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Abstract

For a renormalizability proof of perturbative models in the Epstein–Glaser scheme with
string-localized quantum fields, one needs to know what freedom one has in the definition
of time-ordered products of the interaction Lagrangian. This paper provides a first step
in that direction.

The basic issue is the presence of an open set of n-tuples of strings which cannot be
chronologically ordered. We resolve it by showing that almost all such string configurations
can be dissected into finitely many pieces which can indeed be chronologically ordered.
This fixes the time-ordered products of linear field factors outside a nullset of string
configurations. (The extension across the nullset, as well as the definition of time-ordered
products of Wick monomials, will be discussed elsewhere.)

1 Introduction

The three pillars of relativistic quantum field theory (QFT) are positivity of states, positivity
of the energy and locality of observables (or Einstein causality). Any attempt to recon-
cile them leads to the well-known singular behaviour of quantum fields at short distances
(UV singularities) [16], which becomes worse with increasing spin. This rules out the direct
construction of interacting models for particles with spin/helicity s ≥ 1 in a frame which
incorporates the three principles from the beginning.

The usual way out is gauge theory (GT), where one relaxes the principle of positivity
of states in a first step, and divides out the unphysical degrees of freedom (negative norm
states and ghost fields) at the end of the construction. This approach has been extremely
successful and is the basis of the Standard Model of elementary particle physics. However,
it has some shortcomings: the intermediate use of unphysical degrees of freedom does not
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comply well with Ockham’s razor; the approach does not provide a direct construction of
charge-carrying physical fields; it excludes an energy-momentum tensor for massless higher
helicity particles [18]. Finally, many features of models must be put in by hand instead of
being explained, like for example the shape of the Higgs potential, and chirality of the weak
interactions.

There is an alternative, relatively recent but conservative approach [6, 10, 12, 14], which
keeps positivity of states and instead relaxes the localization properties of (unobservable)
quantum fields: These fields are not point-local, but instead are localized on Mandelstam
strings extending to spacelike infinity [10, 11]. Such a string, not to be confused with the
strings of string theory, is a ray emanating from an event x in Minkowski space in a spacelike1

direction e,
Sx,e

.
= x + R

+
0 e. (1.1)

Our quantum fields are operator-valued distributions ϕ(x, e), where x is in Minkowski space
and e lies in the manifold of spacelike directions

H
.
= { e ∈ R

4 : e · e = −1 }. (1.2)

The field ϕ(x, e) is localized on the string Sx,e in the sense of compatibility of quantum
observables: If the strings Sx,e and Sx′,e′ are spacelike separated,2 then

[ϕ(x, e), ϕ(x′ , e′)] = 0. (1.3)

It has been shown [2] that in the massive case this is the worst possible “non-locality” for
unobservable fields which is consistent with the three mentioned principles (in particular with
locality of the observables), and that this weak type of localization still permits the construc-
tion of scattering states. Free string-localized fields for any spin with good UV behaviour have
been constructed in a Hilbert space without ghosts. Among these are string-localized fields
which differ from their badly behaved point-localized counterparts by a gradient [6,12]. They
allow for the construction of string-localized energy-momentum tensors for any helicity [7],
evading the Weinberg–Witten theorem [18]. In the (perturbative) construction of interacting
models, one uses an interaction Lagrangian which differs from a point-localized counterpart by
a divergence. Then the classical action is the same for both Lagrangians. (This is analogous
to gauge theory, where two Lagrangians in different gauges yield the same action.)

The requirement that this equivalence survive at the quantum level leads to renormaliza-
tion conditions which we call string independence (SI) conditions, reminiscent of the Ward
identities in gauge theory. They are quite restrictive: In particular, they imply features like
chirality of weak interactions [5], the shape of the Higgs potential [9] and the Lie algebra
structure in models with self-interacting vector bosons [14]. It is not clear at the moment if
this approach leads to the same models as the gauge-theoretic one.

A proof of renormalizability at all orders in this approach is missing, up to now. The
present paper is meant as a first step in this direction. We aim at the perturbative construction
of interacting models within the Epstein–Glaser scheme [4]. This approach is based on the

1The choice of space-like strings is motivated by the known fact that in every massive model charge-carrying
field operators are localizable in spacelike cones [2]. It seems, however, that our constructions go through also
for light-like strings, replacing H by the forward light cone.

2Indeed, the distributional character of the fields requires that Sx′,e′′ be spacelike separated from Sx,e for
all e′′ in an open neighborhood of e′.
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Dyson series expansion of the S-matrix in terms of time-ordered products of the interaction
Lagrangian, which is a Wick polynomial in the free fields. In the case of point-localized fields,
renormalizability enters as follows. The time-ordered products of n Wick monomials Wi are
basically characterized by symmetry and the factorization property, namely

TW1(x1) · · ·Wn(xn) = TW1(x1) · · ·Wk(xk) TWk+1(xk+1) · · ·Wn(xn) (1.4)

whenever each event in {x1, . . . , xk} is “later” than each event in {xk+1, . . . , xn}. (We say
that x is later than y if there is a reference frame such that x0 > y0.) Indeed, these properties
recursively fix the T -products off the thin diagonal { (x1, . . . , xn) ∈ R

4n : x1 = · · · = xn }
(or equivalently, by translation invariance, outside the origin of R

4(n−1)): see [1, 4]. In this
x-space approach, the “UV problem” of divergences consists in the extension across the origin,
which is not unique: At every order n one has a certain number of free parameters. If the
short-distance scaling dimension of the interaction Lagrangian is not larger than 4, then this
number does not increase with the order, and one can fix all free parameters by a finite set of
normalization conditions: the model is renormalizable [4], see [3] for a review of the argument.

In the present paper, we initiate the corresponding discussion for string-localized quantum
fields ϕ(x, e) by considering time-ordered products of linear fields Tϕ(x1, e1) · · ·ϕ(xn, en).
(The case of Wick monomials of order > 1 is left for a future investigation.) These are
required to be symmetric and to satisfy the factorization property, namely Eq. (1.4) must
hold, with Wi(xi) replaced by ϕ(xi, ei), whenever each of the first k strings is later than each
of the last n− k strings.

