in the set GE of Euler couples, but
if n is odd, there is only one. Indeed, for n = 2k, the element ρ(n)(2πk) acts as an involution on
S1n. So it fixes all Euler couples (h, τ̃n), even if it does NOT fix any proper interval in S1n (see also
Example 2.14).

(f) The example arising most prominently in physics is the proper Poincaré group

G := P+ := R1,d ⋊ SO1,d(R), G↑ := P↑
+ := R1,d ⋊ SO1,d(R)

↑.

It acts on 1 + d-dimensional Minkowski space R1,d as an isometry group of the Lorentzian metric
given by (x, y) = x0y0 − xy for x = (x0,x) ∈ R1,d. Writing

V+ := {(x0,x) ∈ R1,d : x0 > 0, x2
0 > x2}

for the open future light cone, the grading on G is specified by time reversal, i.e., gV+ = ε(x, g)V+.
In particular C := V+ is a pointed closed convex cone satisfying (2.4). For d > 1, this is, up to sign,
the only non-zero pointed invariant cone in the Lie algebra g.

The generator k1 ∈ so1,d(R) of the Lorentz boost on the (x0, x1)-plane

k1(x0, x1, x2, . . . , xd) = (x1, x0, x2, . . . , xd)

is an Euler element. It combines with the spacetime reflection j1(x) = (−x0,−x1, x2, . . . , xd) to the
Euler couple (k1, j1). We associate to (k1, j1) the spacetime region

W1 = {x ∈ R1+d : |x0| < x1},

the standard right wedge, and note that W1 is invariant under exp(Rk1). It turns out that the
semigroup S(k1,j1) associated to the couple (k1, j1) in Definition 2.5 satisfies

S(k1,j1) = {g ∈ G : gW1 ⊆ W1} =: SW1
(2.27)

(see [NÓ17, Lemma 4.12]). From (2.27) it follows that the map

W+ = W = G↑.(k1, j1) ∋ g.(k1, j1) 7→ gW1 (2.28)

defines an order preserving bijection between the abstract wedge space W ⊆ G and the set of wedge
domains in Minkowski space R1+d. For an abstract wedge W = (kW , jW ) ∈ W , the Euler element
kW is the corresponding boost generator. For an axial wedge Wi := {x ∈ R1+d : |x0| < xi},
i = 1, . . . , n, the corresponding Euler couple will be denoted (ki, ji).
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2.4 Nets of wedges, isotony, central locality and covering groups

In the following sections we will focus on the description of relative positions of wedges, in particular
wedge inclusions and the locality principle.

2.4.1 Wedge inclusion

Firstly consider this wedge inclusion configuration called half-sided modular inclusion:

Definition 2.11. Let W0 = (x, σ) ∈ G and y ∈ ±C with [x, y] = ±y. Then exp(y) ∈ SW0

(Definition 2.5(b)), so that
W1 := exp(y).W0 ≤ W0.

We then call W1 ≤ W0 a ±half-sided modular inclusion.

The next lemma shows that any wedge inclusion can be described in terms of positive and
negative half-sided modular inclusions.

Lemma 2.12. If W1 ≤ W3 in G, then there exists an element W2 ∈ G with W1 ≤ W2 ≤ W3 for
which the inclusion W1 ≤ W2 is +half-sided modular and the inclusion W2 ≤ W3 is −half-sided
modular.

Proof. That W1 ≤ W3 means that W1 = sW3 for some

s ∈ SW3
= exp(C−(W3)) exp(C+(W3))G

↑
W3

.

Accordingly, we write s = g−g+g0 and observe that W1 = g−g+W3 because g0W3 = W3. Put
W2 := g−W3. Then W2 ≤ W3 and g+W3 ≤ W3 implies W1 = g−g+W3 ≤ g−W3 = W2.

Further, the inclusion W2 ≤ W3 is −half-sided modular because g− ∈ exp(C−(W3)). Likewise
the inclusion g+W3 ≤ W3 is +half-sided modular, and therefore W1 ≤ W2 is also +half-sided
modular.

2.4.2 Central locality

For a wedge W = (x, σ), the dual wedge W ′ = (−x, σ) need not be contained in the orbit W+ =
G↑.W . If, however, G↑ has a non-trivial central subgroup Z such that, modulo Z, the complement
W ′ is contained in W+, then we use central elements α ∈ Z to define “twisted complements” W

′α

which are contained in W+, and this in turn leads to a twisted action of the full group G on W+.
We also obtain on W+ a complementation map W 7→ W

′α.
Let Z ⊆ Z(G↑) be a closed normal subgroup of G, and q : G → G := G/Z be the corresponding

surjective morphism of graded Lie groups with kernel Z. If Z is discrete, then q is a covering map.
The morphism of graded Lie groups q induces a natural map

qG : G(G) → G := {(x, σ) ∈ g×G↓ : σ2 = e,Adg(σ)x = x}, (x, σ) 7→ (x, q(σ)), (2.29)

where Adg : G → Aut(g) denotes the factorized adjoint action which exists because Z = ker(q) acts
trivially on g. It restricts to a map

GE(G) → GE := {(x, σ) ∈ E(g) ×G↓ : σ2 = e,Adg(σ) = eπi ad x}. (2.30)

As the following example shows, neither of these maps is always surjective. The main obstruction
is that, although the differential L(q) : L(G) → L(G) is surjective, there may be involutions τ ∈ G↓

for which no involution σ ∈ G↓ with q(σ) = τ exists. This phenomenon is tightly related to the

twisted groups Ĝz discussed in Remark 2.7 because these twists disappear for z ∈ Z in Ĝ/Z ∼= G/Z.
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Example 2.13. We consider the graded Lie group

G := SL2(R){1, γ} ⊆ SL2(C), where γ :=

(
i 0
0 −i

)
satisfies γ2 = −1.

It has two connected component and G↑ = SL2(R).
6 The subgroup Z := {±1} is central and the

quotient map q : G → G := G/Z is a 2-fold covering. The Euler element x := 1
2

(
1 0
0 −1

)
∈ g =

sl2(R) combines with the involution q(γ) ∈ G↓ to the Euler couple (x, q(γ)) ∈ G. However, the set

G(G) is empty because G↓ contains no involution. In fact, for g =

(
a b
c d

)
∈ SL2(R), the condition

that gγ is an involution is equivalent to
(
−a b
c −d

)
= γgγ = g−1 =

(
d −b
−c a

)
.

This is equivalent to a = −d and b = c = 0, contradicting that 1 = det(g) = −a2. We conclude in
particular that the maps G(G) → G and GE(G) → GE(G) are not surjective.

We now discuss G↑-orbits in G(G). In the examples we have in mind, the central subgroup Z is
discrete.
Involution lifts and central wedge orbit. Each element σ ∈ G↓ acts in the same way on the
abelian normal subgroup Z by the involution

σZ : Z → Z, γ 7→ γσ := σγσ

which restricts to an involution σZ ∈ Aut(Z) because Z is central in G↑ and a normal subgroup
of G. In the following we shall need the subgroups

Z− := {γ ∈ Z : γσ = γ−1} ⊇ Z1 := {γσγ−1 : γ ∈ Z}. (2.31)

For γ ∈ Z−, the element γ2 = (γσγ−1)−1 is contained in Z1, so that the quotient group Z−/Z1 is

an elementary abelian 2-group, i.e., isomorphic to Z
(B)
2 for some index set B.

For an involution σ ∈ G↓ and β ∈ Z(G↑), the element βσ ∈ G↓ is an involution if and only if
β ∈ Z−. Therefore

α ∗ (x, σ) := (x, ασ) (2.32)

defines an action of Z− on G(G), commuting with the conjugation action of G↑ and satisfying

g.(α ∗ (x, σ)) = α−1 ∗ (g.(x, σ)) for g ∈ G↓, α ∈ Z−. (2.33)

For W = (x, σ) ∈ G(G), the fiber over W := (x, q(σ)) is thus given by

Z− ∗W := {(x, ασ) : α ∈ Z−}. (2.34)

The subgroup Z ⊆ G↑ acts by conjugation on the fiber Z− ∗W :

γ.(x, σ) = (x, γσγ−1) = (x, γ(γσ)−1σ),

so that the quotient group Z−/Z1 parametrizes the Z-conjugation orbits in the fiber Z− ∗ W . 7

Here is an example.

6This is the twisted version of the 2-fold cover of the extended Möbius groups; see Remark 2.7(d).
7Considering Z as a module Z2-module via the involution σZ , we have Z1(Z2, Z) ∼= Z− and B1(Z2, Z) ∼= Z1,

so that the cohomology group is H1(Z2, Z) := Z1(Z2, Z)/B1(Z2, Z) ∼= Z−/Z1. We refer to [HN12, Ex. 18.3.15] or
[ML63, Thm. IV.7.1] for more on group cohomology.
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Example 2.14. (a) If Z ∼= Z and nσ = −n, then Z− = Z and Z1 = 2Z, so that Z−/Z1
∼= Z/2Z.

(b) If Z = Zn and nσ = −n, then Z− = Zn and Z1 = 2Zn, so that

Z−/Z1
∼=

{
Z/2Z if n is even

{0} if n is odd.

Wedge G↑-orbits. Let W = (x, σ) ∈ GE(G) and W = (x, q(σ)) ∈ G. In general the group G↑

does not act transitively on the inverse image of the orbit W+ := G↑.W ⊆ G under qG . We now

describe how this set decomposes into orbits. By the transitivity of the G↑-action on W+, it suffices
to consider the orbits of the stabilizer

G↑
W = {g ∈ G↑ : q(g).W = W}

on the fiber Z− ∗W . That g ∈ G↑ fixes W implies in particular that gσg−1σ = g(gσ)−1 ∈ Z. This
leads to a homomorphism

∂ : G↑
W → Z−, g 7→ g(gσ)−1 with g.(x, σ) = (Ad(g)x, gσg−1) = (x, ∂(g)σ). (2.35)

As Z ⊆ G↑
W , the image Z2 := ∂(G↑

W ) is a subgroup containing Z1.

Example 2.15. (An example where Z1 6= Z2) We consider the group G = M̃öb ⋊ {1, τ̃} from
Example 2.10(d) and the canonical homomorphism

q : G → G := SL2(R)⋊ {1, σ}, σ :=

(
−1 0
0 1

)

whose kernel is the central subgroup Z := 2Z(G↑) ⊆ Z(G↑) ∼= Z of index two. Now W = (h, τ̃ ) ∈
G(G) is an Euler couple mapped to W = (h, σ) ∈ G. As zτ̃ = z−1 for every z ∈ Z, we have Z = Z−

and Z1 = 2Z is a subgroup of index 2. To calculate Z2, we observe that

G↑
W = Gh = exp(Rh){±1} and G↑

W = exp(Rh)Z(G↑).

We conclude that
Z2 = ∂

(
G↑

W

)
= ∂(Z(G↑)) = 2Z(G↑) = Z− 6= Z1.

The situation changes if we consider Z = Z(G↑) and the center-free group G = Möb ⋊ {1, τ}
instead. Then Z = Z− = Z(G↑) and Z1 = Z2 = 2Z.

As the G↑ orbits in q−1
G (G↑.W ) = q−1

G (W+) correspond to the G↑
W -orbits in the fiber q−1

G (W ) =

Z− ∗W , we obtain the following lemma.

Lemma 2.16. The quotient group Z−/Z2 parametrizes the set of G↑-orbits in q−1
G (W+).

α-twisted complement. The following definition generalizes the notion of complementary wedge
given in Definition 2.5 (a).

Definition 2.17. For α ∈ Z−, we define the α-twisted complement of W = (x, σ) ∈ G(G) by

(x, σ)
′α := (−x, ασ).

We will refer to couples of the form W
′α as complementary wedges. We consider W

′α as a
“complement” of W because qG maps W

′α to W ′ (see item (a) below).
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Lemma 2.18. For each α ∈ Z−, the α-twisted complementation W 7→ W
′α satisfies:

(a) For α ∈ Z−, W
′α is mapped by qG onto the complement W ′ = (−x, q(σ)) of W = (x, q(σ)).

