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Abstract

We prove the Bisognano-Wichmann property for asymptotically complete
Haag-Kastler theories of massless particles. These particles should either be
scalar or appear as a direct sum of two opposite integer helicities, thus, e.g.,
photons are covered. The argument relies on a modularity condition formulated
recently by one of us (VM) and on the Buchholz’ scattering theory of massless
particles.

1 Introduction

For any von Neumann algebra with a faithful state Tomita-Takesaki theory gives a
natural dynamics constructed using the complex structure of the algebra. It was
shown by Bisognano and Wichmann that for the algebra of the Wightman fields
localised in a spacelike wedge this latter dynamics coincides with the Lorentz boosts
in the direction of this wedge [BW76]. Furthermore, in the presence of the Bisognano-
Wichmann (B-W) property the full global symmetry of the model is contained in the
modular structure of the net reducing the dichotomy between symmetries and algebras
to an inclusion [BGL95]. The B-W property is also important for many other reasons,
ranging from the intrinsic meaning of the CPT symmetry [GL95] to a construction of
interacting models [Le08] and to entanglement theory [W18]. While its formulation
is most natural in the algebraic (Haag-Kastler) setting, and it is known to hold in all
the ‘physical’ examples, its general proof in this framework is missing to date. The
reason is the broadness of the Haag-Kastler setting which admits also non-physical
counterexamples to the B-W property. For example, when an infinite family of massive
spinorial or infinite spin particles occurs [LMR16, Mo18]. Thus it is important to find
natural assumptions which exclude such pathological cases.

For massless theories the assumption of global conformal invariance implies the
B-W property as shown in [BGL93]. A search for an algebraic sufficient condition for
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the B-W property, not relying on conformal covariance, was started in [Mo18, Mo17]
at the level of one particle nets. Here a criterion on the covariant representation
called the modularity condition was shown to give the B-W property of the one parti-
cle net. For massive theories which are asymptotically complete, the paper by Mund
[Mu01] gives the B-W property. This paper exploits a result of Buchholz and Ep-
stein [BE85] in order to study geometrically the analytic extension of one parameter
boosts and identify it with the associated modular operator. This allows to verify the
Bisognano-Wichmann property on the one particle subspace and conclude it for the
full interacting net by asymptotic completeness and wedge localization of the modu-
lar operator. Unfortunately this method does not apply to massless theories as the
argument of Buchholz and Epstein requires a mass gap.

In the present paper we prove the B-W property for massless bosonic theories
which are asymptotically complete, by combining some ideas contained in the works
mentioned above. First, we identify the modular operator and the boost genera-
tor associated to the same wedge at the single-particle level. To this end, we ver-
ify the modularity condition introduced in [Mo17, Mo18] and thus avoid the use of
the Buchholz-Epstein result. Our argument requires that the representation of the
Poincaré group is either scalar or a direct sum of two representations with opposite
integer helicities. Thereby we show that the modularity condition applies to a large
family of massless representations, including higher helicity. Next, we show that the
B-W property holds on the entire Hilbert space by using scattering theory and the
assumption of asymptotic completeness. We recall that scattering theory for massless
bosons was developed in [Bu77] and various simplifications have been found mean-
while. In the present paper we use the variant from [AD17] which is based on novel
ergodic theorem arguments and on uniform energy bounds on asymptotic fields from
[Bu90, He14.1]. Our results extend the range of validity of the B-W property and
reconfirm its status as a generic property of physically reasonable models.

Our paper is organized as follows: In Sect. 2 we state our main result after the
necessary preparations. In Sect. 3 we recall some relevant facts from scattering theory
of massless particles, the theory of standard subspaces and one-particle nets, and
representations of the Poincaré group. In Sect. 4 the modularity condition is stated
and verified for one-particle massless nets with arbitrary integer spin. In Sect. 5 the
result is generalised to an arbitrary number of particles using scattering theory and
the assumption of asymptotic completeness.

Acknowledgment: W.D. would like to thank Sabina Alazzawi who was involved at
early stages of this project. Both authors thank Maximilian Duell for interesting dis-
cussions. W.D. was supported by the Deutsche Forschungsgemeinschaft (DFG) within
the Emmy Noether grants DY107/2-1 and DY107/2-2. V.M. Titolare di un Assegno
di Ricerca dell’Istituto Nazionale di Alta Matematica (INdAM fellowship), supported
in part by the ERC Advanced Grant 669240 QUEST “Quantum Algebraic Struc-
tures and Models”, MIUR FARE R16X5RB55W QUEST-NET, GNAMPA-INdAM,
acknowledge the MIUR Excellence Department Project awarded to the Department
of Mathematics, University of Rome Tor Vergata, CUP E83C18000100006.

2



2 Framework and results

2.1 Local nets and the Bisognano-Wichmann property

Let R1+3 be the Minkowski spacetime. We denote by K the family of double cones
O ⊂ R1+3 ordered by inclusion and write O′ for the causal complement of O in
R1+3. Furthermore, let P̃↑

+ = R4
⋊ SL(2,C) denote the covering group of the proper

ortochronous Poincaré group P↑
+. We denote with Λ : P̃↑

+ → P↑
+ the covering map.

Definition 2.1. Let H be a fixed Hilbert space. We say that K ∋ O 7→ A(O) ⊂ B(H)
is a local net of von Neumann algebras in a vacuum representation if the following
properties hold:

1. Isotony: A(O1) ⊂ A(O2) for O1 ⊂ O2.

2. Poincaré covariance: there is a continuous unitary representation U of P̃↑
+

such that

U(λ)A(O)U(λ)∗ = A(λO) for λ ∈ P̃↑
+. (2.1)

3. Positivity of the energy: the joint spectrum of translations in U is contained
in the forward lightcone V+ = {p ∈ R1+3 : p0 ≥ 0, p2 = (p, p) ≥ 0}.

4. Cyclicity of the vacuum: there is a unique (up to a phase) unit vector Ω ∈ H,
the physical vacuum state, which is U-invariant and cyclic for the global algebra

A :=
⋃

O⊂R1+3 A(O)
‖ · ‖

of the net.

5. Locality: A(O1) ⊆ A(O2)
′ for O1 ⊂ O′

2.

A local net of von Neumann algebras will be denoted by (A, U,Ω).

For future reference, we set for any region U ⊂ R1+3

Aloc(U) :=
⋃

O⊂U

A(O) and A(U) := Aloc(U)′′ (2.2)

and we refer to Aloc := Aloc(R
1+3) as the algebra of strictly local operators.

In order to introduce the B-W property, we need some geometric preliminaries: a
wedge shaped region W ⊂ R1+3 is an open region of the form gW1 where g ∈ P↑

+

and W1 = {x ∈ R1+3 : |x0| < x1}. The set of wedges is denoted by W. Note that
if W ∈ W, then W ′ ∈ W, where prime denotes here the spacelike complement. It
is possible to associate to any wedge a one-parameter group of boosts ΛW fixing the
wedge W by the following formula for W1

R ∋ t → ΛW1(t) :=




cosh(t) sinh(t) 0 0
sinh(t) cosh(t) 0 0

0 0 1 0
0 0 0 1


 (2.3)

and the covariant action of the Poincaré group on the set of wedges.
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We call Wα = {x ∈ R1+3 : |x0| < xα}, α = 1, 2, 3, the wedge in the xα direction
and with Rα, Λα are the one-parameter groups of rotations and boosts, respectively,
fixing Wα. Their unique one parameter group lifts to SL(2,C) are denoted rα and λα.
In general λW will denote the one parameter group lift of ΛW . Note that λα(t) = e

t
2
σα

and rα(θ) = ei
θ
2
σα where t, θ ∈ R and σα are the Pauli matrices. In particular one has

that rα(2π) = −I =: r(2π).
For any W ∈ W we define A(W ) according to (2.2). It is well known that the

vacuum is cyclic and separating for A(W ) thus the Tomita-Takesaki theory gives the
corresponding modular evolution R ∋ t 7→ ∆it

W .

Definition 2.2. We say that a local net (A, U,Ω) satisfies the Bisognano-Wichmann

property if for all W ∈ W, t ∈ R,

U(λW (2πt)) = ∆−it
W .

2.2 Massless Wigner particles and asymptotic nets

Scattering theory of massless Wigner particles was developed by Buchholz [Bu77,
Bu75], both in the bosonic and fermionic case. Recently the bosonic case was sim-
plified in [AD17]. We collect below the main results in this subject following [AD17].
We first introduce the single-particle subspace.

Definition 2.3. A local net (A, U,Ω) describes massless Wigner particles if H con-
tains a subspace H(1) 6= {0} s.t.

Ran1{0}(M) = CΩ⊕ H
(1), (2.4)

where 1{0}(M) denotes the spectral projection of the mass operator M :=
√

(P 0)2 −PPP 2

corresponding to the eigenvalue zero. We say that these particles have helicities
h1, h2, h3 . . . ∈ Z if U |H(1) is a finite or infinite multiple of the direct sum of the
corresponding zero mass representations.

It is well known that to any local theory containing massless particles one can
associate an asymptotic (free) theory [Bu77]. We outline now this construction fol-
lowing [AD17]. For the unitary representation of translations U |R4 we shall write
U(x) = ei(P

0x0−P ·x) and for translates of observables A ∈ A the notations αx(A) :=
A(x) := U(x)AU(x)∗ are used. If g ∈ L1(R4), then A(g) :=

∫
A(x)g(x)d4x denotes

the operator A smeared with the function g. Moreover, we set

Aloc,0 := {A ∈ Aloc : x 7→ A(x) smooth in norm}. (2.5)

This is a weakly dense ∗-subalgebra of Aloc, as can be seen by smearing local operators
with delta-approximating functions. Next, we specify the following Poincaré invariant
subset of C∞

0 (R4)

C∗(R
4) := {(nµ∂

µ)5g : g ∈ C∞
0 (R4), n0 =

√
1 + n2 } (2.6)
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and define

AC∗
:= {B(g) : B ∈ Aloc,0, g ∈ C∗(R

4) }, (2.7)

AC∗ := SpanAC∗
, (2.8)

AC∗
(O) := AC∗

∩A(O), AC∗(O) := AC∗ ∩A(O), O ∈ K. (2.9)

Now we move on to the construction of asymptotic fields of massless particles. For
any A ∈ AC∗ and f ∈ C∞(S2), we set as in [Bu77, Bu82]

At{f} := −2 t

∫
dω(n) f(n) ∂0A(t, tn). (2.10)

Here dω(n) = sin ν dνdϕ
4π

is the normalized, invariant measure on S2 and ∂0A :=
∂s(e

isHAe−isH)|s=0. In order to improve the convergence in the limit of large t, we
proceed to time averages of At{f}, namely

Āt{f} :=

∫
dt′ ht(t

′)At′{f}. (2.11)

Here for non-negative h ∈ C∞
0 (R), supported in the interval [−1, 1] and normalized so

that
∫
dt h(t) = 1, we set ht(t

′) = t−ε̄h(t−ε̄(t′ − t)) with t ≥ 1 and 0 < ε̄ < 1. It turns
out that these limits exist on all vectors from the domain

DP 0 :=
⋂

n≥1

D((P 0)n), (2.12)

where D((P 0)n) is the domain of self-adjointness of (P 0)n.