The basic problem, already present at order 2, is that two strings generically are not
comparable in the sense of time-ordering. In fact, there is an open set of pairs (x, e), (x′, e′)
corresponding to strings which are not comparable, see Lemma 2.1. Thus the T -product of
two fields is undefined on an open set, which leaves an infinity of possible definitions instead
of finitely many parameters already at second order, jeopardizing renormalizability. For three
and more strings, the problem becomes worse, see Fig. 1 for a typical example.

S1

S2S3

Figure 1: Three strings, none of which is later than the other two (in three-dimensional
spacetime – the time arrow points out of the viewing plane).

To overcome this problem, we prove first that n strings which do not touch each other can
be chopped up into finitely many pieces which are mutually comparable. This is our main
result. It is shown first for n = 2 in a constructive way (Prop. 2.1), and then for n > 2 with
a non-constructive proof (Prop. 2.2).

We then proceed to show how this purely geometric result fixes the time-ordered products
Tϕ(x1, e1) · · ·ϕ(xn, en) outside the nullset ∆n of strings that touch each other. In particular,
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they turn out to satisfy Wick’s expansion. Again, this is first shown for n = 2 (Prop. 3.1),
where the product Tϕϕ is fixed by its vacuum expectation value (the Feynman propagator),
and then for n > 2 (Prop. 3.2).

In the extension of the T -products across ∆n, the scaling degrees [15] of the Feynman
propagator with respect to the various submanifolds of ∆2 (in view of Wick’s theorem) have
to be compared with the respective codimensions. We give an example in Appendix A, but
leave the general discussion open for future publications.

The article is organized as follows. Section 2 is concerned with geometry: We define the
time-ordering prescription for strings, i.e., the “later” relation, and prove our main geometrical
result on the chopping of strings. In Section 3, we state the axioms for the time-ordered
product of string-localized fields, and show that (in the case of linear factors) it is fixed
outside the set ∆n and satisfies Wick’s expansion. In Section 4, we comment on a problem
that arises in extending the present results to Wick monomials of order > 1.

We close the introduction with some further details. Our fields are covariant under a
unitary representation U of the proper orthochronous Poincaré group:

U(a,Λ)ϕ(x, e)U(a,Λ)−1 = ϕ(a + Λx,Λe), (1.5)

where a ∈ R
4 is a translation and Λ is a Lorentz transformation. (This is the scalar case,

which we consider here for sake of notational convenience. The fields may have vector or tensor
indices which also transform, see [6].) The irreducible sub-representations of U correspond to
the particle types described by ϕ.3 We consider here only the case of bosons, and we exclude
explicitly the case of Wigner’s massless “infinite spin” particles [19]. It has been shown in [11]
that then our string-localized free massive field ϕ(x, e) is of the form

ϕ(x, e) =

∫ ∞

0
ds u(s)ϕp(x + se), (1.6)

where ϕp is some point-localized free field, and u is some real-valued function with support
in the positive reals.

Of course, one might define the time-ordered product Tϕ(x, e)ϕ(x′, e′) by first taking
the point-local one and then integrating, as in Eq. (A.3). (Our Props. 3.1 and 3.2 may be
obtained this way.) However, when it comes to renormalization (or extension), this procedure
misses the central point of our approach: The point-local Feynman propagator for higher spin
fields (or derivatives of scalar fields) is not unique due to its bad UV behaviour, and leaves
the freedom of adding delta function renormalizations. This freedom is not undone by the
subsequent integrations. On the other hand, the UV behaviour of ϕ is better than that of
the point-local field ϕp just due to the integration [6], and therefore in general the T product
has less freedom. We give an example in Appendix A. We conclude that it is worthwhile to
take the string-localized ϕ seriously as the basic building block (and not to overburden the
T -product by continuity assumptions permitting exchange of integration and time ordering).

2 Geometric time-ordering

In a given Lorentz frame {e(0), e(1), e(2), e(3)}, the time coordinate of an event x is just x · e(0),
and an event x occurs “later” than an event y in this frame if (x − y) · e(0) > 0.4 We

3Such fields exist for any spin/helicity [11,12].
4We adopt the convention that the metric has signature (1,−1,−1,−1).
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therefore say that x is later than y if there is some timelike future-pointing vector u such that
(x − y) · u > 0. As a direct consequence of Lemma B.1, this is equivalent to the condition
that x be outside the closed backward light cone of y. (For general geometric definitions and
conventions that will be used throughout the rest of this work, see Appendix B.) We take this
as a definition.

Definition 2.1 (Posteriority relation). For x, y ∈ R
4 we say that x is later than y, in symbols

x < y, if x is not contained in the past light cone of y:

x < y :⇐⇒ x /∈ V−(y). (2.1)

For subsets R,S ⊂ R
4, we say that R is later than S, symbolically R < S, if all points in R

are later than all points in S. If either R < S or S < R, we say R and S are comparable;
otherwise, we say R and S are incomparable.

(For a point x ∈ M and for R ⊂ M we write simply x < R instead of {x} < R.)
Two warnings are in order. Physically, the posteriority relation x < y must be distin-

guished from the causality relation x ∈ V+(y), which means that y can influence the event
x either by way of the propagation of some material phenomenon or some electromagnetic
effect. Mathematically, posteriority is not an order relation: it is not a total order, since not
every pair of subsets is comparable; nor is it even a partial order, since it is not transitive.
Fig. 1 shows a counterexample to transitivity in n ≥ 3 dimensions: there holds S1 < S2 and
S2 < S3, but not S1 < S3. (Thus, if we write S1 < S2 < S3 in the sequel, then this means
only that the first two of these relations hold.)

2.1 Generalities on the posteriority relation

We establish some properties of this time-ordering relation which are relevant for the proof
of Propositions 2.1 and 2.2. First, note that for two regions R,S in Minkowski space we have

R < S ⇐⇒ R ∩ V−(S) = ∅. (2.2)

Lemma 2.1. Let R,S ⊂ R
4.

(i) Both R < S and S < R hold if and only if R and S are spacelike separated.

(ii) R and S are incomparable if and only if both R ∩ V−(S) 6= ∅ and R ∩ V+(S) 6= ∅.