(b) The α-twisted complementation is not involutive if α2 6= e.

(c) The map
′α : G(G) → G(G), (x, σ) 7→ (−x, ασ) is G↑-equivariant.

(d) In terms of the action (2.32) of Z− on G(G), we have

W
′α = α ∗W ′ for W ∈ G(G), α ∈ Z−. (2.36)

(e) The prescription

g ∗α (x, σ) :=

{
g.(x, σ) for g ∈ G↑

g.(α−1 ∗ (x, σ)) = α ∗ (g.(x, σ)) for g ∈ G↓.
(2.37)

defines an action of G on G(G). This action satisfies

W
′α = σ ∗α W for W = (x, σ) ∈ G(G), α ∈ Z−. (2.38)

If W
′α ∈ G↑.W , then W+ = G↑.W is invariant under the full group G with respect to the

α-twisted action.

(f) There exists an α ∈ Z− with W
′α ∈ W+ if and only if W ′ := (−x, q(σ)) ∈ G↑.W . If this

is the case, then W
′β ∈ W+ for β ∈ Z− if and only if β−1α ∈ Z2. In this case, the twisted

actions of g ∈ G↓ are related by g∗β = (βα−1) ∗ g∗α.

Proof. (a) and (b) are easy to see.
(c) follows from α ∈ Z(G↑) and the G↑-equivariance of the complementation map.
(d) is immediate from the definition of α ∗W .
(e) That the prescription defines an action follows easily from the fact that g1∗α(g2∗αW ) = (g1g2).W
for g1, g2 ∈ G↓ (cf. (2.33))). The relation (2.38) follows from σ.W = σ.(x, σ) = (−x, σ). For the
last statement, we note that by (2.38), the relation W

′α ∈ W+ implies

G ∗α W+ = W+ ∪ σ ∗α W+ = W+ ∪G↑.W
′α = W+ ∪G↑W+ = W+.

(f) As qG(W+) = W+ = G↑.W and qG(W
′α) = W ′, the inclusionW

′α ∈ W+ implies thatW ′ ∈ W+.
If, conversely, W ′ ∈ W+, then there exists a g ∈ G↑ with

(−x, q(σ)) = g.(x, q(σ)) = (Ad(g)x, q(gσg−1)),

so that α := gσg−1σ ∈ ker(q) = Z satisfies

W+ ∋ g.W = g.(x, σ) = (−x, gσg−1) = (−x, ασ) = α ∗W ′ = W
′α.

Now suppose that W
′α = α ∗W ′ ∈ W+. Then W

′β = β ∗W ′ ∈ W+ is equivalent to βα−1 ∗W
′α =

W
′β ∈ W+, and this is equivalent to β−1α ∗ W+ = W+. Next we observe that the relation

βα−1 ∗ W ∈ W+ is equivalent to the existence of some g ∈ G↑
W with g.W = (x, β−1ασ), which

means that βα−1 ∈ Z2 = ∂(G↑
W ).
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Example 2.19. We show that for G = M̃öb⋊ {1, τ̃} as in Example 2.10(d), we have to use twisted
complements to obtain a G↑-orbit in GE(G) invariant under complementation. We have already seen

that GE(M̃öb) contains two G↑-orbits, represented by the couples W0 = (h, τ̃ ) and W1 = (h, τ̃1).
The complement W ′

0 = (−h, τ̃) satisfies

ρ̃(π)W ′
0 = (h, ρ̃(π)τ̃ ρ̃(−π)) = (h, ρ̃(2π)τ̃ ) = (h, τ̃1) = W1,

so that complementation exchanges the two G↑-orbits in GE(M̃öb). On the other hand, for the
action ∗α defined in (2.37), the full group G preserves both G↑-orbits.

Since Ad(ρ(−π))h = −h, the element g := ρ̃(−π) can be used to define a suitable α-twisted
conjugation as follows. We note that

α := g(gτ̃ )−1 = ρ̃(−π)ρ̃(−π) = ρ̃(−2π)

is a generator of Z := Z(M̃öb) = Z−. We now have

W
′α
0 = (−h, ατ̃) = ρ̃(−π).(h, τ̃ ) = ρ̃(−π).W0 ∈ G↑.W0.

Thus GE(M̃öb2) consists of two G↑-orbits, none of which is invariant under complementation, but
both are invariant under α-complementation. An analogous computation leads to the same picture
for even coverings of Möb, in particular for the fermionic case.

3 Euler elements and 3-graded Lie algebras

In this section we exhibit a general relation between two notions that are a priori unrelated: comple-
mentary and orthogonal wedges. For the sake of simplicity we consider in this introductory part the
case of the Poincaré group G = P+ on R1+2 (cf. Example 2.10). We have seen that if W = (kW , jW )
is a wedge of the group G, then W ′ = (−kW , jW ) is the opposite wedge. The π-spatial rotation

ρ(π) takes W onto W ′ and vice versa. Thus there exists a group element g ∈ G↑ = P↑
+ such that

Ad(g)kW = −kW , and in this sense kW is symmetric. This ensures a symmetry between a wedge
and its opposite wedge, which corresponds to its causal complement in Minkowski spacetime.

Typical pairs of orthogonal wedges are the coordinate wedges

Wi = {(t, x) ∈ R1+2 : |t| < xi} ≡ (ki, ji) ∈ GE(G) for i = 1, 2. (3.1)

The importance of this couple of wedges comes by the clear geometric relation: the wedge reflection
of W1 acts on the orthogonal wedge as

j1.W2 = W2 resp. Ad(j1)(k2) = −k2.

In [GL95] the authors study the orthogonality relation in order to extend the unitary covariance

representation of the Poincaré group P↑
+ to an (anti-)unitary representation of the graded group

P+ and establish the Spin–Statistics Theorem. In this extension process, orthogonal Euler wedges
play a crucial role. This point will be discussed from our abstract perspective in Section 4.4 below.

In this section we will see how, in our setting, the existence of a symmetric Euler element in
the Lie algebra ensures the existence of an orthogonal pair. For symmetric Euler elements, the
orthogonality relation for Euler elements is symmetric, and orthogonal pairs of Euler elements
generate a subalgebra isomorphic to sl2(R) in g.
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3.1 Preliminaries on Lie algebras and algebraic groups

In this subsection we collect some basic facts on finite dimensional real Lie algebras and on real
algebraic groups (see [HN12] for Lie algebras and [Ho81] for algebraic groups).

A Lie algebra g is called simple if g and {0} are the only ideals of g. It is called semisimple if
it is a direct sum of simple ideals g = g1 ⊕ · · · ⊕ gn. On the other side of the spectrum, we have
solvable Lie algebras. These are the ones for which the derived series defined by D0(g) := g and
Dn+1(g) := [Dn(g), Dn(g)] satisfies DN (g) = {0} for some N ∈ N. Here

[g, g] = span{[x, y] : x, y ∈ g}

is the commutator algebra of g.
The fundamental theorem on the Levi decomposition asserts that, if r is the maximal solvable

ideal of g, then there exists a semisimple subalgebra s (a Levi complement), such that

g ∼= r⋊ s

is a semidirect sum, i.e., a vector space direct sum of the ideal r and the subalgebra s.
A key feature in the structure theory of semisimple real Lie algebras is the concept of a compactly

embedded subalgebra. A subalgebra k ⊆ g is said to be compactly embedded if the subgroup
Inng(k) = 〈ead k〉 ⊆ Aut(g) has compact closure. We write Inn(g) := Inng(g) for the subgroup of
inner automorphisms of g.

An element x ∈ g is called

• elliptic, if adx is semisimple with purely imaginary eigenvalues, which is equivalent to the
one-dimensional Lie subalgebra Rx being compactly embedded.

• hyperbolic, if adx is diagonalizable.

• nilpotent, if adx is nilpotent, i.e., (adx)n = 0 for some n ∈ N.

The Cartan–Killing form
κ : g× g → R, κ(x, y) := tr(adx ad y)

is a symmetric bilinear form on g invariant under the automorphism group Aut(g). Recall that a
finite dimensional real Lie algebra is semisimple if and only if κ is non-degenerate (Cartan’s crite-
rion). Note that κ(x, x) = tr((adx)2) ≥ 0 if x is hyperbolic and κ(x, x) ≤ 0 if x is elliptic.

In the proof of Proposition 3.2 below we shall use some results from the theory of linear algebraic
groups. We now recall the basic concepts. If V is a finite dimensional real vector space, then
GL(V ) denotes the group of linear automorphisms of V . Any polynomial function on the linear
space End(V ) defines a function on the group GL(V ) and we call a subgroup G ⊆ GL(V ) algebraic
if it is the zero set of a family of polynomial functions pj : End(V ) → R. An algebraic group G is
said to be

• reductive, if each G-invariant subspace V1 ⊆ V has a G-invariant linear complement V2.

• unipotent, if there exists a flag of linear subspaces

F0 = {0} ⊆ F1 ⊆ · · · ⊆ Fn = V

such that (g − 1)Fj ⊆ Fj−1 for j = 1, . . . , n and g ∈ G.

In this context one has a decomposition theorem (the Levi decomposition), asserting that every
algebraic subgroup G ⊆ GL(V ) is a semidirect product G ∼= U ⋊ L, where U is unipotent and L
is reductive. Moreover, for every reductive subgroup L1 ⊆ G there exists an element g ∈ G with
gL1g

−1 ⊆ L ([Ho81, Thm. VIII.4.3]).
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3.2 Symmetric and orthogonal Euler elements

Definition 3.1. A pair (h, x) of Euler elements is called orthogonal if σh(x) = −x (cf. Defini-
tion 2.4).

Proposition 3.2. The following assertions hold:

(i) An Euler element h ∈ g is symmetric, i.e., −h ∈ Oh, if and only if h is contained in a Levi
complement s and h is a symmetric Euler element in s.

(ii) If g = r⋊ s is a Levi decomposition.

(a) If h ∈ g is a symmetric Euler element, then Oh = Inn(g)(Oh∩s) = Oq(h), where q : g → s

is the projection map.

(b) Two symmetric Euler elements are conjugate under Inn(g) if and only if their images in
s are conjugate under Inn(s).

Proof. (i) As Oh ⊆ h + [g, g] follows from the invariance of the affine subspace h + [g, g] under
Inn(g), the relation −h ∈ Oh implies h ∈ [g, g]. Let g = r ⋊ s be a Levi decomposition of g. As
s = [s, s], the commutator algebra is adapted to this decomposition:

[g, g] = [r+ s, r+ s] = [g, r] + s ∼= [g, r]⋊ s.

Now h is an Euler element in the ideal [g, g] = [g, r] ⋊ s. This is the Lie algebra of an algebraic
group for which [g, r] is the Lie algebra of the unipotent radical and s the Lie algebra of a reductive
complement ([Ho81, Thm. VIII.3.3]). As the algebraic group generated by exp(R adh) is reductive,
the conjugacy of Levi decompositions ([Ho81, Thm. VIII.4.3]) implies that adh is contained in some
Levi complement ad s of ad([g, g]) = [ad g, ad g]. Replacing h by another element in Oh, we may
thus assume that h ∈ z(g) + s for some Levi complement s of g. Then r and s are adh-invariant, so
that the adh-eigenspaces of the restrictions satisfy

r = r1(h) + r0(h) + r−1(h) and s = s1(h) + s0(h) + s−1(h),

and define 3-gradings of r and s. Further g±1(h) ⊆ [h, g] ⊆ [g, g] and s = [s, s] ⊆ [g, g] imply that
g = r0(h) + [g, g]. As [g, g] is an ideal and r0(h) a subalgebra of g, the subgroup Inng([g, g]) of
Inn(g) is normal, and Inn(g) = Inng([g, g]) Inn(r0(h)). As Inn(r0(h)) fixes h, this in turn shows that
Oh = Inng([g, g])h = Inng([g, r]) Inng(s)h. Writing h = hz + hs with hz ∈ z(g) and hs ∈ E(s), we
thus find x ∈ [g, r] and s ∈ Inng(s) such that 8

−hz − hs = −h = eadxs.h = hz + ead xs.hs.