Lemma 2.4. Let A ∈ AC∗(O) and f ∈ C∞(S2). Then, the limit

Aout{f}Ψ = lim
t→∞

Āt{f}Ψ (2.13)

exists for Ψ ∈ DP 0 and is again an element of DP 0.

The operators Aout{f} are constructed in such a way that they create single-
particle states from the vacuum, namely

Aout{f}Ω = P (1)f
(

P

|P |

)
AΩ, (2.14)

where P (1) is the projection on the single-particle subspace H(1). Vectors of the form
(2.14) span a dense subspace of H(1), even in the case f ≡ 1. Furthermore, if Aout{f},
A′out{f ′} are two asymptotic fields as specified above, then

[Aout{f}, A′out{f ′}] = 〈Ω, [Aout{f}, A′out{f ′}]Ω〉1H (2.15)

as operators on DP 0 . For f ≡ 1 the operators Aout{f} appearing in Lemma 2.4 are
denoted Aout and are called the asymptotic fields. For A = A∗ these operators are
essentially self-adjoint on D(P 0) and their self-adjoint extensions are denoted by the
same symbol. For any O ∈ K we introduce the von Neumann algebra:

Aout(O) := { eiAout

: A ∈ AC∗(O), A∗ = A }′′. (2.16)
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The triple (Aout, U,Ω) satisfies all the properties from Definition 2.1, except, perhaps,
for the cyclicity of the vacuum. If the latter property also holds, then we say that
the theory (A, U,Ω) is asymptotically complete. Clearly, for the definition of
asymptotic completeness the case f ≡ 1 suffices. However, the operators Aout{f} for
other choices of f will be needed in Sect. 5 at the technical level. For this reason we
collected their properties above.

Now we are ready to state the main result of this paper:

Theorem 2.5. Let (A, U,Ω) be a local net containing massless particles with helicity
zero or with helicities (h,−h) for some h ∈ N. If this net is asymptotically complete,
then it satisfies the Bisognano-Wichmann property.

Proof. Follows from Theorem 4.13 and Propositions 5.1, 5.4 below. �

Even if the original net (A, U,Ω) is not asymptotically complete, we can set Hout :=
AoutΩ and define the asymptotic net (Aout|Hout, U |Hout,Ω) which is asymptotically
complete by construction. In view of the commutation relations (2.15), this net can be
considered free, but it is not automatically the net of the corresponding textbook free
field theory1. By Theorem 2.5, this net satisfies the Bisognano-Wichmann property
if it contains massless Wigner particles with helicity zero or (h,−h), h ∈ N.

We note that the local nets satisfying the assumptions of Theorem 2.5 are a posteri-
ori in the setting of [GL95]. Indeed, the modular covariance is an obvious consequence
of the Bisognano-Wichmann property and the Reeh-Schlieder property for spacelike
cones follows from the spectrum condition and cyclicity of the vacuum under A (cf.
[Bu75, Appendix]). From the spin-statistics theorem of [GL95] it follows that such
nets are actually covariant under P↑

+. Furthermore, by the CPT theorems of this

reference, the unitary representation U of P↑
+ extends to an (anti-)unitary covariant

representation of P+ (the group generated by P↑
+ and the PT operator Θ) as follows:

Corollary 2.6. Let (A, U,Ω) be a local net as in Theorem 2.5. Then U extends to
an (anti-)unitary representation of the Poincaré group P+ by

JW1U(R1(π)) = U(Θ)

where Θx = −x with x ∈ R1+3, JW1 is the modular conjugation associated to (A(W1),Ω)
and R1(π) is the rotation by π around the first axis.

3 Preliminaries

3.1 Scattering states of massless particles

In this subsection we provide some preparatory information about the Hilbert space of
scattering states Hout := AoutΩ introduced above. Namely, we extract the creation and
annihilation parts of the asymptotic fields (2.13) in order to facilitate the construction
of scattering states. We still follow [AD17] which in turn relied here on [DH15]. Let

1For example, if we choose as the original net the ‘truncated’ net, s.t. the local algebras of regions
below certain size are declared to be C1, the asymptotic net will inherit this property [AD17].
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θ ∈ C∞(R), 0 ≤ θ ≤ 1, be supported in (0,∞) and equal to one on (1,∞). Moreover,
let β ∈ C∞

0 (R4), 0 ≤ β ≤ 1, be equal to one in some neighbourhood of zero and
satisfy β(−p) = β(p). Furthermore, for a parameter 1 ≤ r < ∞ and a future oriented
timelike unit vector n we define

η̃±,r(p) := θ(±r(nµp
µ))β(r−1p), (3.1)

where tilde denotes the Fourier transform. As r → ∞ these functions approximate
the characteristic functions of the positive/negative energy half planes { p ∈ R4 :
±nµp

µ ≥ 0 }. We also have η̄±,r = η∓,r. Note that the family of functions η±,r, as
specified above, is invariant under Lorentz transformations.

Proposition 3.1. [Bu77, AD17] Let A ∈ AC∗
, f ∈ C∞(S2). Suppose that the timelike

unit vectors n entering the definition of A and of η±,r coincide. Then:

(a) The limits Aout{f}±Ψ := limr→∞Aout{f}(η±,r)Ψ, Ψ ∈ DP 0, exist and define the
creation and annihilation parts of Aout{f} as operators on DP 0. Aout{f}± do
not depend on the choice of the functions θ and β in (3.1) within the specified
restrictions.

(b) (Aout{f}±)∗|DP0 = A∗out{f̄}∓. In particular, Aout{f}± are closable operators.

(c) Aout{f}±DP 0 ⊂ DP 0.

(d) Aout{f} = Aout{f}+ + Aout{f}− on DP 0.

Making use of Proposition 3.1 and of (2.15) we also obtain on DP 0

[Aout{f}−, A′out{f ′}+] = 〈A∗out{f̄}+Ω, A′out{f ′}+Ω〉1H (3.2)

and the commutators of pairs of creation (resp. annihilation) operators vanish. The
following definition of scattering states is slightly more general than in [Bu77, AD17],
as we do not assume f ≡ 1. The proof is an obvious application of the canonical
commutation relations (3.2).

Proposition 3.2. [Bu77, AD17] The states Ψout := Aout
1 {f1}+ . . . Aout

n {fn}+Ω have
the following properties:

(a) Ψout depends only on the single-particle states Φi = Aout
i {f}Ω ∈ H(1). Therefore,

we write Ψout = Φ1

out
× · · ·

out
× Φn.

(b) 〈Φ1

out
× · · ·

out
× Φn,Φ

′
1

out
× · · ·

out
× Φ′

n′〉 = δn,n′

∑
σ∈Sn

〈Φ1,Φ
′
σ1
〉 . . . 〈Φn,Φ

′
σn
〉, where Sn

is the set of all permutations of (1, . . . , n).

The subspace of H spanned by vectors of the form Ψout = Φ1

out
× · · ·

out
× Φn for fixed n

will be denoted H(n). We note that

H
out := AoutΩ =

⊕

n≥0

H
(n), (3.3)

where H(0) = CΩ and H(1) was introduced in Definition 2.3. The last equality in (3.3)
follows from density of vectors of the form (2.14) in H(1) and from the canonical com-
mutation relations (3.2) by standard Fock space arguments. Clearly, Hout is naturally
isomorphic to the symmetric Fock space over H(1), denoted Γ(H(1)).
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3.2 Standard subspaces

We recall here some elements of the theory of standard subspaces following [Lo]. In
the later part of this subsection we also provide several results which we were not able
to find in literature and that will be needed in our investigation.

A real linear, closed subspace H of a complex Hilbert space H is called cyclic if
H + iH is dense in H, separating if H ∩ iH = {0} and standard if it is cyclic and
separating.

Given a standard subspace H the associated Tomita operator SH is defined to
be the closed anti-linear involution with domain H + iH , given by:

SH : H + iH ∋ ξ + iη 7→ ξ − iη ∈ H + iH, ξ, η ∈ H.

The polar decomposition
SH = JH∆

1/2
H

defines the positive self-adjoint modular operator ∆H and the anti-unitary mod-
ular conjugation JH . ∆H is invertible and JH∆HJH = ∆−1

H .
Let H be a real linear subspace of H, the symplectic complement of H is defined

by
H ′ := {ξ ∈ H : Im〈ξ, η〉 = 0, ∀η ∈ H} = (iH)⊥R ,

where ⊥R denotes the orthogonal complement in H with respect to the real part of
the scalar product on H. H ′ is a closed, real linear subspace of H. It is a fact that H
is cyclic (resp. separating) iff H ′ is separating (resp. cyclic), thus H is standard iff
H ′ is standard and in this case

SH′ = S∗
H ,

with JH′ = JH and ∆H′ = ∆−1
H = JH∆HJH [Lo]. Furthermore, if H is standard, then

H = H ′′. We recall that the one-parameter, strongly continuous group t 7→ ∆it
H is

called the modular group of H and

∆it
HH = H, JHH = H ′ , t ∈ R .

There is a 1-1 correspondence between Tomita operators and standard subspaces.

Proposition 3.3. [Lo]. The map

H 7−→ SH (3.4)

is a bijection between the set of standard subspaces of H and the set of closed, densely
defined, anti-linear involutions on H.

The following are three basic results on standard subspaces.

Lemma 3.4. [Mo18]. Let H,K ⊂ H be standard subspaces and U ∈ U(H) be a
unitary operator on H such that UH = K. Then U∆HU

∗ = ∆K and UJHU
∗ = JK .