Proof. Note first that R ∩ V−(S) = ∅ is equivalent to S ∩ V+(R) = ∅. Thus, the condition
(S < R)∧ (R < S) is equivalent, by Eq. (2.2), to S ∩ V−(R) = ∅ and S ∩V+(R) = ∅. But this
is S ∩

(
V+(R) ∪ V−(R)

)
= ∅, which means just that S is spacelike separated from R. This

proves (i). Item (ii) is a direct consequence of Eq. (2.2).

Lemma 2.2. Let Σ be a spacelike hyperplane of the form Σ = a + u⊥, where u is a future-
pointing timelike vector and a ∈ Σ. Any event x ∈ R

4 satisfies x < Σ iff (x− a) · u > 0, that
is, x is “above” Σ.

Proof. Firstly, note that the condition x < Σ means, by definition, that ∀y ∈ Σ, x− y /∈ V−.
Moreover, ∀y ∈ Σ there holds u · (a− y) = 0, and consequently

u · (x− y) = u · (x− a).
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Now suppose u · (x− a) > 0, and let y ∈ Σ, then u · (x − y) ≡ u · (x− a) > 0, which implies
x − y /∈ V−. This shows that x < Σ. We prove inverse direction contrapositively. Suppose,
ad absurdum, that u · (x− a) ≤ 0. If u · (x− a) = 0, then x ∈ Σ and thus ¬(x < Σ). On the
other hand, u · (x − a) < 0 implies as above that x 4 Σ. But then x cannot be later than Σ
by Lemma 2.1, since the causal complement of Σ is empty. In both cases, we have ¬(x < Σ).
Summarizing, we have shown that x < Σ is equivalent to (x− a) · u > 0.

The (motivating) characterization of the relation x < y, namely the condition that x0 > y0

in some reference frame, can now be written as the condition that there exists a spacelike
hyperplane Σ that is separating in the sense that x < Σ < y. As we have seen, this is
equivalent to our Definition 2.1. The same holds for finite string segments.

However, for infinitely extended strings, the existence of a spacelike separating hyper-
plane is a sufficient but not necessary condition for posteriority as defined in Def. 2.1. (A
sufficient and necessary condition would be the existence of a spacelike or lightlike separating
hyperplane. But we don’t need this statement and therefore refrain from proving it.)

Lemma 2.3. Let R1 ⊆ S1, R2 ⊆ S2 be two connected subsets of the strings S1 and S2 (which
comprises points, finite string segments and the entire string, exhausting all possibilities). If
there is a spacelike hyperplane Σ such that R1 < Σ < R2, then R1 < R2.

Proof. Let Σ
.
= a + u⊥ satisfy the hypothesis, and let z1 ∈ R1 and z2 ∈ R2. Then by Lemma

2.2 there holds (z1 − a) · u > 0 and (a − z2) · u > 0. Adding these two inequalities yields
(z1 − z2) · u > 0, and since u ∈ V+ we must have z1 − z2 /∈ V− by Lemma B.1 (with reversed
signs), that is z1 < z2. This completes the proof.

Comparability. For points, the posteriority relation is linear insofar as any pair of distinct
events x 6= y ∈ R

4 is comparable, i.e., either x < y or y < x holds. The first problem we
encounter in the definition of time-ordered products is that this is not so for disjoint strings.
It may happen that one string enters into the past and into the future of another one, and in
this case (only) the two strings are not comparable, by Lemma 2.1(ii). On the other hand,
an event and a string are always comparable whenever they are disjoint.

Lemma 2.4. Let S be a string and x ∈ R
4 \S an event disjoint from S. Then either S < {x}

or {x} < S.

Proof. Suppose that neither S < x nor x < S holds. Then, by Eq. (2.2), both S ∩ V−(x) and
{x}∩ V−(S) are nonempty. However, since S ∩ V−(x) 6= ∅ if and only if {x} ∩V+(S) 6= ∅, this
would entail x ∈ V−(S) ∩ V+(S) = S. The result follows.

Transitivity. Time-ordering of events is not transitive. But it has a similar property, which
we might call “weak transitivity”: if y1 < y2 and x 6< y2, then y1 < x. This fact is the basis
for the proof that Bogoliubov’s S-matrix satisfies the functional equation [4], that in turn
implies locality of the interacting fields in the Epstein–Glaser construction [4]. Again, this
does not hold for strings – which is why a string-localized interaction may lead in general to
completely non-local interacting fields. An example is illustrated in Fig. 1, which shows three
strings satisfying S1 < S2 and S3 6< S2, however S1 is not later than S3.

On the other hand, weak transitivity does hold for two strings with respect to an event.
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Lemma 2.5. Let two strings S1, S2 and an event x ∈ R
4 \ (S1 ∪ S2) be such that

S1 < S2 and {x} 6< S2.

Then S1 < {x}.

Proof. By Eq. (2.2), the premise S1 < S2 may be written as S1 ∩ V−(S2) = ∅. Also, x 6< S2

means x ∈ V−(S2) and consequently V−(x) ⊂ V−(S2). Thus, we must have S1 ∩ V−(x) = ∅,
and again by Eq. (2.2), we get S1 < {x}.

Definition 2.2. Given n subsets R1, . . . , Rn of Minkowski space, we say that R1 is a latest
member of the set {R1, . . . , Rn} if R1 < Ri for each i = 2, . . . , n.

Here the word “latest” denotes maximality rather than a superlative. For instance, among
a finite set of events located on a spacelike hyperplane, each of them is a latest one. A basic
fact is that n distinct events in Minkowski space always have some latest member, and the
same is true for sufficiently small neighborhoods of them. Again, this is not so for strings, see
the counterexample in Fig. 1 once more.

Lemma 2.5 implies that two comparable strings and one event, disjoint from the strings,
always have a latest member. (Namely, if x is later than both S1 and S2 then it is of course
x, and otherwise it is the later of the two strings.) For the desired chopping of n > 2 strings,
we need a bit more.

Lemma 2.6. Let S1, . . . , Sr be strings among which there is a latest one, and let y1, . . . , yk
be pairwise distinct events in Minkowski space satisfying yi /∈ Sj for all i = 1, . . . , k and
j = 1, . . . , r. Then, the set {S1, . . . , Sr, {y1}, . . . , {yk}} also has a latest member.