Applying the Lie algebra homomorphism q to both sides, we derive from q(hz) = 0 and q ◦ eadx = q
that −hs = s.hs, and therefore

ead xhs = hs + 2hz.

We conclude that the unipotent linear map eadx preserves the linear subspace Rhs +Rhz, and this
implies that adx = log(ead x) also has this property. We thus arrive at

[h, x] = [hs, x] ⊆ Rhs + Rhz ⊆ g0(h),

8Here we use that the Lie algebra [g, r] is nilpotent, so that the exponential function of the corresponding group
Inng([g, r]) is surjective, see [HN12].
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so that we must have x ∈ g0(h) = g0(hs), which in turn leads to 0 = eadxhs − hs = 2hz, i.e.,
h = hs ∈ s.

To prove the second assertion of (i), we observe that the homomorphism q : g → s ∼= g/r satisfies

q(Ox) = Os
q(x) for x ∈ g. (3.2)

Hence q(Esym(g)) ⊆ Esym(s). If, conversely, h ∈ Esym(s), then we clearly have −h ∈ Inng(s)h ⊆
Inn(g)h, so that h ∈ Esym(g).
(ii)(a) As Oh intersects s by (i), q(Oh) ∩ Oh 6= ∅, and since Inn(s) acts transitively on q(Oh) by
(3.2), we obtain q(Oh) ⊆ Oh and thus q(Oh) = Oh ∩ s. This further leads to

Oh = Inn(g)(Oh ∩ s) = Inn(g)q(Oh) = Inn(g)Os
q(h) = Oq(h).

(ii)(b) follows immediately from (a).

Proposition 3.2 reduces the description of symmetric Euler elements up to conjugation by inner
automorphisms to the case of simple Lie algebras.

Remark 3.3. Suppose that g is a finite dimensional Lie algebra containing a pointed generating
invariant cone C. If g is not reductive, then C ∩ z(g) 6= {0} ([Ne99, Thm. VII.3.10]). If τ = σh is
an involution defined by a symmetric Euler element h, then τ fixes every central element, so that
we cannot have τ(C) = −C if g is not reductive.

Examples 3.4. (a) If s is a semisimple Lie algebra and h ∈ s an Euler element, then it also is an
Euler element in the semidirect sum T s := |s| ⋊ s, where |s| is the linear subspace underlying s,
endowed with the s-module structure defined by the adjoint representation.
(b) In the simple Lie algebra g := sln(R), we write n×n-matrices as block 2× 2-matrices according
to the partition n = k + (n− k). Then

hk :=
1

n

(
(n− k)1k 0

0 −k1n−k

)

is diagonalizable with the two eigenvalue n−k
n = 1 − k

n and − k
n . Therefore hk is an Euler element

whose 3-grading is given by

g0(h) =
{(

a 0
0 d

)
: a ∈ glk(R), d ∈ gln−k(R), tr(a) + tr(d) = 0

}
,

g1(h) =

(
0 Mk,n−k(R)
0 0

)
, g−1(h) ∼=

(
0 0

Mn−k,k(R) 0

)
.

Example 3.5. For g = sl2(R), the Euler element

h :=
1

2

(
1 0
0 −1

)
satisfies σh

(
a b
c d

)
=

(
a −b
−c d

)
.

Any element in Fix(−σh) is of the form x =

(
0 b
c 0

)
, and it is an Euler element if and only if

bc = − det(x) = 1
4 . If g ∈ SL2(R) commutes with h, then it is diagonal, i.e., g =

(
a 0
0 a−1

)
, and

thus

Ad(g)

(
0 b
c 0

)
=

(
0 a2b

a−2c 0

)
.
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We thus obtain two representatives

x± = ±
1

2

(
0 1
1 0

)

of conjugacy classes of orthogonal pairs (h, x) of Euler elements for sl2(R). The involution corre-
sponding to x± is given by

σx±

(
a b
c d

)
= eπix±

(
a b
c d

)
e−πix± =

(
0 i
i 0

)(
a b
c d

)(
0 −i
−i 0

)
=

(
d c
b a

)
,

which shows in particular that
σx±(h) = −h. (3.3)

As a consequence of the preceding discussion, we see that the orthogonality relation on E(sl2(R))
is symmetric:

Lemma 3.6. If (x, y) is an orthogonal pair of Euler elements in sl2(R), then σy(x) = −x, so that
(y, x) is also symmetric.

Example 3.7. For g = gl2(R), the Euler element

h :=

(
1 0
0 0

)
satisfies σh

(
a b
c d

)
=

(
−1 0
0 1

)(
a b
c d

)(
−1 0
0 1

)
=

(
a −b
−c d

)
,

and we see, as for sl2(R), that the orthogonal Euler elements are given by

x± = ±
1

2

(
0 1
1 0

)
with σx±

(
a b
c d

)
=

(
d c
b a

)
.

This shows that
σx±(h) 6= −h. (3.4)

Therefore gl2(R) contains a pair (h, x) of orthogonal Euler elements for which σx(h) 6= −h. From
h 6∈ [g, g] it immediately follows that h is not symmetric. We shall see in Theorem 3.13 below
that this pathology of the orthogonality relation on the set of Euler elements does not occur for
symmetric Euler elements.

Example 3.8. For g = sl3(R), the Euler element

h1 :=
1

3



2 0 0
0 −1 0
0 0 −1


 satisfies σh1

(
a b
c d

)
=

(
a −b
−c d

)
,

where we write matrices as 2 × 2-block matrices according to the partition 3 = 1 + 2. Up to
conjugacy under the centralizer of h1, the symmetric matrices in Fix(−σh1

) are represented by

x =



0 0 a
0 0 0
a 0 0


 .

These matrices have three different eigenvalues, so that adx has five eigenvalues, and thus x cannot
be an Euler elements of sl3(R). We conclude that, there exists no Euler element x ∈ E(sl3(R)) for
which (h1, x) is orthogonal.

We shall see in Theorem 3.13(b) below that this never happens for symmetric Euler elements,
but h1 is not symmetric. It corresponds to h1 for the root system A2 in the notation of Section 3.3.
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Example 3.9. For g = sl4(R), the Euler element

h1 :=
1

4




3 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 satisfies σh1

(
a b
c d

)
=

(
a −b
−c d

)
,

where we write matrices as 2 × 2-block matrices according to the partition 4 = 1 + 3. Up to
conjugacy under the centralizer of h1, the symmetric matrices in Fix(−σh1

) are represented by

x =




0 0 0 a
0 0 0 0
0 0 0 0
a 0 0 0


 .

They all have three different eigenvalues and adx has five eigenvalues, so that they are not Euler
elements. We conclude that there exists no Euler element x ∈ E(sl4(R)) for which (h1, x) is
orthogonal.

This is different for the symmetric Euler element

h2 :=
1

2




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1


 with σh2

(
a b
c d

)
=

(
a −b
−c d

)
,

where we write matrices as 2 × 2-block matrices according to the partition 4 = 2 + 2. Up to
conjugacy under the centralizer of h2, the symmetric matrices in Fix(−σh2

) are represented by

x =




0 0 a 0
0 0 0 b
a 0 0 0
0 b 0 0


 ,

and, for a = b = 1
2 , these are Euler elements orthogonal to h2.

3.3 Euler elements in simple real Lie algebras

In this section we take a systematic look at Euler elements in simple real Lie algebras. In particular
we determine which of them are symmetric and show that pairs of orthogonal ones generate sl2-
subalgebras (Theorem 3.13). For the classification of 3-gradings of simple Lie algebras, we refer to
[KA88], the concrete list of the 18 types in [Kan98, p. 600] which is also listed below, and Kaneyuki’s
lecture notes [Kan00].

Let g is a real semisimple Lie algebra. An involutive automorphism θ ∈ Aut(g) is called a Cartan
involution if its eigenspaces

k := gθ = {x ∈ g : θ(x) = x} and p := g−θ = {x ∈ g : θ(x) = −x}

have the property that they are orthogonal with respect to κ, which is negative definite on k and
positive definite on p. Then

g = k⊕ p (3.5)
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is called a Cartan decomposition. Cartan involutions always exist and two such involutions are con-
jugate under the group Inn(g) of inner automorphism, so they produce isomorphic decompositions
([HN12, Thm. 13.2.11]).

If g = k⊕p is a Cartan decomposition, then k is a maximal compactly embedded subalgebra of g,
x ∈ g is elliptic if and only if its adjoint orbit Ox = Inn(g)x intersects k, and x ∈ g is hyperbolic if
and only if Ox ∩ p 6= ∅.

For the finer structure theory, and also for classification purposes, one starts with a Cartan
involution θ and fixes a maximal abelian subspace a ⊆ p. As a is abelian, ad a is a commuting set of
diagonalizable operators, hence simultaneously diagonalizable. For a linear functional 0 6= α ∈ a∗,
the simultaneous eigenspaces

gα := {y ∈ g : (∀x ∈ a) [x, y] = α(x)y}

are called root spaces and

Σ := Σ(g, a) := {α ∈ a∗ \ {0} : gα 6= 0}

is called the set of restricted roots. We pick a set

Π := {α1, . . . , αn} ⊆ Σ

of simple roots. This is a subset with the property that every root α ∈ Σ is a linear combination
α =

∑n
j=1 njαj , where the coefficients are either all in Z≥0 or in Z≤0. The convex cone

Π⋆ := {x ∈ a : (∀α ∈ Π) α(x) ≥ 0}

is called the positive (Weyl) chamber corresponding to Π.
We have the root space decomposition

g = g0 ⊕
⊕

α∈Σ

gα and g0 = m⊕ a, where m = g0 ∩ k.

Now θ(gα) = g−α, and for a non-zero element xα ∈ gα, the 3-dimensional subspace spanned by
xα, θ(xα) and [xα, θ(xα)] ∈ a is a Lie subalgebra isomorphic to sl2(R). In particular, it contains a
unique element α∨ ∈ a with α(α∨) = 2. Then

rα : a → a, rα(x) := x− α(x)α∨

is a reflection, and the subgroup

W := 〈rα : α ∈ Σ〉 ⊆ GL(a)

is called the Weyl group. Its action on a provides a good description of the adjoint orbits of
hyperbolic elements: Every hyperbolic element in g is conjugate to a unique element in Π⋆ and, for
x ∈ a, the intersection Ox ∩ a = Wx is the Weyl group orbit ([KN96, Thm. III.10]).

From now on we assume that g is simple. Then Σ is an irreducible root system, hence of
one of the following types:

An, Bn, Cn, Dn, E6, E7, E8, F4, G2 or BCn, n ≥ 1

(cf. [Bo90a]). If g is a complex simple Lie algebra, then it is also simple as a real Lie algebra, and
a Cartan decomposition takes the form

g = k⊕ ik,
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where k ⊆ g is a compact real form. Then a = it, where t ⊆ k is maximal abelian. In particular, the
restricted root system Σ(g, a) coincides with the root system of the complex Lie algebra g. This
leads to a one-to-one correspondence between isomorphy classes of simple complex Lie algebras and
the irreducible reduced root systems. If g is not complex, then neither the isomorphy class of g
nor of gC is determined by the root system Σ(g, a). For instance all Lie algebras so1,n(R) have
the restricted root system A1 with dim a = 1, but their complexifications son+1(C) have the root
systems Bk for n = 2k and Dk for n = 2k − 1.

The adjoint orbit of an Euler element in g contains a unique h ∈ Π⋆. For any Euler element
h ∈ Π⋆, we have α(h) ∈ {0, 1} for α ∈ Π because the values of the roots on h are the eigenvalues
of adh. If such an element exists, then the irreducible root system Σ must be reduced. Otherwise,
for any root α with 2α ∈ Σ, we must have α(h) = 0 because adx has only three eigenvalues. As
the set of such roots generates the same linear space as Σ, this leads to the contradiction h = 0.
This excludes the non-reduced simple root systems of type BCn.