Lemma 3.5. [Lo]. Let H ⊂ H be a standard subspace, and K ⊂ H be a closed,
real linear subspace of H. If ∆it

HK = K, ∀t ∈ R, then K is a standard subspace of
K := K + iK and ∆H |K is the modular operator of K on K. Moreover, if K is a
cyclic subspace of H, then H = K.
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Theorem 3.6. [Lo]. Let H ⊂ H be a standard subspace, and U(t) = eitP be a
one-parameter unitary group on H with a generator ±P > 0, such that U(t)H ⊂ H,
∀t ≥ 0. Then, {

∆is
HU(t)∆−is

H = U(e∓2πst)
JHU(t)JH = U(−t)

∀t, s ∈ R. (3.5)

We note that the above result is a variant of the Borchers theorem [Bo92, Fl98] for
standard subspaces.

The following three lemmas, which we could not find in the literature, will be
needed to analyze the subspaces H(1)(W ) defined in (5.2) below. They concern de-
compositions of standard subspaces w.r.t. projections E commuting with SH . Since
SH is unbounded and not self-adjoint, we mean here that E commutes with JH and
bounded Borel functions of ∆H . If ξ

′ ∈ D(S∗
H) = H ′+ iH ′ and ξ ∈ D(SH) = H + iH ,

then, for such E

〈ξ′, SHEξ〉 = 〈S∗
Hξ

′, Eξ〉 = 〈JH∆
−1/2
H ξ′, Eξ〉 = lim

n→∞
〈χn(∆

−1/2
H )∆

−1/2
H ξ′, EJHξ〉

= lim
n→∞

〈ξ′, Eχn(∆
−1/2
H )∆

−1/2
H JHξ〉 = 〈ξ′, E∆

−1/2
H JHξ〉 = 〈ξ′, ESHξ〉, (3.6)

where χn is the characteristic function of [−n, n] and we made use of the fact that

ξ′, JHξ ∈ D(∆
−1/2
H ) to control the limit n → ∞.

Lemma 3.7. Let H ⊂ H be a standard subspace and E = E2 = E∗ be a projection
commuting with SH . Then H = EH ⊕ (1 − E)H. Furthermore, EH and (1 − E)H
are standard in EH and (1−E)H, respectively.

Proof. H is defined to be the kernel of 1− SH . Now since E commutes with SH , for
every ξ ∈ H , Eξ ∈ Ker(1− SH), thus Eξ ∈ H (cf. computation (3.6) above). As the
same argument applies to (1 − E) and ξ = Eξ + (1 − E)ξ, we have the claim. The
last statement is obvious. �

Lemma 3.8. Let H ⊂ H be a standard subspace and E = E2 = E∗ be a projection
commuting with SH . Then H ′ = EH ′⊕ (1−E)H ′. Furthermore, EH ′ and (1−E)H ′

are standard in EH and (1−E)H, respectively.

Proof. If E ∈ B(H) is a projection commuting with SH , then E also commutes with

SH′ = JH∆
−1/2
H = ∆

1/2
H JH and the decomposition H ′ = EH ′ ⊕ (1 − E)H ′ follows

as in Lemma 3.7. We note that SH and SH′ and their polar decompositions decom-
pose through E. (Clearly, SEH = SH |EH and S(1−E)H = SH |(1−E)H). Consequently,
(EH)′ = EH ′ and ((1−E)H)′ = (1−E)H ′ on EH and (1−E)H, respectively. Since
EH and (1−E)H are cyclic and separating in EH and (1−E)H, the claim follows.

�

An immediate consequence is:

Lemma 3.9. Let H,K ⊂ H standard subspaces and E a projection satisfying the
assumptions of Lemma 3.8 w.r.t. H and K. Assume that K ⊂ H ′. Then EK ⊂ EH ′

and (1− E)K ⊂ (1−E)H ′.
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Proof. Since H ′ = EH ′ ⊕ (1 − E)H ′ and K = EK ⊕ (1 − E)K, for every ξ ∈ K
we have Eξ ∈ K, thus Eξ ∈ EH ′. We conclude that EK ⊂ EH ′ and analogously
(1− E)K ⊂ (1−E)H ′. �

3.3 One particle nets

Let U be a unitary representation of the Poincaré group P↑
+ on a Hilbert space H.

We shall call a U-covariant (or Poincaré covariant) net of standard subspaces
on wedges a map

H : W ∋ W 7−→ H(W ) ⊂ H,

associating to every wedge in R1+3 a closed real linear subspace of H, satisfying the
following properties2:

1. Isotony: If W1,W2 ∈ W and W1 ⊂ W2 then H(W1) ⊂ H(W2);

2. Poincaré covariance: U(g)H(W ) = H(gW ), ∀g ∈ P↑
+, ∀W ∈ W;

3. Positivity of the energy: the joint spectrum of translations in U is contained
in the forward lightcone V+ = { p ∈ R1+3 : p0 ≥ 0, p2 = (p, p) ≥ 0};

4. Cyclicity: if W ∈ W, then H(W ) is a cyclic subspace of H;

5. Locality: if W1 ⊂ W ′
2 then H(W1) ⊂ H(W2)

′.

We shall indicate a U -covariant net H of standard subspaces on wedges satisfying
1.-5. with the couple (U,H). This is the setting in which we are going to study the
following property:

6. Bisognano-Wichmann property: if W ∈ W, then U(λW (2πt)) = ∆−it
H(W ),

∀t ∈ R;

The next property is a completeness property for a model in the sense of the causal
structure and, by Lemma 3.5, is a consequence of the locality and the B-W properties
(see e.g. [Mo18]).

7. Duality property: if W ∈ W, then H(W )′ = H(W ′).

Denote by P 0,P be the generators of translations in the representation U and M =√
(P 0)2 − P

2 the resulting mass operator. Then Theorem 3.6 has the following corol-
lary, which is well known in the context of nets of von Neumann algebras.

Corollary 3.10. For any wedge W , the mass operator M commutes strongly3 with
∆H(W ) and JH(W ). Its real bounded Borel functions commute weakly with SH(W ) on
domains specified as in (3.6).

2The notation W1,W2 in this definition should not be confused with the standard wedges in the
direction of particular axes, as used in Sect. 2.1.

3Taking anti-linearity of JH(W ) into account, commutation with real bounded Borel functions of
M is understood here.
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Proof. Consider the wedge W1, defined as in Sect. 2.1, and the associated standard
subspace H(W1). Translations in direction of the axes x2 and x3 fix W1. In particular
the generators of the associated translation group P2 and P3, respectively, commute
strongly with ∆H(W1) and JH(W1) by Lemma 3.4. Lightlike translations of the form
a±(t) = (±t, t, 0, 0) with t ≥ 0 have generators P± := (±P0 − P1) s.t. ±P± ≥ 0 and
U(a±(t))H(W1) ⊂ H(W1) for t ≥ 0. By the Borchers theorem for standard subspaces
(Theorem 3.6) we have that U(a±) have the commutation relations as in equation
(3.5):

∆is
H(W1)

U(a±(t))∆
−is
H(W1)

= U(a±(e
∓2πst)) ⇒ ∆is

H(W1)
f(P±)∆

−is
H(W1)

= f(e∓2πsP±)

JH(W1)U(a±(t))JH(W1) = U(a±(−t)) ⇒ JH(W1)f(P±)
∗JH(W1) = f(P±),

where f is any bounded Borel function. The implications above follow by approx-
imating f pointwise with Schwartz-class functions (which gives strong convergence
of the corresponding operators) and using the Fourier transform. Now P 2 = M2 =
−(P+P− + P 2

2 + P 2
3 ) and for any real Borel function g it is easy to check, using the

above relations, that g(M2) commutes with ∆H(W ) and JH(W ). Indeed, by approxi-
mating g pointwise by Schwartz-class functions, applying the Fourier transform and
using that P2, P3 commute strongly with ∆H(W ) and JH(W ) it suffices to verify that

∆is
H(W1)e

−iP+P−t∆−is
H(W1)

= e−iP+P−t, JH(W1)e
−iP+P−tJH(W1) = eiP+P−t.

This is achieved by approximating e−iP+P−t pointwise by linear combinations of ex-
pressions of the form f+(P+)f−(P−), where f+, f− are bounded Borel functions, and
applying the relations above.

For a general wedge W , let g ∈ P↑
+ s.t. W = gW1. Then, by Lemma 3.4, JH(W ) =

U(g)JH(W1)U(g)∗, ∆H(W ) = U(g)∆H(W1)U(g)∗ and thus SW = U(g)SH(W1)U(g)∗.
Clearly P 2 = U(g)P 2U(g)∗, thus P 2 commutes with JH(W ),∆H(W ), SH(W ) for every
W ∈ W in the same sense as discussed above. �

3.4 Induced representations: the Poincaré group and its sub-
groups

Our group theoretic considerations in the remaining part of Sect. 3 and in Sect. 4
are based on the standing assumption that all the representations of topological
groups on Hilbert spaces are strongly continuous.

Let G be a locally compact group, N a nontrivial closed normal abelian subgroup
and H another closed subgroup such that G = N ⋊H4. Assume that the action of G
on N̂ , the dual group of N , obtained by conjugation, is regular (cf. [Fol16] Sect. 6.6
and Definition C.1). Let p ∈ N̂ , Ωp be the orbit under the G-dual action5, with

4We warn the reader, that the letter H , used earlier for nets of standard subspaces, is now used
for groups. As we will not consider nets of standard subspaces in the remaining part of Sect. 3, there
is no risk of confusion.

5χg−1p(x) = χp(gxg
−1).
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x ∈ N , p ∈ N̂ and g ∈ G, Stabp and Stabp be the stabilizers of the point p under the
action of H and G. Stabp is called the little group. Let χp be the character associated

to p ∈ N̂ .
Every unitary irreducible representation of G is obtained by induction in the fol-

lowing way (see e.g. [Fol16] Sect. 6)

IndG
Stabp

(χp · V ), (3.7)

where V and χp · V are unitary representations of the little group Stabp and of Stabp,
respectively, and the following proposition holds:

Proposition 3.11. [Fol16] Let G = N ⋊ H as above. Every unitary irreducible
representation of G is equivalent to one of the form (3.7). Furthermore IndG

Stabp
(χp ·V )

and IndG
Stabq

(χq · V ′) are equivalent if and only if p and q belongs to the same orbit,

say p = g q, and V and V ′ ◦ adg−1 are equivalent representations of Stabp for some
g ∈ G.