Proof. We assume that S1 is a latest member of the given strings.
First case: One of the points, say y1, is later than all the strings. Let yl be a latest

member of V+(y1) ∩ {y1, . . . , yr}, the subset of y’s which lie to the future of y1. Then yl is a
latest member of all the y’s, and also later than all the strings,5 that is, yl is a latest member
of {S1, . . . , Sr, {y1}, . . . , {yk}}.

Second case: No yi is later than all the strings. Then for every i ∈ {1, . . . , k} there is a
j(i) ∈ {1, . . . , r} such that yi 6< Sj(i). If j(i) = 1, the label of the latest string, then yi 6< S1,
and Lemma 2.4 implies that S1 < yi. If j(i) 6= 1, then S1 < Sj(i) and Lemma 2.5 implies that
S1 < yi. Summarizing, in the second case for all i there holds S1 < yi. Then S1 is a latest
member of {S1, . . . , Sr, {y1}, . . . , {yk}}.

2.2 String chopping

As mentioned in the introduction, we wish to show that one can chop n strings into small
enough pieces which are mutually comparable. We first give a constructive prove for n = 2,
where it suffices to cut one of the strings once.

By cutting of a string S = Sx,e is meant the selection of one point x + se for some s > 0,
whereby the string becomes a union of the finite segment x + [0, s] e and the residual string
x + [s,∞) e. The two pieces do not overlap, since they have only the cut point in common.
We write this nonoverlapping union as S = S1 ∪S2, but it suits us not to specify which piece
is the finite segment and which is the tail.

5Here we use the obvious fact that
(

y1 < S ∧ y2 ∈ V+(y1)
)

⇒ y2 < S.
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a

a + u
x

S

x′

S′

Σ

Figure 2: The strings S and S′, with S̃′ meeting S

Proposition 2.1. Let S, S′ be two disjoint strings. Then there is a cutting of S into two
pieces S = S1 ∪ S2, such that both pairs (S1, S′) and (S2, S′) are comparable.

Proof. Let S = Sx,e and S′ = Sx′,e′ , and denote by S̃′ .
= Sx′,e′ ∪ Sx′,−e′ the full straight line

through x′ with direction e′.
We first consider the case when S meets S̃′ (but is disjoint from S′). Then there are

positive reals t, t′ such that
x + te = x′ − t′e′. (2.3)

Suppose the linear span of e, e′ is spacelike. Then S and S′ are disjoint sets contained in the
spacelike 2-plane x + span{e, e′}. This implies that S, S′ are spacelike separated, and thus
comparable, see Lemma 2.1(i). (No chopping is needed.)

Suppose now that the span of e, e′ is timelike or lightlike: see Appendix B. Then Lemma B.2
implies that one of the vectors e ± e′ is timelike or lightlike. Suppose first that e − e′ is a
timelike or lightlike vector, and assume that it is future oriented, e ∈ V+(e′). Let u be any
timelike future-oriented vector orthogonal to e, and (see Fig. 2) let

Σ
.
= a + u⊥, a

.
= x′ − 1

2t
′e′.

Now e′ · u is strictly negative since e · u = 0 and e′ ∈ V−(e), and we therefore get

(x + se− a) · u = −1
2t

′e′ · u > 0,

(x′ + s′e′ − a) · u = (s′ + 1
2t

′)e′ · u < 0, (2.4)

for all s, s′ ≥ 0. In the first line we have used Eq. (2.3). These two inequalities say that
S < Σ and that S′ 4 Σ, respectively. By Lemma 2.3, this shows that S < S′. If e− e′ is past
oriented, e ∈ V−(e′), then the same argument shows that S′ < S. In the case when e + e′

(rather than e − e′) is a timelike or lightlike vector, the same argument goes through where
now e′ · u > 0 on the right hand side of (2.4). This completes the proof in the case when S
meets S̃′.

For the rest of the proof we consider the case when S is disjoint from S̃′. First, assume
that S ∩ (S̃′)c = ∅, that is, S is contained in the closure of V−(S̃′) ∪ V+(S̃′). If S had

nontrivial intersection with both V−(S̃′) and V+(S̃′), it would have to pass through S̃′, which
was excluded. Thus, S is contained entirely in the closure of either V−(S̃′) or V+(S̃′), and in
this case S and S′ are comparable by Lemma 2.1(ii). No chopping is needed.
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Now suppose that S ∩ (S̃′)c 6= ∅. If e = ±e′ (i.e., the strings S̃ and S̃′ are parallel), then S
is completely contained in the causal complement of S̃′, and thus S is both later and earlier
than S′, and no chopping is needed.

Consider finally the case e 6= ±e′. The claim is that there exists a cutting S = S+ ∪ S−,
such that S+ < S′ < S−. Using Lemma 2.3, it is sufficient to establish the existence of two
spacelike hyperplanes Σ1, Σ2, such that S+ < Σ1 < S′ and S′ < Σ2 < S−.

S′

x′

u + x′
x

a

S

Σ

Figure 3: Selection of a cut point on the string S

Take an event a ∈ S ∩ (S̃′)c with a 6= x; this is the place where we cut S (see Fig. 3). The
vector a−x′ is spacelike and spacelike separated from e′, hence the 2-plane E

.
= span{a−x′, e′}

is spacelike. Choose a timelike future-directed vector u in the orthogonal complement E⊥,
which is not orthogonal to e. (The possibility u · e 6= 0 is allowed since e 6= ±e′.) Note that
Σ

.
= x′ + u⊥ contains the string S′ and meets the string S at a. Our hyperplanes Σ1, Σ2 will

be small modifications of Σ. First, we shift Σ by a small amount so that it does not contain
the point a any more. Let P⊥

e′ be the projector onto (e′)⊥, and let

u±
.
= u± εP⊥

e′ (a− x′),

where ε is small enough that the sign of u · e is unchanged:

sgn(u± · e) = sgn(u · e)
.
= σ. (2.5)

Let now Σ±
.
= x′ + (u±)⊥, and define the cutting S = S+ ∪ S−, where

S±
.
= (a± σR+e) ∩ S.