To see how many possibilities we have for Euler elements in a, we recall that Π is a linear basis
of a, so that, for each j ∈ {1, . . . , n}, there exists a uniquely determined element

hj ∈ a, satisfying αk(hj) =

{
1 for j = k

0 otherwise.
(3.6)

A simple Lie algebra g = k⊕ p is called hermitian if the center z(k) = {x ∈ k : [x, k] = {0}} of a
maximal compactly embedded subalgebra k is non-zero. For hermitian Lie algebras, the restricted
root system Σ is either of type Cr or BCr (cf. Harish Chandra’s Theorem [Ne99, Thm. XII.1.14]),
and we say that g is of tube type if the restricted root system is of type Cr.

The following theorem lists for each irreducible root system Σ the possible Euler elements in
the positive chamber Π⋆. Since every adjoint orbit in E(g) has a unique representative in Π⋆, this
classifies the Inn(g)-orbits in E(g) for any non-compact simple real Lie algebra. For semisimple
algebras g = g1 ⊕ · · · ⊕ gk, an element x = (x1, . . . , xn) is an Euler element if and only if its
components xj ∈ gj are Euler elements, and its orbit is

Ox = Ox1
× · · · × Oxk

.

Therefore it suffices to consider simple Lie algebras, and for these the root system Σ is irreducible.
As every complex simple Lie algebra g is also a real simple Lie algebra, our discussion also covers
complex Lie algebras.

Theorem 3.10. Suppose that g is a non-compact simple real Lie algebra, with restricted root
system Σ ⊆ a∗ of type Xn. We follow the conventions of the tables in [Bo90a] for the classification
of irreducible root systems and the enumeration of the simple roots α1, . . . , αn. Then every Euler
element h ∈ a on which Π is non-negative is one of h1, . . . , hn, and for every irreducible root system,
the Euler elements among the hj are the following:

An : h1, . . . , hn, Bn : h1, Cn : hn, Dn : h1, hn−1, hn, E6 : h1, h6, E7 : h7. (3.7)

For the root systems BCn, E8, F4 and G2 no Euler element exists (they have no 3-grading). The
symmetric Euler elements are

A2n−1 : hn, Bn : h1, Cn : hn, Dn : h1, D2n : h2n−1, h2n, E7 : h7. (3.8)

Proof. Writing the highest root in Σ with respect to the simple system Π as αmax =
∑n

j=1 cjαj , we
have cj ∈ Z>0 for each j. If h ∈ Π⋆ is an Euler element, then Π(h) ⊆ {0, 1}, and 1 = αmax(h) =
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∑n
j=1 cjαj(h) implies that at most one value αj(h) can be 1, and then the others are 0, i.e., h = hj

for some j ∈ {1, . . . , n}. Moreover, hj is an Euler element if and only if cj = 1. Consulting the
tables on the irreducible root systems in [Bo90a], we obtain the Euler elements listed in (3.7).

To determine the symmetric ones, let w0 ∈ W be the longest element of the Weyl group, which
is uniquely determined by w∗

0Π = −Π for the dual action of W on a∗. Then h′
j := w0(−hj) is the

Euler element in the positive chamber representing the orbit O−hj
. Therefore hj is symmetric if

and only if −hj ∈ Whj, which is equivalent to h′
j = hj . Using the description of w0 and the root

systems in [Bo90a], now leads to

An−1 : h′
j = hn−j, Bn : h′

1 = h1, Cn : h′
n = hn, (3.9)

Dn : h′
1 = h1, h

′
n =

{
hn−1 for n odd,

hn for n even,
(3.10)

E6 : h′
1 = h6, E7 : h′

7 = h7. (3.11)

Hence the symmetric Euler elements are given by the list (3.8).

This theorem requires some interpretation. So let us first see what it says about complex simple
Lie algebras g. In (3.7) we see that only if g is not of type E8, F4 or G2, the Lie algebra g contains
an Euler element. As Euler elements correspond to 3-gradings of the root system and these in
turn to hermitian real forms g◦, where ihj ∈ z(k◦) generates the center of a maximal compactly
embedded subalgebra k◦ ([Ne99, Thm. A.V.1]). We thus obtain the following possibilities. In Table
1, we write g◦ for the hermitian real form, g for the complex Lie algebra, Σ for its root system, and
hj for the corresponding Euler element:

g◦ (hermitian) Σ(g◦, a◦) g = (g◦)C Σ(g, a) Euler element

sup,q(C), 1 ≤ p ≤ q BCp(p < q), Cp(p = q) slp+q(C) Ap+q−1 hp

so2,2n−1(R), n > 1 C2 so2n+1(C) Bn h1

sp2n(R) Cn sp2n(C) Cn hn

so2,2n−2(R), n > 2 C2 so2n(C) Dn h1

so∗(2n) BCm(n = 2m+ 1), Cm(n = 2m) so2n(C) Dn hn−1, hn

e6(−14) BC2 e6 E6 h1 = h′
6

e7(−25) C3 e7 E7 h7

Table 1: Simple hermitian Lie algebras g◦

In this correspondence, those hermitian simple Lie algebras corresponding to symmetric Euler
elements are of particular interest. Comparing with the list of hermitian simple Lie algebras of
tube type (cf. [FK94, p. 213]), we see that they correspond precisely the 3-gradings specified by
symmetric Euler elements, as listed in (3.8). Since the Euler elements hn−1 and hn for the root
system of type Dn are conjugate under a diagram automorphism, they correspond to isomorphic
hermitian real forms.

g◦ (hermitian) Σ(g◦, a◦) g = (g◦)C Σ(g, a) symm. Euler element h

sun,n(C) Cn sl2n(C) A2n−1 hn

so2,2n−1(R), n > 1 C2 so2n+1(C) Bn h1

sp2n(R) Cn sp2n(C) Cn hn

so2,2n−2(R), n > 2 C2 so2n(C) Dn h1

so∗(4n) Cn so4n(C) D2n h2n−1, h2n

e7(−25) C3 e7 E7 h7
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Table 2: Simple hermitian Lie algebras g◦ of tube type

In our context hermitian simple Lie algebras are of particular interest. We therefore collect some
of their main properties in the following proposition.

Proposition 3.11. For a simple real Lie algebra, the following assertions hold:

(a) g is hermitian if and only if there exists a closed convex Inn(g)-invariant cone C 6= {0}, g.

(b) A simple hermitian Lie algebra contains an Euler element if and only if it is of tube type, and
in this case Inn(g) acts transitively on E(g).

Proof. (a) is a consequence of the Kostant–Vinberg Theorem (cf. [HÓ96, Lemma 2.5.1]).
(b) Since the restricted root system of a hermitian simple Lie algebra is of type Cr or BCr , and the
first case characterizes the algebras of tube type, the assertion follows from Theorem 3.10 because
Cr only permits one class of Euler elements.

There are many types of simple 3-graded Lie algebras that are neither complex nor hermitian
of tube type; for instance the Lorentzian algebras so1,n(R). We refer to [Kan98, p. 600] or [Kan00].
for the list of all 18 types which is reproduced below.

g Σ(g, a) h g1(h)

1 sln(R) An−1 hj , 1 ≤ j ≤ n− 1 Mj,n−j(R)
2 sln(H) An−1 hj , 1 ≤ j ≤ n− 1 Mj,n−j(H)
3 sun,n(C) Cn hn Hermn(C)
4 sp2n(R) Cn hn Symn(R)
5 un,n(H) Cn hn Ahermn(H)
6 sop,q(R) Bp (p < q), Dp (p = q) h1 Rp+q−2

7 so∗(4n) Cn hn Hermn(H)
8 son,n(R) Cn hn Altn(R)
9 e6(R) E6 h1 = h′

6 M1,2(Osplit)
10 e6(−26) A2 h1 M1,2(O)
11 e7(R) E7 h7 Herm3(Osplit)
12 e7(−25) C3 h3 Herm3(O)
13 sln(C) An−1 hj , 1 ≤ j ≤ n− 1 Mj,n−j(C)
14 sp2n(C) Cn hn Symn(C)
15a so2n+1(C) Bn h1 Cn

15b so2n(C) Dn h1 Cn

16 so2n(C) Dn hn−1, hn Altn(C)
17 e6(C) E6 h1 = h′

6 M1,2(O)C
18 e7(C) E7 h7 Herm3(O)C

Table 3: Simple 3-graded Lie algebras

Remark 3.12. As h ∈ a implies θ(h) = −h, the Cartan involution θ always maps h into −h, but
this only implies that h is symmetric if θ ∈ Inn(g). This is the case if g is hermitian, so that in
these Lie algebras all Euler elements are symmetric.

We conclude this section with some finer results concerning orthogonality and symmetry of Euler
elements.

30



Theorem 3.13. If g is simple and h ∈ E(g), then the following assertions hold:

(a) If x ∈ E(g) is such that (h, x) is orthogonal, then

(i) h and x are symmetric,

(ii) the Lie algebra generated by h and x is isomorphic to sl2(R), and

(iii) σx(h) = −h, so that (x, h) is also orthogonal.

(b) There exists an Euler element x such that (h, x) is orthogonal if and only if h is symmetric.

Proof. (a) We split the proof into the two cases, according to whether g is a complex Lie algebra
or not. We then reduce the second case to the first one.
Case 1: g is complex: A simple complex Lie algebra g contains an Euler element, i.e., it possesses a
3-graded root system, if and only if it has a real form g◦ which is hermitian, i.e., g = (g◦)C = g◦⊕ig◦.
This follows for example by comparing the list of irreducible root systems for which Euler elements
exist (see (3.7)) with the classification of hermitian simple Lie algebras g◦ (see [Ne99, Thm. A.V.1]
and Table 1). In this case the real Lie algebra g◦ has a Cartan decomposition g◦ = k◦ ⊕ p◦ and the
center z(k◦) is one-dimensional and generated by an element z with Spec(ad z) = {0,±i} ([Ne99,
Thm. A.V.1]). Then h = iz is an Euler element in the complexification g for which k◦ = ker(ad z)∩g◦

and [z, g◦] = p◦, where ad z|p◦ is a complex structure on the real vector space p◦. The corresponding
Euler involution σh = eπi adh = eπ ad z ∈ AutC(g) thus restricts to the Cartan involution on g◦,
corresponding to the decomposition k◦ ⊕ p◦. Accordingly, we obtain

h := Fix(σh) = (k◦)C and q := Fix(−σh) = (p◦)C.

A Cartan decomposition of g is obtained by k = k◦ + ip◦ and p = p◦ + ik◦. If t ⊆ k◦ is a
maximal abelian Lie subalgebra, then a := it ⊆ p is a maximal abelian subspace which contains
h = iz ∈ iz(k◦) ⊆ it. The orthogonality of the pair (h, x) means that x ∈ q = Fix(−σh). By
[KN96, Cor. III.9], x ∈ E(g) ∩ q is conjugate under the centralizer of h to an element in q ∩ p = p◦.
Fixing a maximal abelian subspace a◦ ⊆ p◦, we may therefore assume that x is an Euler element
for the corresponding restricted root system Σ◦ := Σ(g◦, a◦) ⊆ (a◦)∗, which is of type Cr or BCr

(cf. [Ne99, Thm. XII.1.14]). As we have already observed above, the existence of an Euler element
x ∈ a◦ implies that the restricted root system Σ◦ is reduced, which excludes the case BCr. Therefore
g◦ is of tube type (cf. Proposition 3.11) and Table 2 thus implies that h is symmetric.

The fact that g◦ is of tube type implies that x ∈ a◦ corresponds to the unique Euler element
hr for the restricted root system Σ◦ of type Cr (see (3.7)). From (3.8) it now follows that x is
symmetric (see also Proposition 3.11). This proves (i).