If W = IndG
Stabp

(χp · V ) is an irreducible representation of G then the spectral

measure of W |N is concentrated on the orbit o = Gp (cf. Proposition 6.36 [Fol16]).
References for general induced representations are for instance [Fol16, Ki76, BR86].

The Poincaré group. The Minkowski space R1+3 is the 4-dimensional real vector
space endowed with the metric tensor η = diag(1,−1,−1,−1). The Lorentz group
L is the group of linear transformations L s.t. LT ηL = η. Let L↑

+ be the connected

component of the identity of the Lorentz group and L̃↑
+ = SL(2,C) its universal

covering group. Let P̃↑
+ = R1+3

⋊ SL(2,C) be the universal covering of the Poincaré

group P↑
+ = R1+3

⋊ L↑
+ (the inhomogeneous symmetry group of R1+3) and Λ be the

covering map. First of all, we recall that to any 4-vector is 1-1 associated a 2 × 2
matrix

x∼ = x0 1+
∑

i=1,2,3

xi σi =

(
x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)
,

where σi are the Pauli matrices. Real vectors define Hermitian matrices. If A ∈
SL(2,C), and Λ : P̃↑

+ → P↑
+ is the covering homomorphism, then the Poincaré action

is ruled by the following relation

(Λ(A)x)∼ = Ax∼A
∗. (3.8)

Let U be a unitary strongly continuous representation of the Poincaré group, then
the representation of an x-translation has the form U(x) = eiPx where P is a vector of
four self-adjoint operators and Px is obtained through the Minkowski product. Every
g ∈ L̃↑

+ acts on an x-translation by the adjoint action, namely gxg−1 = Λ(g)x. Let
Sp (P ) be the joint spectrum of generators of translations and p be a point in the
spectrum, then we have the character χp(x) = eipx. As in the general case, the dual
action on the momentum space is defined s.t. χp(Λ(g) · x) = χp′(x) and it is easy to
see that p′ = Λ(g)−1p, where the latter is the matrix-vector multiplication. Clearly

12



the adjoint action of the translations act trivially on themselves, hence on their dual
(see e.g. [BR86]).

Positive energy massless representations of the Poincaré group. Let χq,
q 6= 0, be a character of the translation group. We shall call Stabq and Stabq the

stabilizers of the point q through the L̃↑
+ and P̃↑

+ actions, respectively. The latter
is Stabq = R1+3

⋊ Stabq, where Stabq shall be called as above the little group. Any

massless, unitary, positive energy representation of P̃↑
+ is obtained starting with the

character associated to q := (1, 1, 0, 0) ∈ ∂V+ (∂V+r{0} is an L↑
+-orbit) and inducing

by a unitary representation of the Stabq group. Note that a Stabq representation is
of the form

R1+3
⋊ Stabq ∋ (x, σ) 7→ χq(x)V (σ),

where V is the unitary representation of Stabq. The little group Stabq is isomorphic

to Ẽ(2) = R2
⋊ T, where T is the unit circle. Note that r1(θ) generate T. Ẽ(2) is

the double cover of E(2) = R2
⋊ SO(2), which is the group of Euclidean motions in

two dimensions6. Irreducible representations V of Ẽ(2) fit in one of the following two
classes: (See e.g. [Va85] and [BR86, page 520])

(a) The restriction of V to R2 is trivial;

(b) The restriction of V to R2 is non-trivial.

Irreducible representations of Ẽ(2) in class (a) are labelled by half-integers h, called
the helicity parameters. Irreducible representations in class (b) are labelled by κ > 0,

the radius of a circle in R2, namely the joint spectrum of the Ẽ(2)-translations, and a
Bose/Fermi alternative parameter ǫ ∈ {0, 1

2
}.

Let

U = Ind
P̃↑
+

Stabq
(χq · V )

be a unitary representation of P̃↑
+ induced from the representation χq ·V of Stabq. We

say that U has finite helicity or infinite spin if V has the form (a) or (b), respectively.
An irreducible finite helicity representation is of the form

Uh = Ind
P̃↑
+

Stabq
(χq · V2h), h ∈ Z

2
, (3.9)

where V2h(y, g) = (2h)(g), (y, g) ∈ R2
⋊T and 2h is the one dimensional representation

of T of character h ∈ Z/2. In particular, r1 ∈ Stabq and (2h)(r1(ϕ)) = ei
ϕ
2
2h for a

ϕ ∈ [0, 4π]. Integer and half-integer values of h discern, respectively, bosonic and

fermionic representation of Ẽ(2), hence, by induction, of P̃↑
+.

6We note that Ẽ(2) is not the universal covering group of E(2), as it is not simply connected. In

particular the covering map is given by T ∋ r1(θ) = ei
θ

2
σ1 7→ eiθ ∈ SO(2), where we have identified

R2 with C and rotations as multiplication by a phase eiφ.
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3.5 GW and related subgroups of the Poincaré group and
their representations

In this subsection we introduce certain subgroups of P̃↑
+ which will be needed in Sect. 4

below to formulate a criterion for the B-W property. We refer to Sect. 2.1 for the
definitions of the wedges Wi, i = 1, 2, 3, and the set of wedges W. We also recall
from this subsection that Ri,Λi ∈ L↑

+ and ri, λi ∈ SL(2,C) denote the one-parameter
families of rotations and boosts preserving the wedges Wi, i = 1, 2, 3.

Definition 3.12. We denote with

• G0
3 the subgroup of A ∈ SL(2,C) s.t. Λ(A)W3 = W3.

• G3 = 〈G0
3,R

1+3〉, where R1+3 is the translation group and 〈G0
3,R

1+3〉 denotes the
group generated by G0

3 and R1+3.

• G̃0
3 = 〈G0

3, r1(π)〉, G̃3 = 〈G3, r1(π)〉 = R1+3
⋊ G̃0

3.

For a general wedge W ∈ W, G0
W , GW , G̃W and G̃0

W are defined by the transitive
action of P↑

+ on wedges. We will denote the massless orbits of the R1+3 translation
characters under the G3 action with σr = {p = (p0,p = (p1, p2, p3)) ∈ R1+3 : p21 +
p22 = r2, p20 = p2, p0 > 0}, σ±

0 = {p ∈ R1+3 : p1 = 0 = p2, p0 = ±p3, p0 > 0} and
σ0 = σ+

0 ∪ σ−
0 . In the present paper, we will be interested in orbits σr with r > 0 since

σ±
0 have null measure w.r.t. the Lorentz invariant measure on ∂V+. Finally, we warn

the reader that G̃3, G̃W do not denote the covering groups of G3, GW .

Note that G0
3 = 〈λ3, r3, r(2π)〉. Indeed, any SL(2,C) element implementing a

Poincaré transformation can be decomposed by the polar decomposition A = UA · TA

(see e.g. [Mor06]), where UA is a rotation and TA a boost. Let Λ : SL(2,C) → L↑
+ be

the covering map, then Λ(A)W3 = W3 iff U−1
A W3 = TAW3. Assume that there exists

a transformation A such that U−1
A W3 6= W3 6= TAW3 but U−1

A W3 = TAW3. Consider
the edge of the wedge E:={x ∈ R1+3 : x0 = 0 = x3}. Then, U−1

A E = {x ∈ R1+3 :
x0 = 0 = (UAx)3} cannot be equal to TAE = {x ∈ R1+3 : (T−1

A x)0 = 0 = (T−1
A x)3}. In

particular U−1
A W3 = W3 = TAW3.

Next, we note that G0
3 and G̃0

3 share the same orbits in ∂V+ as the following remark
explains.

Remark 3.13. [Mo18] Fix p = (p0, p1, p2, p3) ∈ (∂V+ r {0}) := {p ∈ R1+3 : p2 =
0, p0 > 0}. The R1(π)-rotation

R1(π)p = (p0, p1,−p2,−p3)

can be obtained as a composition of a Λ3-boost of parameter tp and a R3-rotation of
parameter θp as

Λ3(tp)R3(θp)(p0, p1, p2, p3) = Λ3(tp)(p0, p1,−p2, p3) = (p0, p1,−p2,−p3) (3.10)

for all the orbits except for σ±
0 , where σ±

0 appeared in Definition 3.12. Clearly tp and
θp depend on p and the orbits excluded by this geometrical fact have null measure
w.r.t. the Lorentz invariant measure on ∂V+. The discussion does not change if p is
considered as an element of R1+3 or of its dual.
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By (3.10), we deduce that almost all G0
3 orbits on ∂V+ are preserved by the R1(π)-

action. Furthermore, we note that R1(π) sends W3 onto W ′
3. Thus any transformation

R ∈ P↑
+ such that RW3 = W ′

3 also preserves the G0
3 orbits on ∂V+ as well as R1(π),

since R1(π)R ∈ G0
3. We have just seen that it is possible to pointwise reconstruct a

transformation sending W to W ′ just starting with elements in G0
W . With the help of

the modularity condition (cf. Definition 4.1 and Theorem 4.2 below), this gives the
proof of the B-W property in the scalar case in [Mo18].

As the regularity of the action of G0
3 and G̃0

3 on R1+3 is verified in Appendix C, we
can apply the theory of induced representations toG3 = R1+3

⋊G0
3 and G̃3 = R1+3

⋊G̃0
3.

Choose a point qr on each massless, positive energy orbit σr of G0
3 on the dual of

R1+3. Up to a null measure set in ∂V+, the stabilizer of qr in G3 is R1+3 × 〈r(2π)〉
(cf. the definition of the orbits σr and of G0

3). Thus there exist only two irreducible
representations of G3 induced by χqr , namely

Wr,n = IndG3

R3+1×〈r(2π)〉(χqr · Vn), (3.11)

where Vn(r(2π)) = (−1)n and n = 0, 1, cf. Proposition 3.11. They correspond to
bosonic and fermionic representations of G3.