(If σ > 0, then S+ is the infinite tail of the cutting while S− is a finite segment; if σ < 0, the
roles are interchanged.) Both Σ± still contain S′, and are moreover comparable with S±, as
we now verify.

Claim. S+ < Σ− and S− 4 Σ+ .

Proof of claim. Let ξ
.
= a− x′. By Lemma 2.2, the first relation is equivalent to

(ξ + sσe) · u− ≡ −εξ · P⊥
e′ (ξ) + s |e · u−| > 0 for all s ≥ 0. (2.6)

We have used (a− x′) · u = 0 and Eq (2.5). Note that the projector P⊥
e′ is given by

P⊥
e′ (ξ) = ξ −

e′ · ξ

e′ · e′
e′ = ξ + (e′ · ξ)e′,
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hence ξ ·P⊥
e′ (ξ) = ξ ·ξ+(e′ ·ξ)2. Now the condition that a ∈ (S̃′)c means that ξ−te′ is spacelike

for all t ∈ R. Thus, the quadratic form −t2 − 2t(e′ · ξ) + ξ · ξ ≡ −(t + e′ · ξ)2 + ξ · ξ + (e′ · ξ)2

is strictly negative, which implies that

(ξ · ξ) + (e′ · ξ)2 < 0; and thus ξ · P⊥
e′ (ξ) < 0. (2.7)

This proves the inequality (2.6), and thus the first relation of the claim. The second one is
shown analogously: it means that

(ξ − sσe) · u+ ≡ εξ · P⊥
e′ (ξ) − s |e · u−| < 0 for all s ≥ 0, (2.8)

which holds true by Eq. (2.7).

We now shift the hyperplanes Σ± a little bit, so that they still satisfy the relations of the
above lemma, and are in addition comparable with S′. To this end, notice that the left hand
side of the inequality (2.6) has the positive lower bound δ

.
= −εξ · P⊥

e′ ξ. Thus, we can shift
Σ− away from S′ by using instead

Σ1
.
= Σ− + αu− where α

.
=

δ

2u− · u−
,

and the relation S+ < Σ1 still holds. On the other hand, for all s > 0 there holds

(se′ − αu−) · u− ≡ −1
2δ < 0,

and therefore S′ 4 Σ1. We have now achieved S+ < Σ1 < S′, as required.
Similarly, one verifies that Σ2

.
= Σ+ − δ

2u+·u+
u+ satisfies S+ 4 Σ2 4 S′. This completes

the proof of Prop. 2.1.

We now consider the case of n > 2 strings. The large string diagonal is defined by

∆n
.
= { (x1, e1, . . . , xn, en) : Sxi,ei ∩ Sxj ,ej 6= ∅ for some i 6= j }. (2.9)

We are going to show that n strings outside ∆n can be chopped up into finitely many pieces
which are mutually comparable (Prop. 2.2). Here we shall need to cut the strings into more
than two pieces. By a chopping of a string S

.
= x + R

+
0 e we mean a decomposition

S = Sfin ∪ S∞ = S1 ∪ S2 ∪ · · · ∪ SN ∪ S∞, (2.10)

determined by N numbers 0 = s0 < s1 < · · · < sN , where S1, . . . , SN are consecutive
nonoverlapping finite segments, Sα .

= x + [sα−1, sα] e and S∞ .
= x + [sN ,∞) e is the infinite

tail of the original string. We find it convenient to write SN+1 .
= S∞, too.

Before stating and proving Prop. 2.2 below, we need a few lemmas. We start by considering
the infinite tails of the strings Sxi,ei . If one looks at n strings from sufficiently far away, their
“heads” xi appear quite close to the origin (wherever the origin may be located). Hence, on
cutting them far away from their heads, their infinite tails extend almost radially to infinity
and thus correspond to points on the hyperboloid H of spacelike directions. Consequently,
those tails can be linearly ordered, much like events in H.

We realize this idea by showing first that every string Sx,e eventually ends up in a spacelike
cone centered around the string S0,e with arbitrarily small opening angle. In detail, let D be
a neighborhood of e in H, and let CD be the spacelike cone centered at the origin:

CD
.
= R

+D = { se′ : s > 0, e′ ∈ D }. (2.11)
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Lemma 2.7. For every string Sx,e and every neighborhood D of e in H, there is an s > 0
such the infinite tail x + [s,∞) e is contained in the spacelike cone CD.

Proof. Note that y ∈ CD if and only if |y ·y|−1/2y lies in D. Thus, a point x+ te on the string
is in CD if and only if the point |(x+ te) · (x+ te)|−1/2(x+ te) is in the neighborhood D. But
this point can be written as

t

|x · x + 2t x · e− t2|1/2

(x
t

+ e
)
,

which obviously converges to e as t → ∞. Thus, the curve |(x + te)2|−1/2(x + te) in H
eventually ends up in D, that is, x + te eventually ends up in CD, as claimed.

The previous Lemma is relevant for time ordering due to the following fact.

Lemma 2.8. Take two strings S1, S2 which are contained in spacelike cones of the form
(2.11), Si ⊂ CDi

, where D1 and D2 are double cones in the manifold H of spacelike directions.
Suppose D1 < D2, where the posteriority ordering on H is defined in the same way as that of
Minkowski space, see Eq. (2.1). Then S1 < S2.

Proof. Just as in Minkowski space (see Def. B.4), each double cone Di is characterized by its
past and future tips, e+i ∈ V+(e−i ):

Di = Di(e
−
i , e

+
i ) ∩H

.
= V+(e−i ) ∩ V−(e+i ) ∩H.

The hypothesis D1 < D2 obviously implies (in fact, is equivalent to) e−1 < e+2 . To proceed,
we first need an intermediate result: not only that there exists a spacelike hyperplane Σ such
that e−1 < Σ < e+2 , but that there is even one passing through the origin that does so.

Claim. Let e, e′ ∈ H with e < e′. Then there exists u ∈ V+ such that u · e > 0 and u · e′ < 0.

Proof of claim. The following four cases can occur:

1. The span of e, e′ is spacelike. Then, by Lemma B.2, e ·e′ ∈ (−1, 1). Let u ∈ span{e, e′}⊥

be a future-pointing timelike vector and define uε
.
= u − ε(e − e′) with ε > 0 small

enough so that uε is still in V+. Then

uε · e = ε(1 + e · e′) > 0 and uε · e
′ = −ε(1 + e · e′) < 0.