To verify (ii) and (iii), we observe that the root system Cr contains the maximal subset
{2ε1, . . . , 2εr} of strongly orthogonal roots, i.e., neither sums nor differences of these roots are
roots. The multiplicities of these restricted roots are 1 ([Ne99, Thm. XII.1.14]), and

s :=

r⊕

j=1

(g◦2εj + g◦−2εj + R(2εj)
∨) = a◦ ⊕

r⊕

j=1

(g◦2εj + g◦−2εj )
∼= sl2(R)

r

(cf. [Ne99, Lemma XII.1.11], [Ta79, p. 12]). As the roots 2εj all take the value 1 on the Euler
element x ∈ a◦, we have x = 1

2

∑r
j=1(2εj)

∨, which is the diagonal element in sl2(R)
r, corresponding

to

(
1
2 0
0 − 1

2

)
. Likewise, ih is contained in s ∼= sl2(R)

r as the diagonal element corresponding to
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(
0 − 1

2
1
2 0

)
. As the Lie subalgebra of gl2(C), generated by

(
0 − 1

2
1
2 0

)
and

(
1
2 0
0 − 1

2

)

is isomorphic to sl2(R), the same holds for the real Lie subalgebra of g generated by h and x. Now
(ii) and (iii) follow from Lemma 3.6.
Case 2: g is not complex: Then gC is a simple complex Lie algebra to which all arguments in
Case 1 apply. In particular, the real Lie subalgebra s spanned by h, x and [h, x] is isomorphic to
sl2(R). This proves (ii) and (iii). As s ⊆ g and all Euler elements in sl2(R) are symmetric, we also
obtain (i).
(b) If there exists an Euler element x for which (h, x) is orthogonal, then (a)(i) implies that h is a
symmetric Euler element. Suppose, conversely, that h is a symmetric Euler element. For a Cartan
involution θ with θ(h) = −h, we choose a maximal abelian subspace a ⊆ p = Fix(−θ) containing h
and choose in the subset

Σ1 := {α ∈ Σ(g, a) : α(h) = 1}

a maximal set {γ1, . . . , γr} of strongly orthogonal roots (cf. [Ta79, p.13] or [Kan00, p. 134]). From
these references we further infer the existence of elements ej ∈ gγj

such that, for each j, the
subalgebra sj := spanR{ej, σh(ej), [ej , σh(ej)]} is isomorphic to sl2(R). We normalize ej in such a
way that, for xj := [ej , σh(ej)], we have γj(xj) = 1. Then loc. cit. further implies that

aq := a ∩ q = span{xj : j = 1, . . . , r} for q := g−σh

is maximal abelian in qp. Since h is a symmetric Euler element and the root system Σ(g, a) is
irreducible, h corresponds to some hj in the list (3.8). The restricted root system Σ(g, aq) is always
of type Cr . The explicit description of the restricted roots in [Kan98, p. 596] now implies that
x :=

∑r
j=1 xj ∈ aq is an Euler element. By construction, it satisfies σh(x) = −x, so that (h, x) is

orthogonal. This completes the proof.

Corollary 3.14. Let g be a finite dimensional Lie algebra and (h, x) be orthogonal Euler elements
such that h is also symmetric. Then the following assertions hold:

(a) There exists a Levi complement containing h and x.

(b) The Lie algebra generated by h and x is isomorphic to sl2(R).

(c) (x, h) is also orthogonal.

Proof. By Proposition 3.2(i), there exists a Levi decompositions g = r ⋊ s with h ∈ s. We then
have for q := Fix(−σh) the decompositions

q := g1(h)⊕ g−1(h) = qr ⊕ qs with qr = q ∩ r and qs = q ∩ s,

and x ∈ q is an Euler element, hence in particular hyperbolic. Let ar ⊆ qr be a maximal hyperbolic
subspace, i.e., ar is abelian, consists of ad-diagonalizable elements and is maximal with respect to
this property. Then ar ⊆ [h, r] ⊆ [g, r] consists also of ad-nilpotent elements, hence is central. As
adh|q is injective, it follows that ar = {0}. By [KN96, Prop. III.5], qs contains a maximal hyperbolic
subspace a of q and x is conjugate under Inng(h) to an element of a ⊆ qs. This proves(a).
(b) In view of (a), we may w.l.o.g. assume that g is semisimple, and by Theorem 3.13, which
applies to each simple ideal, even that g ∼= sl2(R)

r for some r ∈ N. As Aut(sl2(R)) ∼= PGL2(R)
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acts transitively on the set of orthogonal pairs of Euler elements in sl2(R) (Example 3.5), we may
further assume that

h = (h0, · · · , h0) and x = (x0, · · · , x0) for h0 =

(
1
2 0
0 − 1

2

)
, x0 :=

(
0 − 1

2
1
2 0

)
,

so that the Lie subalgebra generated by x and h is the diagonal in sl2(R)
r , hence isomorphic

to sl2(R).
(c) follows directly from (b) and Lemma 3.6.

4 Covariant nets of real subspaces

In this section we develop an axiomatic setting for covariant nets of standard subspaces parametrized
by G↑-orbits in GE(G).

4.1 Standard subspaces

Here we collect some fundamental notions concerning real subspaces of a complex Hilbert space H
with scalar product 〈·, ·〉, linear in the second argument. We call a closed real subspace H ⊆ H cyclic
if H+ iH is dense in H, separating if H ∩ iH = {0}, and standard if it is cyclic and separating. The
symplectic “complement” of a real subspace H is defined by the symplectic form Im〈·, ·〉, namely

H
′ = {ξ ∈ H : (∀η ∈ H) Im〈ξ, η〉 = 0}.

Note that H is separating if and only if H′ is cyclic, hence H is standard if and only if H′ is standard.
For a standard subspace H, we define the Tomita operator as the closed antilinear involution

SH : H+ iH → H+ iH, ξ + iη 7→ ξ − iη.

The polar decomposition SH = JH∆
1
2

H
defines an antiunitary involution JH and the modular opera-

tor ∆H. For the modular group (∆it
H
)t∈R, we then have

JHH = H
′ and ∆it

H
H = H for every t ∈ R

([Lo08, Thm. 3.4]). This construction leads to a one-to-one correspondence between Tomita oper-
ators and standard subspaces:

Proposition 4.1. ([Lo08, Prop. 3.2]) The map H 7→ SH is a bijection between the set of standard
subspaces of H and the set of closed, densely defined, antilinear involutions on H. Moreover, polar
decomposition S = J∆1/2 defines a one-to-one correspondence between such involutions and pairs
(∆, J), where J is a conjugation and ∆ > 0 selfadjoint with J∆J = ∆−1.

The modular operators of symplectic complements satisfy the following relations

SH′ = S∗
H
, ∆H′ = ∆−1

H
, JH′ = JH.

From Proposition 4.1 we easily deduce:

Lemma 4.2. ([Mo18, Lemma 2.2]) Let H ⊂ H be a standard subspace and U ∈ AU(H) be a unitary

operator. Then UH is also standard and U∆HU
∗ = ∆

ε(U)
UH

and UJHU
∗ = JUH.
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Lemma 4.3. ([Lo08, Cor. 2.1.8]) Let H ⊂ H be a standard subspace, and K ⊂ H be a closed, real
linear subspace of H. If ∆it

H
K = K for all t ∈ R, then K is a standard subspace of K := K+ iK and

∆H|K is the modular operator of K on K. If, in addition, K is a cyclic subspace of H, then H = K.

The following theorem relates positive generators and inclusions of real subspaces.

Theorem 4.4. ([Lo08, Thms. 3.15, 3.17], [BGL02, Thm. 3.2]) Let H ⊂ H be a standard subspace
and U(t) = eitP be a unitary one-parameter group on H with a generator P .

(a) If ±P > 0 and U(t)H ⊂ H for all t ≥ 0, then

∆
−is/2π
H

U(t)∆
is/2π
H

= U(e±st) and JHU(t)JH = U(−t) for all t, s ∈ R. (4.1)

(b) If ∆
−is/2π
H

U(t)∆
is/2π
H

= U(e±st) for s, t ∈ R, then the following are equivalent:

(1) U(t)H ⊂ H for t ≥ 0;

(2) ±P is positive.

Part (a) is also called the One-particle Borchers Theorem. Borchers originally proved it for von
Neumann algebras with a cyclic and separating vectors. Part (b) is in [BGL02].

With the notation introduced in Examples 2.10(b), we have seen that any couple (U,H) of a
one-parameter group (Ut)t∈R with positive (resp. negative) generator and a standard subspace H

satisfying the assumptions of Theorem 4.4(a) defines a unitary, positive energy representation of
the affine group Aff(R) ∼= R⋊ R× implemented by

U(ζ(t)) = U(t), U(δ(t)) = ∆
− it

2π

H
, U(r0) = JH for t ∈ R.

A representation of Aff(R) can also be obtained by looking at some peculiar relative positions of
standard subspaces: The half-sided modular inclusions.

Definition 4.5. An inclusion K ⊆ H of standard subspaces of H is called a ±half-sided modular
inclusion (±HSMI) if

∆−it
H

K ⊆ K for ± t ≥ 0.

Theorem 4.6. ([Lo08, Cor. 3.6.6.], [NÓ17, Thm. 3.15]) K ⊆ H is a positive half-sided modu-
lar inclusion if and only if there exists an (anti-)unitary positive energy representation (U,H) of

Aff(R) ∼= R ⋊ R× with U(δ(t)) = ∆
− it

2π

H
, U(r0) = JH, U(δ(1,∞)(t)) = ∆

− it
2π

K
, U(r1) = JK. In this

picture
K = N((1, 1).W0) and H = N(W0),

where W0 = (λ, r0) corresponds to the half-line (0,∞), the translations satisfy

K = U(1)H and U(1− et) = ∆
−it/2π
K

∆
it/2π
H

for t ∈ R.

As a consequence, negative half-sided modular inclusions K ⊆ H are in in 1-1 correspondence
with (anti-)unitary negative energy representation (U,H) of Aff(R) ∼= R⋊ R× with

K = N((−1, 1).W ′
0) = U(−1)N(W0)

′ and H = N(W ′
0) = N(W0)

′

and with U(δ(−t)) = ∆
− it

2π

H
, U(r0) = JH, U(δ(−∞,−1)(t)) = ∆

− it
2π

K
, U(r−1) = JK.

Corollary 4.7. ([Lo08, Corollary 2.4.3.]). If K ⊂ H is +HSMI, then H
′ ⊂ K

′ is -HSMI
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4.2 The axiomatics of abstract covariant nets

Hereafter we will make the following assumption on the group G.

Assumption 1. We assume that GE(G) 6= ∅ and write G = G↑⋊{e, σ} for some Euler involution σ.

Example 4.8. Note that G↓ may contain involutions which are not Euler.
We consider the graded Lie group G := SO1,n(R) with the identity component G↑ = SO1,n(R)

↑.
For n ≥ 2, the Lie algebra g = so1,n(R) is simple, θ(x) = −x⊤ is a Cartan involution, and
a := so1,1(R) ⊆ p (acting on the first two components) is a maximal abelian subspace. As the
corresponding restricted root system is of type A1, our classification scheme (see (3.8) in Theo-
rem 3.10) implies that all Euler elements in g are conjugate to the one corresponding to the boost
generator

h(x0, . . . , xn) = (x1, x0, 0, . . . , 0).

Accordingly, an involution σ ∈ G is Euler if and only if σ or −σ is the orthogonal reflection in a
2-dimensional Lorentzian plane.

However, G↓ contains all reflections of the type

τ(x) = (ε0x0, . . . , εnxn) with εj ∈ {±1} satisfying

n∏

j=0

εj = 1.

In particular neither Fix(τ) nor Fix(−τ) must have dimension 2.

We now present the analogs of the one-particle Haag–Kastler axioms and further fundamental
properties in our general setting.

Definition 4.9. Let G = G↑⋊ {e, σ} be as above, C ⊆ g be a closed convex Adε(G)-invariant cone
in g, and fix a G↑-orbit W+ = G↑.W ⊆ GE(G). Let (U,H) be a unitary representation of G↑ and

N : W+ → Stand(H) (4.2)

be a map, also called a net of standard subspaces. In the following we denote this data as (W+, U,N).
We consider the following properties:

(HK1) Isotony: N(W1) ⊆ N(W2) for W1 ≤ W2.

(HK2) Covariance: N(gW ) = U(g)N(W ) for g ∈ G↑, W ∈ W+.

(HK3) Spectral condition: C ⊆ CU := {x ∈ g : − i∂U(x) ≥ 0}. We then say that U is C-positive.

(HK4) Central twisted locality: For α ∈ Z(G↑)− and W ∈ W+ with W
′α ∈ W+, there exists a

unitary Zα ∈ U(G↑)′ satisfying

Z2
α = U(α) and JN(W )ZαJN(W ) = Z−1

α , (4.3)

such that
N(W

′α) ⊂ ZαN(W )′. (4.4)

Moreoever, such an α exists.