Again by Remark 3.13 the subgroups G̃3 and G̃0
3 share the same orbits σr with

r > 0 on ∂V+ (up to a null measure set in ∂V+). On the other hand the stabilizer of
the point qr = (r, r, 0, 0) ∈ σr in G̃3 is R1+3

⋊ 〈r1(π)〉.
Thus the little group of qr, the subgroup of G̃0

3 fixing qr, is Z4. We have four irre-
ducible representations of Z4 indexed by the representation of the generator, namely
Vn(r1(π)) = in, with n = 0, 1, 2, 3. Correspondingly, we have four induced representa-
tions of G̃3 associated to each orbit, namely

Wr,n = IndG̃3

R1+3
⋊Z4

(χqr · Vn) (3.12)

acting on the Hilbert spaces Hr,n. Note that we called V2h the representation of

character 2h, trivial on translations of Ẽ(2), and Vn the representation of character n

of Z4. That this is not an abuse of notation is justified by the fact that r1(π) ∈ Ẽ(2)
and when we restrict V2h to the group 〈r1(π)〉, we get

V2h(r1(π)) = ei
π
2
2h = i2h = Vn(r1(π)), V2h(r(2π)) = (−1)n = Vn(r(2π))

and it is enough to consider 2h in Z4 in the first case or 2h in Z2 in the second.
Furthermore Wr,n as a representation of G̃3 restricts to Wr,m with m≡n (mod 2) as
a representation of G3, cf. Lemma 4.9 in the next section. We will refer to (3.11)
and (3.12) as massless representation of G3 and G̃3, respectively, since the translation
spectrum lies on the boundary of the forward lightcone.

4 Modularity condition and Uh restriction

In this section we show that any local net of standard subspaces, covariant under a
finite or infinite multiple of Uh⊕U−h, h ∈ Z, satisfies the B-W property. The analysis
is based on the following modularity condition:
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Definition 4.1. [Mo18] A (unitary, positive energy) P̃↑
+ representation is said to be

modular if, for any U-covariant net of standard subspaces H, we have that (U,H)
satisfies the B-W and duality properties.

Let W ∈ W. A unitary, positive energy P̃↑
+-representation U satisfies the mod-

ularity condition if for an element rW ∈ P̃↑
+ such that Λ(rW )W = W ′ we have

that
U(rW ) ∈ U(GW )′′. (MC)

Note that (MC) depends neither on the choice of rW nor on W. Indeed if r̃W ∈ P̃↑
+

is another transformation such that Λ(r̃W )W = W ′ then rW · r̃W ∈ GW and if (MC)

holds for U(rW ), then it holds for U(r̃W ). By transitivity of the P̃↑
+ action on wedges

it is not restrictive to fix a wedge region W . Condition (MC) can be straightforwardly
stated when just a representation of G̃3 is taken into account.

Theorem 4.2. [Mo18] Let U be a positive energy unitary representation of the

Poincaré group P̃↑
+. If condition (MC) holds for U , then any local U-covariant net of

standard subspaces H, namely any pair (U,H), satisfies B-W and duality properties.
In particular U is modular.

We remark that the class of nets in Theorem 4.2, transforming under P̃↑
+, is more

general than the class of bosonic nets we defined in Sect. 3.3. The theorem applies to
the families of Poincaré representations covered by the following two results.

Proposition 4.3. [Mo18] Let U be an irreducible scalar massive or massless repre-
sentation of the Poincaré group, then U satisfies (MC).

The proof of the above proposition adapts in irreducible finite helicity case. This
section contains an alternative independent proof of modularity condition for finite
helicity representations, see Corollary 4.11.

Proposition 4.4. Let U , U1 be unitary positive energy representations of G̃3 on H,
satisfying (MC).

(i) Let E be the projection on the subspace, where U(r(2π)) = 1. Then U satisfies
(MC) iff both EU(·)E and (1− E)U(·)(1− E) satisfy (MC).

(ii) Let K be a Hilbert space, then (MC) holds for U ⊗ 1K ∈ B(H⊗K).

(iii) Let U2 be a unitary representation of G̃3 s.t. U2 is unitarily equivalent to U1.
Then U2 satisfies (MC).

Proof. (i) Since r(2π) commutes with every element in G̃3, the spectral projection E
of U(r(2π)) decomposes U into disjoint representations U(·) = EU(·)⊕ (1− E)U(·).
The thesis follows since U(G3)

′′ = (EU(G3))
′′ ⊕ ((1− E)U(G3))

′′.
(ii) Is proved in [Mo18].
(iii) Let W be a unitary s.t. WU2(g)W

∗ = U1(g), g ∈ G̃3. It is easy to see
that WU2(G3)

′W ∗ = U1(G3)
′ and WU2(G3)

′′W ∗ = U1(G3)
′′. If WU2(r1(π))W

∗ =
U1(r1(π)), then

U1(r1(π)) ∈ U1(G3)
′′ ⇒ WU2(r1(π))W

∗ ∈ WU2(G3)
′′W ∗ ⇒ U2(r1(π)) ∈ U2(G3)

′′,
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which concludes the proof. �

The representations Wr,n of G̃3, restricted to G3, give Wr,m, where m≡ n(mod 2),
see Lemma 4.9 below. Thus they are disjoint for different r, by the disjointness of
the respective orbits σr, cf. Proposition 3.11. Furthermore, since Wr,n is irreducible,
Wr,n(G3)

′ = C · 1 and Wr,n(r1(π)) ∈ Wr,n(G3)
′′ = B(Hr,n). We deduce that Wr,n

satisfies (MC).

Corollary 4.5. Let Wr,n be the irreducible G̃3-representation of radius r > 0. Then
Wr,n satisfies (MC).

The following proposition ensures that also a direct integral of massless G̃3 repre-
sentations satisfies (MC).

Proposition 4.6. Let µ be a positive Borel measure on R+. Assume that Ur are
multiples of the massless Wr,n, n = 0, 1, 2, 3, representations of G̃W . Then U =∫ ⊕

R+ Urdµ(r) satisfies (MC).

One can reduce the argument to the cases Ur|GW
= Wr,0 or Ur|GW

= Wr,1 by
Proposition 4.4 (i). We give details on the proof in Appendix B.

Now we want to verify the modularity condition (MC) for a large family of massless
bosonic representations of the physically relevant form Uh ⊕U−h for integer helicities
h. In order to prove the result, we want to disintegrate the restriction of Uh to the
G̃3 subgroup, to check the condition (MC) on the disintegration and to apply The-
orem 4.2. The Poincaré representations are obtained by induction and the Mackey
subgroup theorem teaches how to make the disintegration for such kind of represen-
tation.

Let H1 and H2 be subgroups of a locally compact group G. Then H1\G/H2 is the
double coset, i.e., the set of the equivalence classes [g] = H1gH2, with g ∈ G.

Definition 4.7. [Ma52] Let G be a separable locally compact group.
Closed subgroups H1 and H2 of G are said to be regularly related if there exists a

sequence E0, E1, E2, . . . of measurable subsets of G each of which is a union of double
cosets in H1\G/H2 such that E0 has Haar measure zero and each double coset not in
E0 is the intersection of the Ej which contain it.

Because of the correspondence between orbits of G/H2 under H1 and double cosets
H1\G/H2, H1 and H2 are regularly related if and only if the orbits, (i.e., the double
cosets) outside of a certain set of measure zero form the equivalence classes of a
measurable equivalence relation. Given a topological standard measure space X, an
equivalence relation ∼ and the quotient map s : X → Y = X/ ∼, the equivalence
relation is said to be measurable if there exists a countable family {Fn}n∈N of subsets of
the quotient space Y , s.t. s−1(Fn) is measurable and each point in Y is the intersection
of all the Fn′, n′ ∈ N, containing this point.

Consider the map s : G → H1\G/H2 carrying each element of G into its double
coset. Then equip H1\G/H2 with the quotient topology given by s and consider a
finite measure µ on G which is in the same measure class7 as the Haar measure. It is
possible to define a measure µ̄ on the Borel sets of H1\G/H2 by µ̄(F ) = µ(s−1(F )).

7Has the same set of null measure.
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We shall call µ̄ an admissible measure in H1\G/H2. The definition is well posed since
any two of such measures have the same null measure sets.

General theory of induced representations can be found for instance in [Ma52,
Fol16, BR86]. We recall the Mackey’s subgroup theorem.

Theorem 4.8 (Mackey’s subgroup theorem). [Ma52]. Let H1, H2 be closed subgroups
regularly related in G. Let π be a strongly continuous representation of H1. For each
g ∈ G consider Hg = H2 ∩ (g−1H1g) and set

Vg = IndH2
Hg
(π ◦ ad g).

Then Vg is determined to within equivalence by the double coset [g] to which g belongs.
If ν is an admissible measure on H1\G/H2, then

(IndG
H1
π)|H2 ≃

∫ ⊕

H1\G/H2

V[g] dν([g]). (4.1)

An immediate application of Theorem 4.8 to the restriction of Wr,n to G3 is the
following lemma, which entered into the proof of Corollary 4.5 above.

Lemma 4.9. The restriction of the G̃3 representation Wr,n to G3 is Wr,m, where
m≡ n (mod 2).

Of central importance for our analysis is the following proposition.

Proposition 4.10. Uh|G̃3
≃

∫ ⊕

R+

Wr,2hdr, where 2h in the right-hand side has to be

considered modulo 4.

Proof. The h-helicity representation Uh is induced by the stabilizer Stabq1 of the

point q1 = (1, 1, 0, 0). Again Stabq1 is isomorphic to R1+3
⋊ Ẽ(2). In Theorem 4.8 we

can consider G = P̃↑
+, H1 = R1+3

⋊ Ẽ(2) and we want to study the restriction of Uh

to H2 = G̃3. We postpone the proof of the fact that H1 and H2 are regularly related.
Let us now compute Hg and Vg for several choices of g. First, for g = 1, Hg=1 =

R4
⋊ 〈r1(π)〉 ⊂ R4

⋊ Ẽ(2). Here we made use of the fact that G̃0
3 = 〈λ3, r3, r1(π)〉 and

r1(π) ∈ Stabq1 = Ẽ(2). Hence

V1 = IndG̃3

R4
⋊〈r1(π)〉

(χq1 ·V2h) = W1,2h,

by (3.12) and the comment below this formula.