2. The span of e, e′ is timelike. According to Lemma B.2, the following two subcases can
occur:

(a) The vector e − e′ is timelike. Then, since e < e′ is assumed, it is future-pointing.
Moreover, we must have e · e′ < −1. Thus, the vector u

.
= e − e′ does the job:

u · e = −1 − e · e′ > 0 and u · e′ = e · e′ + 1 < 0.

(b) The vector e− e′ is spacelike and e + e′ is timelike. Then we must have e · e′ > 1.
If e + e′ is future pointing, then

u
.
= P⊥

e′ (e) = e + (e′ · e)e′
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is timelike, since u · u = −1 + (e · e′)2 > 0. It is also future-pointing. (That can
be seen as follows: choose v ∈ V+ with v · e = 0; then v · e′ ≡ v · (e + e′) > 0 since
e+e′ is future-pointing, and so also v ·u > 0.) Now put uε

.
= u+εe′ for sufficiently

small ε > 0. Then we have

uε · e = −1 + (e′ · e)2 + εe · e′ > 0 and uε · e
′ = −ε < 0.

If e + e′ is past-pointing, then

uε
.
= −P⊥

e (e′) − εe = −
(
e′ + (e · e′)e

)
− εe

has the following properties, as the reader may readily verify: it is timelike and
future-pointing, and satisfies

uε · e = ε > 0 and uε · e
′ = 1 − (e′ · e)2 − εe · e′ < 0.

3. The span of e, e′ is lightlike. From Lemma B.2, there are two possibilities:

(a) The vector e−e′ is lightlike. Then it is future pointing by hypothesis, and moreover
we must have e·e′ = −1. Choose u ∈ (e′)⊥∩V+ and let uε

.
= u+εe with sufficiently

small ε. Then uε is a future-pointing timelike vector satisfying

uε · e = u · e− ε > 0 and uε · e
′ = −ε < 0.

(We used that u · e ≡ u · (e− e′) is positive since e− e′ is assumed future-pointing;
and we chose ε small enough.)

(b) The vector e + e′ is lightlike. Then we must have e · e′ = 1. If the vector e + e′

future-pointing, the same uε as in the previous item does the job. If it is past
pointing, pick u ∈ e⊥ ∩ V+ and let uε

.
= u− εe with sufficiently small ε. Then uε

is a future-pointing timelike vector satisfying

uε · e = ε > 0 and uε · e
′ = u · e′ + ε < 0.

(We used that u · e′ ≡ u · (e + e′) is negative since e + e′ is assumed past-pointing;
and we chose ε small enough.)

4. In the last possible case, e = −e′, let u ∈ e⊥ ∩ V+ and define uε
.
= u− εe. Then

uε · e = ε > 0 and uε · e
′ = −ε < 0.

This proves the claim.

We have thus shown that there exists a future-pointing timelike vector u that satisfies
u · e−1 > 0 > u · e+2 . It follows that for all e1 ∈ D1 and e2 ∈ D2, we have u · e1 > 0 > u · e2.
This implies of course that u · re1 > 0 > u · se2 for r, s ∈ R

+, and since all zi ∈ CDi
are of

the form zi = rei with r ∈ R
+ and ei ∈ Di, we have CD1 < u⊥ < CD2 and consequently, by

Lemma 2.3, S1 < S2.

We are now prepared for our main geometrical result.
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Proposition 2.2. Let (x, e) be outside the large string diagonal ∆n. Then there exists a
chopping

Sxi,ei = S1
i ∪ · · · ∪ SNi

i ∪ SNi+1
i

such that every selection {Sα1
1 , . . . , Sαn

n } has a latest member, that is, for every n-tuple
(α1, . . . , αn) there exists i ∈ {1, . . . , n} such that for every j ∈ {1, . . . , n} \ {i} the relation
Sαi

i < S
αj

j holds.

Proof. We first consider the infinite tails. Note that some of the ei may coincide, so the set
of e’s may contain fewer than n distinct points. These have a latest member, and the same
holds for sufficiently small double cones Di ∋ ei (understanding that Di = Dj if ei = ej).
Let us denote the index of the latest member of {D1,D2, . . . } by i0. Let further si ∈ R

+
0 be

such that the infinite tail S∞
i

.
= xi + [si,∞) ei of Si is contained in CDi

, see Lemma 2.7. By
Lemma 2.8, the infinite tail with number i0 is later than all the others. If ei0 coincides with
{ei1 , . . . , eik}, then the corresponding infinite tails are parallel and disjoint, and therefore have
a latest member. (Since the problem can be reduced to distinct points in e⊥i0 .) This is a latest
member among all infinite tails.

We now construct a chopping of the compact segments Sfin
i

.
= xi + [0, si] ei. Consider an

arbitrary point (y1, . . . , yn) on Sfin
1 × · · · × Sfin

n . The events yi are all distinct and hence the
set {y1, . . . , yn} has a latest member, and the same holds for sufficiently small neighborhoods
U0(yi) of the yi. Similarly, for any subset I ⊂ {1, . . . , n} with complement J

.
= {1, . . . , n} \ I,

the infinite tails S∞
j and the events yi, (i, j) ∈ I × J , fulfil the hypotheses of Lemma 2.6,

which state that the n sets S∞
j and {yi} together have a latest member. The same holds

for sufficiently small neighborhoods UI(yi) of the points yi, i ∈ I. Let now U(yi) be the
intersection of U0(yi) and of all UI(yi), where I runs through the subsets of {1, . . . , n} \ {i}.
Then for any I ⊂ {1, . . . , n}, the n sets S∞

j and U(yi) together, for (i, j) ∈ I × J , have a
latest member. Of course the same holds for the intersections of these neighborhoods with
the corresponding strings,

V (yi)
.
= U(yi) ∩ Sfin

i . (2.12)