When Zα is trivial, for instance when ∂(G↑
W ) = {e}, then the central twisted locality reduces to

the more familiar locality relation.
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(HK4e) Locality: If W ∈ W is such that W ′ ∈ W+, then N(W ′) ⊂ N(W )′.

Concerning (HK3), note that CU is pointed if and only if ker(U) is discrete. Therefore the
assumption that C is pointed is compatible with the possible existence of representations with
discrete kernel satisfying (HK3). Furthermore, if C = {0}, then (HK3) trivially holds.

The following property will be central in our discussion because it connects the modular groups
of standard subspaces to the unitary representation U of G↑.

(HK5) Bisognano–Wichmann (BW) property: U(λW (t)) = ∆
−it/2π
N(W ) for W ∈ W+, t ∈ R.

We will see in Proposition 4.19 that a consequence of (HK1-5) is the following stronger form of
(HK4):

(HK6) Central Haag Duality: N(W
′α) = ZαN(W )′ for α ∈ Z(G↑)−, W ∈ W+ with W

′α ∈ W+

and Zα as in (4.3).

If the representation U extends antiunitarily to G we can further require:

(HK7) G-covariance: For any α ∈ Z(G↑)− such that W
′α ∈ W+, there exists an (anti-)unitary

extension Uα of U from G↑ to G such that the following condition is satisfied:

N(g ∗α W ) = Uα(g)N(W ) for g ∈ G, (4.5)

where ∗α is the α-twisted action (2.37) of G on W+ defined in Lemma 2.18(e).

It is enough to provide an extension Uα w.r.t. one α ∈ Z(G↑)− such that W
′α ∈ W+. All the other

extensions come as described in Lemma 2.18(f). The modular conjugation of standard subspaces
can have a geometric meaning when the extension Uα from (HK7) has the following specific form:

(HK8) Modular reflection: Uα(σW ) = ZαJN(W ) for α ∈ Z(G↑)−, W ∈ W+ with W
′α ∈ W+ and

Zα as in (4.3).

In the next sections we will show that there exist nets of standard subspaces satisfying all the
above assumptions. It is the analog of the BGL construction in this general setting.

4.2.1 Wedge isotony and half-sided modular inclusions

Taking the wedge modular inclusion defined in Section 2.4.1 into account, we now prove that isotony
can be deduced from covariance, the Bisognano–Wichmann property and the C-spectral condition.
On specific models this has been checked in [BGL02, Lo08].

Proposition 4.10. Let (W+,N, U) be a net of standard subspaces. Then the spectral condition
(HK3), the BW property (HK5) and G↑-covariance (HK2) imply isotony (HK1).

Proof. Let W0 = (h, τ) ∈ GE and H0 = N(W0). By covariance, the net N is isotone if and only if

SW0
= G↑

W0
exp(C+) exp(C−) ⊆ SH0

:= {g ∈ G↑ : U(g)H0 ⊆ H0}.

As the stabilizer G↑
W0

stabilizes H0 by covariance, isotony is equivalent to exp(x) ∈ SH0
for every

x ∈ C+ ∪ C−.
By the spectral condition (HK3), we have ∓i∂U(x) ≥ 0. Therefore Theorem 4.4 shows that

isotony is equivalent to

UH0(es)U(exp tx)UH0(e−s) = U(exp e±stx) for s, t ∈ R, x ∈ C±. (4.6)

By the BW property (HK5), UH0(es) = ∆
−is/2π
H0

= U(exp sh), so that [h, x] = ±x for x ∈ C±

implies (4.6).
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4.2.2 The Brunetti–Guido–Longo (BGL) construction

We have seen in the introduction to Section 2 that each standard subspace H specifies a homomor-
phism

UH : R× → AU(H) by UH(et) := ∆
−it/2π
H

, UH(−1) := JH, (4.7)

and that this leads to a bijection

Φ: Homgr(R
×,AU(H)) → Stand(H), UH 7→ H

between continuous (anti-)unitary representations of the graded Lie group R× and standard sub-
spaces ([NÓ17, Prop. 3.2]). By Lemma 4.2, Φ is equivariant with respect to the natural action of
AU(H) on Stand(H) and the action (2.3) on Homgr(R

×,AU(H)).
Now every (anti-)unitary representation U : G → AU(H) defines by composition a natural G-

equivariant map

G
Ψ−1

−−−−−−→Homgr(R
×, G)

U◦
−−−−→Homgr(R

×,AU(H)), W 7→ U ◦ γW .

Combining this with Φ leads to the so-called Brunetti–Guido–Longo (BGL) construction:

Definition 4.11. (Brunetti–Guido–Longo (BGL) net) If (U,G) is an (anti-)unitary representation,
then we obtain a G-equivariant map NU : G → Stand(H) determined for W = (kW , σW ) by

JNU (W ) = U(σW ) and ∆
−it/2π
NU (W ) = U(exp tkW ) for t ∈ R. (4.8)

This means that, with respect to Definition 2.3, UNU (W ) = U ◦γW for W ∈ G (see [BGL02], [NÓ17,
Prop. 5.6]).

The BGL net associates to every wedge W ∈ G a standard subspace NU (W ). We shall denote
with (W+,NU , U) the restriction of the BGL net to the G↑-orbit W+ ⊆ GE(G).

Theorem 4.12. The restriction of the BGL net NU associated to an (anti-)unitary C-positive
representation U of G = G↑ ⋊ {e, σ} to a G↑-orbit W+ ⊆ GE satisfies all the axioms (HK1)-(HK3)
and (HK5).

We shall see in Proposition 4.16 that the twisted locality (HK4), Central Haag Duality (HK6) and
(HK7-8) are also satisfied.

Proof. Let W+ ⊆ GE(G) be a G↑-orbit. By construction, the restriction of the BGL net NU to W+

satisfies (HK2) and by construction it satisfies (HK5). By Proposition 4.10, isotony (HK1) follows
from the Spectral Condition (HK3), which is the C-positivity of U .

As a last remark in this section we stress that two (anti-)unitary extensions of a unitary rep-
resentation (U,H) of G↑ are unitarily equivalent, but the corresponding BGL nets depend on the
choice of the (anti-)unitary extension. The following proposition makes this dependence explicit
and provides a natural parameter space.

Proposition 4.13. (The space of (anti-)unitary extensions) Fix (h, τ) ∈ G, let U : G → AU(H) be
an (anti-)unitary representation and let M := U(G↑)′. Then the following assertions hold:

(i) All (anti-)unitary representations (Ũ ,H) extending U |G↑ are of the form Ũ = TUT ∗ for some
T ∈ U(M). The corresponding BGL nets are related by

NŨ (W ) = TNU (W ) for W ∈ G. (4.9)
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(ii) (Parametrization of (anti-)unitary extensions) Let J := U(τ), τ ∈ G↓. For every

N ∈ U(M)− := {M ∈ U(M) : JMJ = M−1},

there exists a unique (anti-)unitary extension Ũ of U |G↑ with Ũ(τ) = NJ , and we thus obtain
a bijection between the set U(M)− and the set of (anti-)unitary extensions of U |G↑ to G.

Proof. (i) follows from Proposition A.1 and the assertion on the BGL nets is an immediate conse-
quence of the definitions.
(ii) Let T ∈ U(M), so that Ũ = TUT−1 : G → AU(H) is an (anti-)unitary extension of U |G↑ with

J̃ := Ũ(τ) = TJT−1. Since Ũ and U extend the same representation of G↑,

N := J̃J = J̃J−1 ∈ U(M).

This element satisfies JNJ = JJ̃ = N−1, so that N ∈ U(M)− and J̃ = NJ .
If, conversely, N ∈ U(M)−, then Lemma A.2 implies the existence of an X = −X∗ ∈ M with

N = e2X and JXJ = −X . For T := eX ∈ U(M) and J̃ := TJT−1, we then have

J̃J = TJT−1J = T 2 = e2X = N.

Therefore the manifold U(M)− parametrizes the (anti-)unitary extensions of U |G↑ .

4.2.3 Twisted Locality

We have seen in Section 2.4.2 that it can happen that W ′ /∈ W+ = G↑.W . One can anyway attach
to W ′ a real subspace by the BGL-net and by construction obtain the relation H(W ′) = H(W )′. On
the other hand one can define natural complementary wedges W

′α indexed by central elements α.
In this section we will see that in the BGL construction, the complementary wedge subspaces satisfy
the central Haag duality condition (HK6), hence the twisted locality relation (HK4). We start with
a lemma on standard subspaces.

Lemma 4.14. Let H ⊂ H be a standard subspace, and U ∈ U(H) be a unitary operator commuting
with ∆H and satisfying JHUJH = U−1. Let H1 be the standard subspace defined by (∆H, UJH). There
exists a unitary square root Z of U commuting with ∆H such that JHZJH = Z−1 and ZH = H1.
The standard subspace H1 does not depend on this choice of Z.

Proof. The existence of the square root and the commutation relation with the modular conjugation
and the modular operator follows by Lemma A.3. Then

Z(JH∆
1/2
H

)Z−1 = ZJHZ
−1∆

1/2
H

= Z2JH∆
1/2
H

= UJH∆
1/2
H

implies that H1 = ZH. It is clear that H1 does not depend on the choice of Z.

In order to conclude (HK6), hence the central locality condition on a BGL net NU , we will need
an analogous statement relating complementary wedge subspaces.

Proposition 4.15. Let (U,H) be an (anti-)unitary representation of the graded group
G = G↑ ⋊ {e, σ} and α ∈ Z(G↑)−. Then the commutant U(G↑)′ contains a unitary square root Zα

of U(α) satisfying
U(g)ZαU(g)−1 = Z−1

α for every g ∈ G↓. (4.10)
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Proof. First we note that U(α) ∈ M := U(G↑)′. We fix σ0 ∈ Inv(G↓) and observe that conjugation
with U(σ0) defines an antilinear isomorphism β of M. As β(U(α)) = U(α)−1 follows from α ∈
Z(G↑)−, we find with Lemma A.3(c) in the appendix, a unitary square root Zα of U(α) satisfying

U(σ0)ZαU(σ0) = β(Zα) = Z−1
α . (4.11)

For any other σ ∈ G↓ we have σ = σ0g with g ∈ G↑, so that

U(σ)ZαU(σ) = U(σ)ZαU(σ)−1 = U(σ0)U(g)ZαU(g)−1U(σ0) = U(σ0)ZαU(σ0) = Z−1
α .

We are now ready to verify that the BGL net is compatible with the twistings appearing in
(HK4), (HK6) and (HK7).

Proposition 4.16. For every (anti-)unitary representation (U,H) of G, the BGL net NU satisfies
(HK4) and (HK6). Moreover, for α ∈ Z(G↑)−, W ∈ W+ with W

′α ∈ W+ and Zα ∈ U(G↑)′

satisfying (4.3), the (anti-)unitary extension (Uα,H) of U |G↑ to G, determined by Uα(σW ) :=
ZαU(σW ), satisfies (HK7) and (HK8).

Proof. Let α ∈ Z(G↑)− and W = (x, σ) ∈ W+ be such that W
′α = (−x, ασ) ∈ W+. Proposi-

tion 4.15 implies the existence of Zα ∈ U(G↑)′ satisfying (4.3). Then

∆
−it/2π

NU (W ′α)
= U(exp(−tx)) and J

NU (W ′α) = U(ασ) = Z2
αJNU (W ) = ZαJNU (W )Z

−1
α

imply that NU (W
′α) = ZαNU (W )′. This shows that (HK6), hence also (HK4) are satisfied. We

also have
NU (σ ∗α W ) = NU (W

′α) = ZαNU (W )′ = ZαU(σ)NU (W ).

Since NU is G-equivariant on G, this leads for g ∈ G↑ to

NU (gσ ∗α W ) = NU (g.(σ ∗α W )) = U(g)NU (σ ∗α W ) = U(g)ZαNU (W )′

= U(g)ZαU(σ)NU (W ) = U(g)Uα(σ)NU (W ) = Uα(gσ)NU (W ).