Next, we consider g = λ1(ln r) ∈ P̃↑
+, where λ1 is the lift of Λ1, the boost in the

x1-direction, to SL(2,C), see Sect. 2.1. Setting t 7→ Λ1(t) = Λ(λ1(t)) and noting that
qr = Λ1(ln r)q1 = r · q1, the intersection Hg := H2 ∩ (g−1H1g) satisfies

Hg = H1 since G̃3 ∩
(
λ1 (ln r)

−1 Stabq1 λ1 (ln r)
)
= G̃3 ∩ Stabqr−1 = R4

⋊ 〈r1(π)〉.
Hence,

VΛ1(ln r) = IndG̃3

R4
⋊〈r1(π)〉

((χq1·V2h) ◦ adλ1 (ln r))

= IndG̃3

R4
⋊〈r1(π)〉

(χqr−1
·V2h) = Wr−1,2h

(4.2)
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because λ1 (ln r) commutes with r1(π) (see comment on dual action in Sect. 3.4).
Finally, we consider g = r2(−π/2). We note for future reference that Λ(g)−1q1 ∈ σ0

since Λ(r2(π/2))q1 = R2(π/2)q1 = (1, 0, 0, 1) =: q0 ∈ σ0. We have

Hr2(−π/2) = G̃3 ∩ r2(π/2) Stabq1 r2(π/2)
−1 = G̃3 ∩ Stabq0 = R1+3

⋊ 〈r3〉,

Vr2(−π/2) = IndG̃3
Hr2(−π/2)

(
(χq1·V2h) ◦ ad r2(π/2)−1

)
= IndG̃3

Hr2(−π/2)
(χq0 · χ2h)

and the joint spectrum of translations is supported in σ0. Here χ2h is the 2h–character
representation of r3( · ), χ2h(r3(θ)) = ei

θ
2
2h, h ∈ Z

2
.

Let us now we show that [λ1(t)] and[r2(−π/2)] cover all the equivalence classes in

H1\G/H2. Let g1, g2 ∈ P̃↑
+ and assume that pa and pb are points on the same massless

G̃3-orbit
8 s.t. Λ(g−1

1 )q1 = pa and Λ(g−1
2 )q1 = pb. That is, there exists x ∈ G̃3 such

that pb = Λ(x)pa. Then g1x
−1g−1

2 = s ∈ Stabq1, thus g2 = s−1g1x
−1 and g2 belongs

to [g1], the double coset of g1 in H1\P̃↑
+/H2. In particular, for every g ∈ G for which

there exists tg ∈ R such that Λ(g−1)q1 and Λ1(− ln tg)q1 belong to the same orbit σt−1
g
,

we have g ∈ [λ1 (ln tg)]. All the other g ∈ G such that Λ(g)−1q1 ∈ σ0 belong to the
double coset [r2(−π/2)]. This follows from the fact that Λ(r2(−π/2))−1q1 = q0 ∈ σ0

which was mentioned above.
Now we will verify that the sets H1 and H2 are regularly related. For this purpose,

we identify H1\G/H2 with R+= [0,+∞) when [λ1 (ln r)] ∈ H1\G/H2 is identified
with r−1 ∈ R+ and [r2(−π/2)] with 0. We consider R+ with the relative topology
inherited from R. The quotient topology w.r.t. the map s : G → H1\G/H2 defined
by the previous identification guarantees that intervals of R+ are open sets. Indeed,
let ǫ > 0 and take an element g in the preimage s−1 (I), I := R+ ∩ (a, b). Then
the set N ǫ

g = {g′ ∈ G : Λ(g′−1)q1 ∈ Bǫ(Λ(g
−1)q1} is an open neighbourhood of g:

as the inverse image of the open set Bǫ(Λ(g
−1)q1) under the continuous mapping

g′ 7→ Λ(g′−1)q1, the set N ǫ
g is open and contains g. For sufficiently small ǫ it is

contained in s−1(I), since if Λ(g−1)q1 ∈ σr, then, for every g′ ∈ N ǫ
g , Λ(g

′−1)q1 ∈ σr′

with r, r′ ∈ I by continuity of the Poincaré action on Minkowski space. With the
identification H1\G/H2 ≃ R+, it is easy to see that H1 and H2 are regularly related
by using intervals (q − 1

n
, q + 1

n
) ∩ R+, n ∈ N, with rational center contained in R+.

(The second part of Definition 4.7 is used here).
Let us now describe the equivalence class of an admissible measure (cf. Defini-

tion 4.7). Starting with a finite measure µ on G in the equivalence class of the Haar
measure, we induce a measure on R+≃H1\G/H2, which we prove to be in the measure
class of the Lebesgue measure. Indeed, let Wr be the representation Wr−1,2h and W0

be V[r2(−π/2)], we get the formula:

Uh|G̃3
≃

∫ ⊕

R+

dµ(r)Wr. (4.3)

Finite helicity representations Uh extend to the conformal group (cf. [Ma77]).
In particular, by dilation covariance, we have that U(δ(t))UhU(δ(t))∗ ≃ Uh hence

8We have already one representative in each orbit, see above.
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U(δ(t))Uh|G̃3
U(δ(t))∗ ≃ Uh|G̃3

. Dilations change the unitary class of Wr,2h dilating
the radius of the representation9, since

U(δ(t))Uh|G̃3
U(δ(t))∗ = Uh ◦ ad(δ(t))|G̃3

=

∫ ⊕

R+

dµ(r)We−tr. (4.4)

Similarly as in Lemma 4.1 in [LMR16], this is a consequence of the following compu-
tation:

Wr ◦ ad(δ(t)) = Wr−1,2h ◦ ad(δ(t)) = IndG̃3

R4
⋊〈r1(π)〉

((χq1·V2h) ◦ adλ1 (ln r) ◦ ad(δ(t)))
= IndG̃3

R4
⋊〈r1(π)〉

(χqetr−1
·V2h) = Wetr−1,2h = We−tr, (4.5)

where qetr−1 := (etr−1, etr−1, 0, 0) and in the second step we used Lemma 4.1 of
[LMR16]. An analogous computation can be done for W0 in order to show that
W0 ◦ ad(δ(t)) ≃ W0: since ad(λ3) does not change the unitary equivalence class of the
G̃3-representations

V[r2(−π/2)] ◦ ad(λ3(t)) ◦ ad(δ(t)) = IndG̃3
Hr2(π/2)

(χq0 · χ2h) ◦ ad(λ3(t)) ◦ ad(δ(t)) =

= IndG̃3
Hr2(π/2)

(χq0 · χ2h) = V[r2(−π/2)],

where we used (χq0 ·χ2h)◦ad(λ3(t))◦ad(δ(t)) = (χλ3(−t)δ(t)q0 ·χ2h) = χq0 ·χ2h referring
again to Lemma 4.1 of [LMR16]. Therefore,

∫ ⊕

R+

dµ(r)Wr ≃
∫ ⊕

R+

dµ(r)Wetr =

∫ ⊕

R+

dµt(r)Wr,

where µt(r):=µ(e−tr). We show that µ is equivalent to the Lebesgue measure: as-
sume by contradiction that there exists a set E ⊂ R+\{0} such that µ(E) > 0
but µt(E) = 0 and consider the multiplication operator by the projection PE :=∫ ⊕

E
dµ(r) ∈ Uh(G̃3)

′. Then we have that the subrepresentation PEUh|G̃3
PE is not con-

tained in U(δ(t))Uh|G̃3
U(δ(t))∗ (representations of radius r ∈ E have measure zero in

the latter representation). In particular for every t ∈ R, µt is equivalent to µ, hence to
the Lebesgue measure on R+\{0} up to a possible singular measure in 0 (see Propo-
sition 11 of [Bo04]). Since σ0 has null measure in the joint spectrum of translation
in Uh, by comparing the translation spectrum in left and right side of (4.3), {r = 0}
has null µ−measure. Now the statement of the theorem is obtained by a change of
variables r 7→ 1

r
. �

By Propositions 4.6, 4.10 and 4.4 (ii) we conclude the modularity condition for finite
helicity representations:

Corollary 4.11. For every h ∈ Z

2
, Uh and its multiples satisfy (MC).

Proposition 4.12. If h is an integer, namely Uh is bosonic, then any finite or infinite
multiple of Uh ⊕ U−h satisfies (MC).

9It is easy to see that the dual action of δ(t) on a character χp is given by δ(t)p = etp.
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Proof. By Proposition 4.10 Uh and U−h have unitarily equivalent restrictions to G̃3.
Indeed, since h is supposed to be integer, 2h is equal to 0 or 2 modulo 4. Clearly
0 ≡ −0 (mod 4) and 2 ≡ −2 (mod 4). By Proposition 4.6 and Proposition 4.4 (ii),(iii),
the direct sum Uh ⊕ U−h satisfies (MC). Any multiple of U satisfies (MC) again by
Proposition 4.4 (ii). �

The main result of this section is a corollary of Theorem 4.2:

Theorem 4.13. Every net of real subspaces H undergoing the action of a finite or
infinite multiple of U = Uh ⊕ U−h, where h ∈ Z, satisfies the B-W and the duality
properties.

A final remark on finite helicity one particle nets is the following. Massless non-
zero finite helicity representations of the Poincaré group have to be properly coupled
in order to act consistently on a net of standard subspaces on spacelike cones10.
Indeed, by Theorem 4.2, Uh satisfies the modularity condition (MC) and any net
of standard subspaces it acts covariantly on satisfies the B-W property. Following
[GL95], when the B-W property holds then by spacelike cone localization property
one deduces that Uh is covariant under the action of the wedge modular conjugations,
namely Uh extends to an (anti-)unitary representation of the group P̃+ = 〈P̃↑

+,Θ〉,
where Θ is the space and time reflection. The extension is unique up to unitary
equivalence (Proposition 2.3 of [LMPR] or [NO17] for an abstract discussion). This is
not possible for the irreducible finite helicity representations as they are not induced
by a selfconjugate representation of the little group (cf. for instance [Va85]). In
particular any anti-unitary operator implementing the PT symmetry (no charge C
considered in this one particle setting) takes Uh into U−h.

5 Bisognano-Wichmann property and asymptotic

completeness

In this section we apply Theorem 4.13 to a concrete one-particle net of standard
subspaces in the subspace H(1) from Definition 2.3 and then verify the Bisognano-
Wichmann property on Hout using scattering theory.