Summarizing, for each (y1, . . . , yn) ∈ Sfin
1 × · · · × Sfin

n there is a neighborhood on the strings
V (y1) × · · · × V (yn) ⊂ Sfin

1 × · · · × Sfin
1 wherein for any I ⊂ {1, . . . , n} the n sets S∞

i and
V (yj), with (i, j) ∈ I × J , have a latest member. Now for each i the union

⋃
{V (yi) : yi ∈ Sfin

i }

is an open covering of the set Sfin
i . By compactness, it has a finite subcovering. That is to

say, on the string segment Sfin
i there are finitely many events y1i , . . . , y

Ni

i such that the finite
union

V (y1i ) ∪ · · · ∪ V (yNi

i )

still covers Sfin
i . Here we may assume that y1i , . . . , y

Ni

i are consecutive events along the segment

Sfin
i ; and that V (yαi ) and V (yβi ) overlap if and only if β = α ± 1. All these neighborhoods

still have a latest member in the sense mentioned after Eq. (2.12). Now choose, for each
α ∈ {1, . . . , Ni − 1}, a number sαi such that xi + sαi ei ∈ V (yαi ) ∩ V (yα+1

i ), and define

Sα
i

.
= xi + [sαi , s

α+1
i ] ei.

Then Sα
i is included in V (yαi ), and hence each n-tuple of string segments or infinite tails

Sα1
1 , . . . , Sαn

n has a latest member, as claimed. This concludes the proof of Prop. 2.2.
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3 Time-ordered products of linear fields

We consider quantum fields of the form (1.6), not fixing the “weight function” u(s) and
admitting the case when the weight function has support in a proper interval I ⊂ R

+
0 . In this

case the field is localized on the (possibly finite) string segment x+ Ie. The same holds after
multiplication of the field with a C∞ function f(x, e). The fields of this form, with u varying
and multiplied by C∞ functions, generate a linear space of operator valued distributions,
which we denote by L and call the space of “linear fields”.6

We now set out to define the time-ordered products

Tn ϕ1(x1, e1) · · ·ϕn(xn, en) (3.1)

of linear fields ϕi ∈ L. These are operator-valued distributions on (R4 ×H)×n acting on the
domain D of vectors with finite particle number and smooth momentum-space wave functions,
which are required to share the following properties.

(P1) T1 is given by T1 ϕ(x, e)
.
= ϕ(x, e).

(P2) Linearity. The time-ordered product Tn is an n-linear mapping from the space L of
linear fields into operator-valued distributions acting on D.

(P3) Symmetry. Tn is totally symmetric in its n arguments.

(P4) Causality. Let ϕi be localized on the string (or string segment) Si, i = 1, . . . , n. If
Si < Sj for all i ∈ {1, . . . , k} and j ∈ {k + 1, . . . , n}, then the following factorization
holds:

Tn ϕ1(x1, e1) · · ·ϕn(xn, en)

= Tk ϕ1(x1, e1) · · ·ϕk(xk, ek) Tn−k ϕk+1(xk+1, ek+1) · · ·ϕn(xn, en).

In the sequel, we shall generically denote fields in L by ϕ(x, e), without further specifications.
Before we turn to the construction of the T -products, we recall Wick’s theorem for linear

fields, which is also valid in the string-localized case [here ϕ(i) denotes ϕ(xi) or ϕ(xi, ei) in
the string-localized case]:

ϕ(1) · · ·ϕ(n) =
∑

G

∏

l∈Eint

(
Ω , ϕ(s(l))ϕ(r(l)) Ω

)
:
∏

l∈Eext

ϕ(s(l)):. (3.2)

Here, Ω denotes the vacuum vector and (· , ·) denotes the scalar product. G runs through
the set of all graphs with vertices {1, . . . , n} and oriented lines, such that from every vertex
there emanates one line. The lines either connect two vertices (internal lines, l ∈ Eint) or go
from a vertex to the exterior (external lines, l ∈ Eext). The initial vertex of an internal line
l (source s(l)) has a smaller index than its final vertex (target r(l)). The external lines only
have sources.

6For example, if we admit among the point-localized fields also vector fields Aµ(x), then the space L contains
fields of the form

∫ s2

s1
dsAµ(x+ se) eµ.
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Let us recall how the time-ordered products are constructed in the point-local case. In
a first step, one shows that Wick’s expansion (3.2) also holds for the time-ordered products
outside the large diagonal {xi 6= xj}, namely:

Tϕ(1) · · ·ϕ(n) =
∑

G

∏

l∈Eint

(
Ω , Tϕ(s(l))ϕ(r(l)) Ω

)
:
∏

l∈Eext

ϕ(s(l)):. (3.3)

(The vacuum expectation value
(
Ω ,Tϕ(x)ϕ(y) Ω

)
is called the Feynman propagator.) This is

shown by induction, using that n distinct points always have a latest member in the posteri-
ority sense. In a second step, one constructs the extension across the large diagonal (requiring
certain (re-)normalization conditions). If the scaling degree of the Feynman propagator is less
than 4, then the T -products are fixed (on all R4n), namely, they are given by Eq. (3.3). On the
other hand, if the scaling degree of the Feynman propagator is ≥ 4 one may add, depending
on the scaling degree and the number of internal lines of the graph in (3.3), renormalization
terms in the form of delta distributions (and their derivatives) in the difference variables with
“internal” indices. This is the case for fields with spin ≥ 1 acting on a Hilbert space.

We show here that for string-localized fields ϕ(x, e) the Tn are fixed outside the large string
diagonal ∆n just by the geometrical time-ordering prescription, namely they are given by the
same expression (3.3) as in the point-like case. As mentioned in the introduction, the problem
we have to overcome is the fact that the set of points in (R4 × H)×n which correspond to
strings that are not comparable in the sense of < is much larger than ∆n, in fact it contains
an open set. We use our results on string chopping from the last section to show that they are
nevertheless fixed outside ∆n. Recall that we are dealing with string-localized fields that can
be written as line integrals over point-localized fields as in Eq. (1.6). Thus, for any chopping
of the string Sx,e =

⋃
α S

α as in Eq. (2.10), the field ϕ(x, e) can be written as a sum

ϕ(x, e) =
N+1∑

α=1

ϕα(x, e) , where ϕα(x, e)
.
=

∫ sα

sα−1

ds u(s)ϕp(x + se) (3.4)

is localized on the segment Sα. (We put s0
.
= 0 and sN+1

.
= ∞.)