This proves (HK7). As JNU (W ) = U(σW ) by definition, we also have

Uα(σW ) = ZαU(σW ) = ZαJNU (W ),

so that Uα also satisfies (HK8).

Remark 4.17. (a)If U |G↑ is irreducible, then U(Z(G↑)) ⊆ T1, so that, we find for any α ∈ Z(G↑)
that U(α) = ζ1 with |ζ| = 1. We may thus put Zα := z1 for any complex number z with z2 = ζ.
In this case JZαJ = Z∗

α holds for any antiunitary operator J .
(b) Let (U,H) be an (anti-)unitary representation of G. For any other square root Z of U(α)
satisfying the same requirements as Zα, the unitary operator Z−1Zα is an involution commuting
with U(G), so that it leaves all standard subspaces N(W ) of the BGL net invariant.
(c) If α ∈ Z(G↑) satisfies ασ = α for σ ∈ G↓, then α acts trivially on G(G) and, by covariance of
N, leaves all standard subspaces N(W ) invariant. This happens in particular if α2 = e. Then also
α ∈ Z(G↑)−, so that α-twisted complements are useful in the context of fermionic theories. Here
U(α) is an involution and one choice of a square root of U(α) is given by

Zα :=
1+ iU(α)

1 + i
. (4.12)
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Given a net satisfying (HK1)-(HK5), the commutation relation among twist operators and the
wedge modular operators immediately hold.

Proposition 4.18. Let (W+, U,N) be a G-covariant net satisfying (HK1)-(HK5), suppose that U
extends to an (anti-)unitary representation of G, and let Zα ∈ U(G↑)′ as in (4.3). Then, for every
W ∈ W+, we have

Zα∆N(W )Z
−1
α = ∆N(W ).

The latter proposition allows to conclude that (HK6) is a consequence of (HK1)-(HK5).

Proposition 4.19. Let (W+,N, U) be a net of standard subspace satisfying (HK1)-(HK5). Then
it also satisfies central Haag duality (HK6):

N(W
′α) = ZαN(W )′ for α ∈ Z(G↑)−,W ∈ W+,W

′α ∈ W+.

In particular, the right hand side does not depend on the choice of Zα.

Proof. By (HK5), the unitary operator Zα ∈ U(G↑)′ commutes with the modular operator of N(W ),
by Proposition 4.18. Therefore the two standard subspaces N(W

′α) and ZαN(W )′ have the same
modular operator. By twisted locality N(W

′α) ⊆ ZαN(W )′, so that Lemma 4.3 implies that they
coincide.

Remark 4.20. Let (W+,N, U) be a net of standard subspaces with a unitary C-positive represen-
tation (U,H) of G↑. Let W0 = (x, σ) ∈ W+ ⊂ GE and H0 := N(W0). We claim that (HK1-3) imply
that

Ũ(σ) := JH0

defines an (anti-)unitary extension of U |G↑(W0) to the graded subgroup G(W0) = G↑(W0)⋊ {e, σ}

of G. In fact, JH0
commutes with G↑

W0
by Lemma 4.2. Further, the C-positivity and Theorem 4.4(b)

imply that it also has the correct commutation relation with exp(C±), hence also with G↑(W0). We
shall see in Section 4.4, when we actually obtain an extension to the full group G.

Example 4.21. (The Poincaré case) Let G := P+ := R1,3 ⋊ SO1,3(R)
↑
0 be the proper Poincaré

group and
G = P̃+ = R1,d−1 ⋊ Spin1,3(R)0

be its simply connected covering. We write λW for the one-parameter group lifting the boost group

ΛW associated to a wedge W ∈ W = G.W1 (see e.g. [Mo18]). For G↑, a wedge is defined by a
pair W = (x, rx), where x generates ΛW and rx = eπix is the spacetime reflection in the direction
of the wedge. Since Z = Z(G) = {±1} is a 2-element group, a wedge W ∈ G has two lifts which
belong to two different G↑-orbits in G(G). To see this, we note that Z = Z− and Z2 = {e}. For
the second equality we use the isomorphism Spin1,3(R) with SL2(C) and note that the centralizer

of any Euler element x, which may be assumed to be x =

(
1
2 0
0 − 1

2

)
, is connected and isomorphic

to the multiplicative group C×, on which the involution σx acts trivially. Therefore the central
elements ∂(g) = gσg−1, g ∈ G↑

(x,σx)
, are all trivial, which leads to Z2 = {e}.

For α := −1, the twisted complement of W = (kW , σW ) is W
′−1 = (−kW ,−σW ). Any lift

r̃ : R → G↑ of a rotation one-parameter group ρ : R → SO2(R) →֒ SO1,3(R) in G↑ satisfying
Ad(ρ(π))kW = −kW now satisfies ρ̃(2π) = −1. This shows that, W ′ = (−kW , σW ) 6∈ G↑.W , but
that W

′−1 = (−kW ,−σW ) 6∈ G↑.W .
Let (U,H) be an irreducible unitary positive energy representation of G↑ for which U(−1) 6= 1,

then U(−1) = −1 by Schur’s Lemma. For the BGL net N : G(G) → Stand(H) we therefore have
N(W

′−1) = iN(W )′ and Zα = i1 is a suitable twist operator (cf. [Mo18, Thm. 2.8]).
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Example 4.22. (Finite coverings of the Möbius group) Consider the n-fold covering of the Möbius

group G↑ := Möb
(n) ⊆ G := Möb

(n)
2 , where G = Möb2 (cf. Example 2.10(e)). This group is obtained

from M̃öb2 by factorization of the subgroup nZ(M̃öb). Then Z := Z(G↑) ∼= Zn is a cyclic group of
order n. Let α := ρ̃(2π) ∈ Z be a generator, where ρ̃ : R → G↑ is the lift of the rotation group.

Let (U,H) be an (anti-)unitary representation of G whose restriction to G↑ is irreducible. Then,
by Schur’s Lemma, U(αn) = U(ρ̃(πn)) is an involution in T1, hence ±1. We now define n-twisted
local nets of real subspaces as follows:

• n is even. As βτ = β−1 for β ∈ Z, we have Z− = Z and Z1
∼= Zn/2 is a subgroup of index 2.

As for M̃öb2, we have Z2 = Z1. We therefore obtain for every Euler coupleW = (x, σ)∈ GE(G)
two G↑-orbits G↑.(±x, σ) covering G↑.W ⊆ GE(G). Choosing G↑.(x, σ), one obtains with the
BGL construction a net of real subspaces I 7→ N(I), where I denotes an interval of length
smaller than 2π in the n

2 -covering S1(n/2)≃ R/πnZ of S1. We can realize the net on intervals

in S1(n/2) because U(ρ̃(nπ))N(I) = ±N(I) = N(I). For the central element α = ρ̃(−2π) ∈ Z,

twisted complements look as follows. For I = (a, b) ⊂ R/πnZ with b − a < 2π, we have
I

′α = Ic, where Ic = (b− 2π, a) is the “complement” obtained by conformal reflection on the
left endpoint, cf. (2.25). All the other twisted complement, belonging to the same orbit, are
obtained by covariance.

The locality relation then is given by

N(I
′α) = ωk

N(I)′, k ∈ Z,

where α = ρ̃(2πk) and ω ∈ T satisfies ω21 = U(ρ̃(2π)). Since U is irreducible and Z is a
cyclic group of order n, U(ρ̃(2π)) is an n-th root of the unity, hence ω2n = 1 and Zα = ωk1.

• n is odd. Then Z− = Z1 implies that G↑ acts transitively on the inverse images of G↑-orbits
in G. Fixing the orbit G↑.(x, σ), we have by the BGL construction a net of real subspaces
I 7→ N(I), where, again, I is an interval of length smaller than 2π in the n-fold covering of
S1. Here the locality relation is

N(I
′α) = ωk

N(I)′, k ∈ Z,

where α = ρ̃(2πk) and ω2n = 1, I
′α and Zα are as above.

4.3 New models

Theorem 3.10 provides the list of restricted root systems for real simple Lie algebras containing
(symmetric) Euler elements, hence supporting (symmetric) Euler wedges. Any such Lie algebra g

is the Lie algebra of a simply connected Lie group G↑. Then (2.10) defines an Euler involution on
the group G↑, so that we obtain the extension to G = G↑ ⋊ {id, σ}.

Such a Lie group G↑ has many unitary representations, possibly with positive energy if the
Lie algebra g is hermitian. By unitary induction, one can construct a unitary representation of
G↑ from a unitary representation of a subgroup, for instance from a covering of PSL2(R) ⊂ G↑

[Ma52]. It is always possible, to extend a unitary representation (U,HU ) of G
↑ to an (anti-)unitary

representation of G by doubling the Hilbert space, if the representation does not extend on HU

itself. Indeed, we can choose any conjugation C on HU and observe that the representation defined

by Ũ(g) = U(g) ⊕ CU(σgσ)C on HU ⊕ HU extends to G by U(σ) =

(
0 C
C 0

)
. By the BGL

construction there exists a (twisted-)local one-particle net satisfying (HK1-8).
As a consequence we have the theorem:
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Theorem 4.23. Let g be a simple real Lie algebra containing an Euler element, i.e., whose restricted
root system space occurs in Theorem 3.10. Then there exists a graded Lie group G = G↑ ∪G↓ as in
Section 2.1 with an (anti-)unitary representations U , and these in turn define twisted G-covariant
BGL-nets (W+, U,N).

This theorem shows, for instance, that it is possible to associate a covariant homogeneous net
of standard subspace to a Lie algebra g with restricted root system E7. The subgroups G±1 =
exp(g±1(x)) ⊆ G↑ are closed, and if G0 := {g ∈ G↑ : Ad(g)x = x}, then so is P := G0G−1.
Then M := G↑/P is a homogeneous space whose tangent space in the base point can be identified
with the eigenspace g1(x) = ker(adx − 1). If g is simple hermitian of tube type and C ⊆ g is a
pointed generating invariant cone, then C+ := C ∩ g1(x) defines a G↑-invariant causal structure on
M . The so-obtained manifolds include the Jordan spaces-times of Günaydin [Gu93, Gu00, Gu01]
and the simple spacetime manifolds in the sense of Mack–de Riese [MdR07]. If the rank of the
restricted root system Σ of (g, a) is 2, then M is a Lorentzian manifold, but in general it is not. As
a consequence of Proposition 3.11 and Table 2, there exists a real form with a non-trivial positive
cone i.e., g is hermitian of tube type, for every root system appearing in Theorem 3.10. Thus models
with a proper notion of positive energy appear can be associated to every root system supporting
symmetric Euler elements.

Recently, in [NÓ20] it has been shown that irreducible (anti-)unitary representations (U,H) of
G which are of positive energy in the sense that −i∂U(y) ≥ 0 for y ∈ C, lead to G-covariant nets
(VO) of real subspace of H, indexed by open subsets O ⊆ M . If O 6= ∅, then VO is generating, and
it is standard if O is not “too big”. In particular, the open subset O = exp(C0

+)P ⊆ M corresponds
to a standard subspace with the Bisognano–Wichmann property for which the modular group is
represented by the one-parameter group (exp tx)t∈R of G (see [NÓ20, §5.2]).

4.4 The SL2-problem, symmetry extension

In Section 3.2 we have seen that the existence of orthogonal Euler wedges corresponds to the
existence of an sl2-subalgebra containing both Euler elements. In this section we will discuss when
we can extend a covariant net of standard subspaces (W+,N, U) of Euler wedges satisfying (HK1)-
(HK5) to a G-covariant net.

We first look at the (anti-)unitary extensions of unitary representations of S̃L2(R). In sl2(R),
we consider the two Euler elements

h :=
1

2

(
1 0
0 −1

)
and k :=

1

2

(
0 1
1 0

)
. (4.13)

Let (U,H) be a unitary representation of the group G := S̃L2(R) and consider the two selfadjoint
operators

H := −2πi∂U(h) and K := −2πi∂U(k).