Let Asa(W ) ⊂ A(W ) be the subspace of self-adjoint operators. It is well known
and easy to check that if (A, U,Ω) is a local net of von Neumann algebras in the sense
of Definition 2.1, then

H(W ) := {AΩ : A ∈ Asa(W ) }, (5.1)

is a net of standard subspaces on wedges w.r.t. U , i.e., it satisfies properties 1.-5. of
Sect. 3.3. Motivated by formula (2.14), we define for any W ∈ W the following real
subspace of H(1)

H(1)(W ) := P (1)H(W ). (5.2)

10A spacelike cone is a set of the form C = a + ∪λ>0λO where a ∈ R1+3 is the apex and O is a
double cone which contains only spacelike points and its closure does not contain the origin. It is
the intersection of finitely many wedge regions.
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Furthermore, we recall that by the Borchers theorem ∆A(W ), JA(W ), SA(W ) commute
with the mass operator and therefore can be restricted to the domain

D := {P (1)AΩ : A ∈ A(W ) }, (5.3)

which is dense in H(1). (This is proven analogously as Corollary 3.10). The following
result holds:

Proposition 5.1. Let (A, U,Ω) be a local net of von Neumann algebras describing
massless particles.

(i) The map H(1)(W ) = P (1)H(W ), defined in (5.1)-(5.2) above, gives a one particle
net of standard subspaces on wedges w.r.t. U (1) := P (1)UP (1), in the sense of
properties 1.-5. of Sect. 3.3.

(ii) If the theory (A, U,Ω) contains massless Wigner particles with helicity zero or
with helicities (h,−h), h ∈ N, then the one-particle net W 7→ H(1)(W ) satisfies
the B-W and duality properties.

(iii) JH(1)(W ) = JA(W )P
(1) and ∆it

H(1)(W )
= ∆it

A(W )P
(1) for t ∈ R.

Remark 5.2. The locality property for the net W 7→ H(1)(W ) can be extracted from
[Bu77], where

〈Ω, A1P
(1)A2Ω〉 = 〈Ω, A2P

(1)A1Ω〉 (5.4)

was obtained for A1, A2 localized in spacelike separated double cones by the JLD tech-
nique. In our context the same property follows from the Borchers theorem and
Lemma 3.9.

Proof. (i) By Lemmas 3.7, 3.8 and 3.9 we have that H(W ) = P (1)H(W ) ⊕ (1 −
P (1))H(W ) and W 7→ P (1)H(W ) defines a local net of standard subspaces on H(1) :=
P (1)H. It transforms under the massless Poincaré representation P (1)UP (1) and satis-
fies the assumptions 1.-5 in Sect. 3.3.

(ii) For helicities as in the statement of the proposition we obtain the B-W property
for the one-particle net from Theorem 4.13.

(iii) Let ξi ∈ H(1)(W ), i = 1, 2, and P (1)Ai,nΩ, n ∈ N, be the corresponding
approximating sequences with A∗

i,n = Ai,n. Then

SH(1)(W )(ξ1 + iξ2) = ξ1 − iξ2 = lim
n→∞

P (1)(A1,nΩ− iA2,n)Ω

= lim
n→∞

P (1)SA(W )(A1,nΩ + iA2,n)Ω

= lim
n→∞

SA(W )P
(1)(A1,nΩ + iA2,n)Ω. (5.5)

Hence H(1)(W )+ iH(1)(W ) belongs to the domain of the closure of SA(W )P
(1) and the

latter operator coincides with SH(W ) on H(1)(W ) + iH(1)(W ). By the uniqueness of
the polar decomposition, we have JH(1)(W ) = JA(W )P

(1) and ∆it
H(1)(W )

= ∆it
A(W )P

(1).

�

After this preparation we give a massless version of Lemma 6 and Proposition 7
from [Mu01] and thereby conclude the proof of the Bisognano-Wichmann property
for asymptotically complete massless theories, as stated in Theorem 2.5.
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Lemma 5.3. In each n-particle subspace H(n), n ≥ 2, there is a total set of scattering
states Ψout := Aout

n {fn}+ . . . Aout
1 {f1}+Ω with the localisation regions Oi of Ai chosen

s.t. On ⊂ W1. Furthermore, (vi − vn)1 < 0 for vi ∈ supp fi and vn ∈ supp fn for
i 6= n.

Proof. We consider an arbitrary scattering state Ψout = (Φn

out
× · · ·

out
× Φ1) constructed

using A1, . . . , An localized in some arbitrary double cones Õ1, . . . , Õn and arbitrary
smooth functions f1, . . . fn on S2. By cutting the sphere of velocities into small slices
with planes orthogonal to the 1-st axis, we can approximate Ψout with linear combi-
nations of scattering states Ψout

1 such that the projections of suppfi on the 1-st axis
are disjoint. (Cf. Proposition 3.2, formula (2.14) and the absolute continuity of the
momentum spectral measure [BF82]). Let fi0 be such function that

(vi − vi0)1 < 0 (5.6)

for all vi0 ∈ supp fi0 and vi ∈ supp fi, i 6= i0. Up to numbering, these scattering
states satisfy the condition from the lemma concerning velocities, but possibly not
the condition concerning localisation regions. Therefore, using again Proposition 3.2,
formula (2.14) and the Reeh-Schlieder property for wedges, we approximate each Ψout

1

by linear combinations of vectors Ψout
2 constructed using A′

i localised in double cones
Oi s.t. Oi0 ∈ W1. Due to the canonical commutation relations of asymptotic fields

(cf. formula (3.2) above) each such vector Ψout
2 = (Φ′

n

out
× · · ·

out
× Φ′

1) coincides with

(Φ′
i0

out
× · · ·

out
× Φ′

n

out
× · · ·

out
× Φ′

1). By changing the numbering, we obtain the claim. �

Proposition 5.4. If the unitary groups R ∋ s 7→∆is
A(W1)

and R ∋ s 7→ U(λW1(−2πs))

coincide on H(1), they also coincide on the subspace Hout of scattering states.

Proof.Let Vs := ∆is
A(W1)

U(ΛW1(2πs)). By induction over the particle number n, we

show that Vs is the unity on each H(n). Let Ψout = (Φn

out
× · · ·

out
× Φ1) be a scattering

state as in Lemma 5.3 with Φi = Aout
i {fi}Ω. For n = 0 we have Φout = Ω and the

statement follows from the invariance of the vacuum under U( · ) and s 7→ ∆is
A(W1)

.

For n = 1 the statement holds by Proposition 5.1 (ii). Now let n ≥ 2 be arbitrary
and suppose that the statement holds for n′ < n. Making use of Proposition 3.1 (d),
we write

Ψout = Aout
n {fn}+ . . . Aout

1 {f1}+Ω
= (Aout

n {fn}+ + Aout
n {fn}−) . . . (Aout

1 {f1}+ + Aout
1 {f1}−)Ω + Ψ̌out

= Aout
n {fn} . . . Aout

1 {f1}Ω + Ψ̌out, (5.7)

where, by the canonical commutation relations for the asymptotic creation/annihilation
operators (cf. formula (3.2)), the compensating vector Ψ̌out has components only in
H(ℓ) for ℓ < n. Thus we have, by the induction hypothesis, VsΨ̌

out = Ψ̌out, and it
suffices to consider Ψ̂out := Aout

n {fn} . . . Aout
1 {f1}Ω. We can write

V (s)Ψ̂out = VsA
out
n {fn} . . .Aout

1 {f1}Ω
= VsA

out
n {fn}V −1

s VsA
out
n−1{fn−1} . . . Aout

1 {f1}Ω
= VsA

out
n {fn}V −1

s Aout
n−1{fn−1} . . . Aout

1 {f1}Ω, (5.8)
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where in the last step we used the induction hypothesis. (We also used that the state
Aout

n−1{fn−1} . . .Aout
1 {f1}Ω is in DP 0, cf. Proposition 3.1, and the fact that due to

the Borchers theorem, Vs leaves DP 0 invariant. Consequently, the limit Aout
n {fn} still

exists in the last line above). Using again that Vs commutes with translations, we
have VsA

out
n {fn}V −1

s = (A′
n)

out{fn}, where A′
n := VsAnV

−1
s is localized in W1. Thus

we can write

V (s)Ψ̂out = (A′
n)

out{fn}Aout
n−1{fn−1} . . . Aout

1 {f1}Ω

=

1∑

i=n−1

Aout
n−1{fn−1} . . . [(A′

n)
out{fn}, Aout

i {fi}] . . . Aout
1 {f1}Ω (5.9)

+ Aout
n−1{fn} . . . Aout

1 {f1}(A′
n)

out{fn}Ω. (5.10)

Concerning (5.10), we use that (A′
n)

out{fn}Ω = VsA
out
n {fn}V −1

s Ω = Aout
n {fn}Ω, since

Vs preserves both the vacuum and single-particle subspace. This vector coincides with
Ψ̂out provided that we can show

[Aout
n {fn}, Aout

i {fi}] = 0 (5.11)

for all i = 1, 2, . . . , n−1. This follows from formulas (2.14), (2.15) and the disjointness
of supports of fn, fi (cf. Lemma 5.3). Thus to conclude the proof of the proposition
we have to show that the terms in (5.9) are zero. Since A′

n is only wedge-local, we
cannot use property (2.15) and we need to proceed via a direct computation: For unit
vectors Ψ1,Ψ2 ∈ DP 0 we write

|〈Ψ1[(A
′
n)

out{fn}, Aout
i {fi}]Ψ2〉|

≤ limt→∞

∫
dt′ndt

′
idω(nn)dω(ni) ht(t

′
n)ht(t

′
i)|fn(nn)||fi(ni)4t

′
nt

′
i ×

× ‖[∂0A′
n(t

′
n, t

′
nnn), ∂0Ai(t

′
i, t

′
ini)]‖

≤ limt→∞

∫
dt′ndt

′
idω(nn)dω(ni) ht(t

′
n)ht(t

′
i)|fn(nn)||fi(ni)4t

′
nt

′
i ×

× ‖[∂0A′
n, ∂0Ai(t

′
i − t′n, t

′
ini − t′nnn)]‖

≤ limt→∞

∫
dt′′ndt

′′
i dω(nn)dω(ni) t

2εh(t′′n)h(t
′′
i )|fn(nn)||fi(ni)|4(t+ tεt′′i )(t+ tεt′′n)×

× ‖[∂0A′
n, ∂0Ai(t

ε(t′′i − t′′n), (t+ tεt′′i )ni − (t + tεt′′n)nn)]‖. (5.12)

Making use of Lemma 5.3, we conclude that the last expression is zero for sufficiently
large t. Indeed, t(ni − nn)1 < 0, 0 < ε < 1 and t′′i , t

′′
n are restricted to unit balls

around zero. Hence ∂0Ai(t
ε(t′′i − t′′n), (t+ tεt′′i )ni − (t+ tεt′′n)nn) is eventually localized

in the left wedge. �

6 Conclusion and outlook

In this paper we proved the Bisognano-Wichmann property for asymptotically com-
plete theories of massless particles with integer helicities. The argument starts from
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verifying this property at the single particle level. For this purpose, the single-particle
subspace H(1) is equipped with the structure of a local net of standard subspaces. This
net is covariant w.r.t. a representation U (1) := U |H(1) of the Poincaré group, which is
a direct sum of two representations of opposite integer helicities, i.e., U (1) = Uh⊕U−h

(or a multiple thereof). Then we verified the modularity condition for the B-W prop-
erty U (1)(rW ) ∈ U (1)(GW )′′, where GW is the subgroup of Poincaré transformations
preserving a wedge W and rW maps W to the opposite wedge. This technically
demanding step was accomplished by showing that Uh and U−h have the same restric-
tion to the group G̃W generated by GW and rW . Hence U (1)|G̃W

= Uh|G̃W
⊗ 1 and the

modularity condition could be concluded from earlier results [Mo18]. Given the B-W
property at the single-particle level, the B-W property of the full theory was verified
using scattering theory and asymptotic completeness. In this part we adapted the
arguments of Mund [Mu01] to the massless case.

A natural question for future research is a generalization of our arguments to
particles with half-integer helicities. The obstruction comes from the fact that in
this case Uh and U−h are unitarily equivalent when restricted to G3 but have disjoint
restrictions to G̃3 and one cannot apply Proposition 4.4 (iii). Another future research
direction is to relax the assumption of asymptotic completeness. We remark that in
the vacuum sector of QED asymptotic completeness of photons can be assumed only
below a certain energy threshold, excluding the electron-positron pair production. It
is an interesting question how to prove the B-W property in this physically relevant
situation. In this context we remark that our results give the B-W property of the net
of asymptotic photon fields of QED, defined at the end of Sect. 2.2. This net plays
an important role in the study of infrared problems (see e.g. [Bu77, BD84, AD17])
and we hope that our results will also find applications there.

A Direct integral representations

We suggest [Tak02, Dix81, MT18] as further references for basic definitions.
Given a field of Hilbert spaces γ 7→ H(γ) on a standard measure space (Γ, µ), the

direct integral Hilbert space
∫ ⊕

Γ
H(γ)dµ(γ) is defined if the field is µ-measurable. This

definition requires and depends on the choice of a linear γ-pointwise dense subspace
S of the topological product Πγ∈ΓH(γ) which selects a family of µ-measurable vector
fields. (cf. [Dix81, Part II, Sect. II.1.3, Definition 1]). Note that given a sequence
of measurable vector field ξn µ-a.e. pointwise converging to ξ, namely ‖(ξn)(γ) −
(ξ)(γ)‖γ → 0 for µ-a.e. γ ∈ Γ, we obtain that ξ is a µ-measurable vector field. We also
recall that a vector field of bounded operators γ 7→ T (γ) ∈ B(H(γ)) is µ-measurable
if for any µ-measurable field γ 7→ ξ(γ) ∈ H(γ) we have that γ 7→ T (γ)ξ(γ) ∈ H(γ) is
µ-measurable. In this case we define

Tξ :=

∫ ⊕

Γ

T (γ)ξ(γ)dµ(γ) ∈
∫ ⊕

Γ

H(γ)dµ(γ).

We write this operator as T =
∫ ⊕

Γ
T (γ)dµ(γ) and T is called the direct integral

of γ 7→T (γ). Furthermore, we have that γ 7→ ‖T (γ)‖γ is measurable and ‖T‖ =
supγ∈Γ ‖T (γ)‖γ. The operators of this form are said to be decomposable. If T (γ) is a
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scalar for any γ∈ Γ, then T is said to be a diagonal operator. The algebra generated
by the diagonal operators is called the diagonal algebra. Note that any operator
T ∈ B(H) is decomposable iff T commutes with the diagonal algebra (cf. [Tak02]
IV.8, Corollary 8.16). A field of von Neumann algebras γ 7→ M(γ) ⊂ B(H(γ)) is
said to be measurable if there exists a countable family {xn(γ)}n∈N of measurable
fields of operators s.t. M(γ) is generated by xn(γ) for (a.e.) γ ∈ Γ. Then it is
possible to define M =

∫ ⊕

Γ
M(γ)dµ(γ). Given a C∗-algebra A, a field of continuous

representations γ 7→ π(γ) is said to be measurable if for any A ∈ A, the operator field
γ 7→ π(γ)(A) is measurable. Then one can define the representation

∫ ⊕

Γ
π(γ)dµ(γ)

acting on
∫ ⊕

Γ
H(γ)dµ(γ).

B Proof of Proposition 4.6

For fundamental concepts on direct integral of representation see Appendix A.
The function of the translation generators P 2

1 + P 2
2 is a Casimir operator for G3

and decomposes according to µ, i.e., P 2
1 +P 2

2 =
∫ ⊕

R+ r2 ·1dµ(r) and P 2
1 +P 2

2 is affiliated

to U(G3)
′′. By definition, bounded functions of r =

√
P 2
1 + P 2

2 generate the diagonal
algebra D. Thus D is contained in the center of U(G3)

′′, hence any operator in U(G3)
′

is decomposable since it commutes with D.
We now pick T ∈ U(G3)

′ then T is a decomposable operator, namely,

T =

∫ ⊕

R+

T (r)dµ(r). (B.1)

Assume that there exists a positive measure set I s.t. T (r) is not in Ur(G3)
′ for

r ∈ I. Let χ be a characteristic function of I. Then
∫ ⊕

R+ T (r)χ(r)dµ(r) is not in the
commutant of U(G3), which is a contradiction. We conclude that

U(G3)
′ =

∫ ⊕

R+

Ur(G3)
′dµ(r) (B.2)

and thus

U(G3)
′′ =

∫ ⊕

R+

Ur(G3)
′′dµ(r) (B.3)

by [Tak02, Theorem 8.18]. Now we recall that Ur satisfies (MC) by Corollary 4.5.
Since, by assumption, U(r1(π)) =

∫ ⊕

R+ Ur(r1(π))dµ(r), we obtain from (B.3) that U
satisfies (MC).

C Regularity of the actions on R1+3

Definition C.1. Let G be a locally compact, σ-compact, group and N be a normal
abelian subgroup, then the (dual-)action of G on N̂ is regular if

R1. the orbit space is countably separated, namely there exists a countable family
{En}n∈N of G-invariant Borel sets in N̂ s.t. each orbit in N̂ is the intersection
of all En that contain it,
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R2. each orbit is relatively open in its closure.

Here we check that the action of G0
3 and G̃0

3 on R1+3 is regular according to the
previous definition.

R1. Let o be a G0
3 or a G̃0

3 orbit on R1+3. Then o can be obtained by intersection
of the subsets of the following countable family of Borel subsets containing o. For
a1, a2, b1, b2 ∈ Q, c, d ∈ Q≥0, consider the following sets:

• Aa1,b1 = {p : a1 ≤ p2 ≤ b1} and A±
a1,b1

= Aa1,b1 ∩ {p : ±p0 > 0} if a1, b1 ≥ 0,

• Ec,d = {p : c ≤ p21 + p22 ≤ d},

• Fa2,b2 = {p : a2 ≤ p20 − p23 ≤ b2},

• F±
a2,b2

= {p : a2 ≤ p20 − p23 ≤ b2,±p3 > 0} if a2, b2 < 0,

• K±,± = {p = (p0, 0, 0, p3) : p0 = ±p3,±p0 > 0},

• K̃± = {p = (p0, 0, 0, p3) : p0 = ±|p3|,±p0 > 0},

where in the case of K±,± the two signs are uncorrelated. We shall denote with
A, E ,F ,F±,K±±, K̃± the countable families of the above sets with the corresponding
letters. We also define the sets:

• O = {p : p = 0},

• Za1,b1,±,± = {p : a1 ≤ p2 ≤ b1 < 0, p20 − p23 = 0,±p3 > 0,±p0 > 0},

• Z̃a1,b1,± = {p : a1 ≤ p2 ≤ b1 < 0, p20 − p23 = 0,±p0 > 0},

• Xa1,b1 = {p : a1 ≤ p2 ≤ b1 < 0, p0 = p3 = 0}.

In the following we shall say that a family of sets selects an orbit o if the latter
is the intersection of all the set of the family containing o. The set selecting an orbit
of a group will be invariant under the group action. All the families we will consider
will be countable as well as their union.

Firstly, any orbit of G0
3 or G̃

0
3 is contained in a Lorentz orbit in R1+3. The family in

A selects the Lorentz orbits. The orbit in the origin is selected by O. Now G0
3 and G̃0

3

share the same massive orbits, contained in p2 = m2, m > 0, that can be selected by
considering A and E families. Now consider a massless orbit in the forward lightcone.
If for every p ∈ o, p21 + p22 > 0 then it is both a G0

3 and G̃0
3 orbit (cf. Remark 3.13)

and can be selected by the families A and E . If p21 + p22 = 0 then the two G0
3 orbits

{p : 0 < p0 = p3} and {p : 0 < p0 = −p3} are selected by K±,+. If p21+p22 = 0 then the
G̃0

3 orbit is selected by K̃+. We argue analogously for the backward lightcone, referring
to sets K±,−, K̃−. Now consider imaginary mass orbits, contained in p2 = −m2 and
assume that p21 + p22 = r2. We have three cases:

• r2 < −m2. In this case we have two branches of the hyperboloid p20 − p23 =
m2 + r2 < 0 that become two G0

3 orbits and a unique G̃0
3 orbit. The G0

3 and G̃0
3

orbits are selected by A, E ,F± and A, E ,F , respectively.

27



• r2 = −m2. G0
3 orbits are selected by Za1,a2,±,± or Xa1,a2 . G̃

0
3 orbits are selected

by Z̃a1,a2,±.

• r2 > −m2. G3 and G̃3 share the same orbits selected by A, E ,F ∩ U±, where
U± = {p : ±p0 ≥ 0}.

R2. trivially holds.
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