Theorem 4.24. Every continuous unitary representation of S̃L2(R) extends to an (anti-)unitary
representation of the group

G̃L2(R) := S̃L2(R)⋊ {1, τG},

where τG is the involutive automorphism of S̃L2(R) induced by the Lie algebra automorphism

τ

(
a b
c d

)
=

(
a −b
−c d

)

corresponding to the Euler element h.
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In [GL95, Lo08] this theorem was proved for SL2(R)-representations of the principal and discrete
series. Here the argument does not depend on the family of the representation.

Proof. Since S̃L2(R) is a type I group, every unitary representation has a unique direct integral
decomposition into irreducible unitary representations. This reduces the problem to the irreducible
case. We have to show that U ◦ τG ∼= U∗ (the dual representation). Let

u := [h, k] =
1

2

(
0 −1
1 0

)
.

Then h, k, u is a basis of sl2(R) and

ω := h2 + k2 − u2 ∈ U(sl2(R))

is a Casimir element, so that

∂U(ω) = c1 for some c ∈ R.

The antilinear extension τ of τ to sl2(R) satisfies τ (iu) = iu and the operator i∂U(u) is selfadjoint
and diagonalizable. We have

∂U∗(u) = −∂U(u) = ∂U(τ(u)),

so that U∗ ◦ τG is an irreducible with the same u-weights and the same Casimir eigenvalue c. Below
we argue that U is uniquely determined by any pair (µ, c), where µ is an eigenvalue of i∂U(u)
occurring in the representation ([Sa67], [Lo08]), and this implies that U ◦ τG ∼= U∗.

To see that U is determined by the pair (µ, c), we first recall that H decomposes into one-
dimensional eigenspaces of i∂U(u) and, by irreducibility, it is generated by any eigenvector ξµ of
eigenvalue µ. Let U(g) denote the complex enveloping algebra of g. Then Vµ := U(g)ξµ is a
dense subspace consisting of analytic vectors, so that the representation U is determined by the
g-representation on this space. In U(g) the centralizer Cu of u is generated by u and the Casimir
element. Therefore ξµ is a Cu-eigenvector and the corresponding homomorphism χ : Cu → C is
determined by χ(u) = µ and χ(ω) = c. It is now easy to verify that these two values determine the
U(g)-module structure on Vµ, hence the unitary representation U .

Remark 4.25. Here the determination of the representation is obtained by considering in the
enveloping algebra U(sl2(R)), the centralizer subalgebra C[ω, u] of u. Any cyclic weight vector ξµ,c
defines a character χ of this subalgebra by χ(iu) = µ and χ(ω) = c, and U(g)ξµ,c is isomorphic to
the quotient of U(g) by the left module generated by µ1− iu and ω − c1.

Now, we consider the positive selfadjoint operator

∆h := e−H = e2πi∂U(h).

By Theorem 4.24, U extends to an (anti-)unitary representation of G̃L2(R), and we put

J := U(τG), S := J∆
−1/2
h = Je−πi∂U(h) and V := Fix(S).

Lemma 4.26. For a unitary operator T ∈ U(H), the following assertions are equivalent:

(a) STS ⊆ T holds on a dense subspace.

(b) T−1V ∩ V is standard.
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If these conditions are satisfied, then (a) holds on T−1V ∩ V.

Proof. If (b) holds, then any ξ ∈ T−1V ∩ V satisfies STSξ = STξ = Tξ, so that (a) holds.
Conversely, assume that

D := {ξ ∈ D(S) : STSξ = Tξ}

is dense in H. For any ξ ∈ D we then have Tξ ∈ R(S) = D(S) and

STS(Sξ) = STξ = S(STSξ) = T (Sξ),

so that D is S-invariant. This implies that D = (D ∩ V) + i(D ∩ V), so that D ∩ V is standard. For
ξ ∈ V, we have Tξ ∈ V if and only if ξ ∈ D, so that D ∩ V = T−1V = V. This proves the lemma.

Proposition 4.27. The following assertions are equivalent:

(a) ∆
−1/2
h eitK∆

1/2
h ⊆ e−itK holds for every t ∈ R on a dense subspace of H.

(b) SeitKS ⊆ eitK holds for every t ∈ R on a dense subspace of H.

(c) e−itKV ∩ V is standard for every t ∈ R.

If these conditions are satisfied, then (a) holds on J(e−itKV ∩ V) and (b) on e−itKV ∩ V.

Proof. (a) ⇔ (b): From τ(k) = −k it follows that

JU(exp tk)J = U(τG(exp tk)) = U(exp(−tk)),

so that conjugating with J translates (a) into (b).
(b) ⇔ (c) follows from Lemma 4.26.

From [GL95, Thm. 1.1, Cor. 1.3(c)] one can deduce that the equivalent conditions in Proposi-
tion 4.27 are satisfied for principal series representations and lowest and highest weight representa-
tions, but it is not known for complementary series representations.

The following theorem shows that an isotone, central twisted local G↑-covariant net of standard
subspaces satisfying the BW property extends is actually G-covariant. The argument needs the
density property described in Proposition 4.27 for S̃L2(R). The extension is done by (HK8).The
proof generalizes the argument in [GL95].

Theorem 4.28. (Extension Theorem) Let G = G↑ ⋊ {id, σ} be a graded Lie group, where σ is
an Euler involution. Let (U,H) be a unitary C-positive representation of G↑, W+ ⊆ GE(G) be a
G↑-orbit, and (W+,N, U) be a net of standard subspaces satisfying (HK1-4) and the BW property
(HK5). If h1, . . . , hn, n ≥ 2, is a pairwise orthogonal family of Euler elements generating the
Lie algebra g, and the conditions in Proposition 4.27 hold for the representations of the connected
subgroups corresponding to the sl2-subalgebras generated by h1 and hj for j = 2, . . . , n, then U ex-
tends to an (anti-)unitary representation of G such that G-covariance (HK7) and modular reflection
(HK8) hold.

Proof. Let (W+,N, U) be a net of standard subspaces satisfying (HK1-5). The Bisognano–Wichmann
property (HK5) implies Central Haag Duality (HK6) by Proposition 4.19. Let Hj := −i∂U(hj)
be the selfadjoint generators of the unitary one-parameter group corresponding to hj . By Corol-
lary 3.14, every pair (h1, hj) generates a subalgebra isomorphic to sl2(R) and the generatorsH1 and

Hj integrate to a representation of S̃L2(R). Consider the Euler wedges W1,Wj ∈ W+ associated to
h1 and hj , respectively.
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We claim that Proposition 4.27 implies that U(σh1
) := JN(W1) associated to the standard sub-

space N(W1) extends the S̃L2(R)-representation to an (anti-) unitary representation of P̃GL2(R).
Indeed, by Proposition 4.27(b) we have that

∆
−1/2
h1

eitHj∆
1/2
h1

⊂ JN(W1)e
itHjJN(W1) (4.14)

on the dense domain JN(W1)(e
−itHjV ∩ V) with V = Fix(JN(W1)∆

1/2
N(W1)

) = N(W1), cf. condition (c)

in Proposition 4.27. On the previous domain we then have

∆
−1/2
h1

eitHj∆
1/2
h1

⊂ U(σh1
)eitHjU(σh1

).

With Proposition 4.27(a) we can now conclude that

U(σh1
)eitHjU(σh1

) = e−itHj for t ∈ R (4.15)

because both sides are bounded operators which coincide on a dense subspace. Since the Lie algebra
g is generated by h1, . . . , hn, we obtain

U(σh1
)U(g)U(σh1

) = U(σh1
gσh1

) for all g ∈ G↑. (4.16)

In particular, U defines an (anti-)unitary representation of G. Pick α ∈ Z(G↑)− such that (HK4) is
satisfied and consider the twisted representation of G defined by Uα(σh1

) := ZαJN(W1) = ZαU(σh1
).

Since N coincides with the restriction to W+ of the BGL net of the (anti-)unitary representation U
of G, the representation Uα satisfies (HK7) and (HK8) by Proposition 4.16.

Note that the density property as well as the existence of orthogonal wedges are sufficient
but not necessary to have a G-covariant action: Consider the BGL net associated to the unique
irreducible positive energy representation U of the G = Aff(R) on the real line. Then the standard
subspaces NU (a,∞) and NU (−∞, b) are associated to positive and negative half-lines and satisfy
(HK1)-(HK5). There are no-orthogonal wedges in this case but the extension to an (anti-)unitary
representation of G is given by

U(σW ) = JNU (W ).

We further remarks that in this case σW does not preserve the wedge family W+.
For the Poincaré group, with the identification of wedge regions and Euler elements (see (2.28)),

the axial wedges
Wj = {(t, x) ∈ R1+d : |t| < xj}, j = 1, . . . , d,

define a family of orthogonal wedge regions, namely wedge regions associated to orthogonal Euler
elements. Considering wedges as subsets of Minkowski spaces one can define further regions by
wedge intersection. Spacelike cones are particularly important: they are defined, up to translations
by finite intersection of wedges obtained by Lorentz transforms of W1. Analogously one can define,
by intersecting wedge subspaces, subspace associated to any spacelike cone. In principle this can
also be trivial, but if they are standard, the cyclicity assumption of 4.27(c) is ensured, cf. [GL95].

Consider G = M̃öb⋊ {id, τ̃}. Let (W+, U,N) be a net of standard subspaces satisfying (HK1)-

(HK5). Let Ĩ⊃ ⊆ R be an interval with q(Ĩ⊃) = I⊃ where the latter is the right semicircle with

endpoints (−i, i) ⊂ S1. Then the dilation generators δ̃∩ and δ̃⊃ define orthogonal Euler elements

generating M̃öb. Considering the wedgesW∩ = (x∩, σ∩) andW⊃ = (x⊃, σ⊃) with W∩ = ρ̃(π/2)W⊃,

the intersection is again a wedge interval Ĩ = Ĩ∩∩Ĩ⊃. In particular, by isotony, N(Ĩ∩)∩N(Ĩ⊃) ⊃ N(Ĩ)
is standard and condition (c) in Proposition 4.27 holds.
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A Toolbox

Proposition A.1. ([NÓ17, Thm. 2.11(a)]) If (U,H) is a unitary representation of G↑, then any

two (anti-)unitary extensions (Ũj ,H), j = 1, 2, of U to G are unitarily equivalent, i.e., there exists
Γ ∈ U(G↑)′ with

Γ ◦ Ũ1(g) = Ũ2(g) ◦ Γ for g ∈ G.

Lemma A.2. Let M ⊆ B(H) be a von Neumann algebra and J ∈ Conj(H) such that JMJ = M.
Then the exponential function of the Banach symmetric space

U(M)J,− := {U ∈ U(M) : JUJ = U−1}

is surjective, i.e., for every U ∈ U(M)J,− there exists an element X = −X∗ ∈ M with JXJ = −X
such that U = eX .

Proof. We consider the antilinear automorphism

α : M → M, α(M) := JMJ

of the von Neumann algebra M. Let N ⊆ M be the abelian von Neumann algebra generated by
a fixed element U ∈ U(M)J,−. Then α(U) = U−1 = U∗ implies that α(N ) = N with α(A) = A∗

for every A ∈ N . Any spectral resolution of U in N and any bounded measurable function
f : T → iR with ef = idT yields an element X := f(U) ∈ N with X∗ = −X and eX = U . Then
JXJ = α(X) = X∗ = −X.

The following lemma is [NÓ17, Lemma A.1]:

Lemma A.3. Let M ⊆ H be a von Neumann algebra, α : M → M a real-linear weakly continuous
automorphism and U ∈ U(M) be a unitary element. Then the following assertions hold:

(a) If α is complex linear and α(U) = U , then there exists a V ∈ U(M) with α(V ) = V and
V 2 = U .

(b) If α is complex linear and α(U) = U−1 with ker(U + 1) = {0}, then there exists a V ∈ U(M)
with α(V ) = V −1 and V 2 = U .

(c) If α is antilinear and α(U) = U−1, then there exists a V ∈ U(M) with α(V ) = V −1 and
V 2 = U .

(d) If α is antilinear and α(U) = U with ker(U + 1) = {0}, then there exists a V ∈ U(M) with
α(V ) = V and V 2 = U .
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