We start with two fields. If the two strings Sx,e
.
= S and Sx′,e′

.
= S′ are comparable, then

(P4) implies that

Tϕ(x, e)ϕ(x′, e′) =

{
ϕ(x, e)ϕ(x′, e′) if S < S′,

ϕ(x′, e′)ϕ(x, e) if S 4 S′.
(3.5)

This is well defined, for if S is both later and earlier than S′ then it is spacelike separated from
S′ by Lemma 2.1 and the fields commute, so that both lines in (3.5) are valid. The problem
is that there is an open set of pairs of strings which are not comparable, namely whenever S
meets both the past and the future of S′. This is solved by the procedure of string chopping,
which fixes the T -product outside the string diagonal.

Proposition 3.1. The time ordered product Tϕ(x, e)ϕ(x′e′) is uniquely fixed outside the
string diagonal ∆2 by (P1) through (P4). It satisfies Wick’s expansion

Tϕ(x, e)ϕ(x′, e′) = :ϕ(x, e)ϕ(x′, e′): +
(
Ω , Tϕ(x, e)ϕ(x′, e′) Ω

)
. (3.6)

Proof. If the two strings Sx,e
.
= S and Sx′,e′

.
= S′ are comparable, their T -product has been

defined in Eq. (3.5). If the strings are not comparable, then we cut one string, say S, into two



String chopping and time ordering 16

pieces S = S1 ∪S2 such that the pairs (S1, S′) and (S2, S′) are comparable, see Prop. 2.1. As
explained in Eq. (3.4), the field ϕ(x, e) can be written as a sum ϕ = ϕ1 + ϕ2, where the field
ϕα is localized on Sα, α = 1, 2. By linearity (P2) of the T -product, we have

Tϕ(x, e)ϕ(x′, e′) = Tϕ1(x, e)ϕ(x′, e′) + Tϕ2(x, e)ϕ(x′, e′), (3.7)

where both terms are fixed as in Eq. (3.5).
We need to show independence of the chosen chopping. Given a different chopping S =

S̃1 ∪ S̃2, one of the new pieces S̃α is contained in one of the old pieces, Sβ . We may assume
that S̃1 ⊂ S1. Then we have

S1 = S̃1 ∪ S12, S̃2 = S12 ∪ S2, (3.8)

where S12 .
= S1 \ S̃1 is the “middle piece”:

S̃1 S12 S2

The field decomposes as ϕ = ϕ̃1 + ϕ̃2, where the operator ϕ̃α is localized on S̃α, α = 1, 2; and
by Eq. (3.8) we have

ϕ̃2(x, e) = ϕ12(x, e) + ϕ2(x, e) and ϕ̃1(x, e) + ϕ12(x, e) = ϕ1(x, e),

where ϕ12(x, e) is localized on the middle piece S12. Notice that, by construction, S12 is
comparable with S′ since it is contained in S1 (or S̃2), and thus Tϕ12(x, e)ϕ(x′, e′) is fixed
by Eq. (3.8). With respect to the new chopping, therefore,

Tϕ(x, e)ϕ(x′, e′) = T ϕ̃1(x, e)ϕ(x′, e′) + T ϕ̃2(x, e)ϕ(x′, e′)

= T ϕ̃1(x, e)ϕ(x′, e′) + Tϕ12(x, e)ϕ(x′, e′) + Tϕ2(x, e)ϕ(x′, e′)

= Tϕ1(x, e)ϕ(x′, e′) + Tϕ2(x, e)ϕ(x′, e′).

This confirms independence of the chosen chopping in Eq. (3.7); we have shown uniqueness
outside ∆n. (If the roles of S and S′ are reversed, the same conclusion applies; and by
comparing either string cutting to a chopping where both strings are cut, the linearity of the
T-products maintains the uniqueness.) On substituting Eq. (3.5) into Eq. (3.7) and applying
Wick’s theorem for ordinary products, we get Wick’s expansion (3.6) for the T -products.

We turn to the case of n > 2 fields, and show that Wick’s expansion (3.3) also holds for
string-localized fields – outside the large string diagonal.

Proposition 3.2. The time-ordered n-fold product of a string-localized free field ϕ(xi, ei) is
uniquely fixed outside the large string diagonal ∆n, namely there holds

Tϕ(x1, e1) · · ·ϕ(xn, en)

=
∑

G

∏

l∈Eint

(
Ω , Tϕ(xs(l), es(l))ϕ(xr(l), er(l)) Ω

)
:
∏

l∈Eext

ϕ(xs(l), es(l)): (3.9)

outside the large string diagonal. (Same notation as above.)
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Proof. Let (x0, e0, . . . , xn, en) be outside the large string diagonal. That means that the
strings Si

.
= Sxi,ei are mutually disjoint, for i = 0, . . . , n. We wish to determine Tn+1

.
=

Tϕ(0) · · ·ϕ(n), where we have written ϕ(i)
.
= ϕ(xi, ei), under the induction hypothesis that

the formula (3.9) is valid for Tn = Tϕ(1) · · ·ϕ(n). Choose a chopping of the n + 1 strings as
in Prop. 2.2, and let ϕ(i) =

∑Ni+1
α=1 ϕα(i) be the corresponding decomposition as in Eq. (3.4).

Then by linearity (P2),

Tn+1 =
∑

α0,...,αn

Tϕα0(0) · · ·ϕαn(n).

For given (α0, . . . , αn), denote by i0 the index of the latest member of the set of string segments
{Sα0

0 , . . . , Sαn
n } as in Prop. 2.2. Then by (P3) and (P4),

Tn+1 =
∑

α0,...,αn

ϕαi0 (i0) T
∏

i∈I

ϕαi(i),

where we have written I
.
= {0, . . . , n} \ {i0}. By the induction hypothesis, this is

∑

α0,...,αn

ϕαi0 (i0)
∑

G

∏

l∈Eint

〈
Tϕαs(l)(s(l))ϕαr(l)(r(l))

〉
:
∏

l∈Eext

ϕαs(l)(s(l)):,

where G runs through all graphs G(I) with vertices I, and 〈·〉 denotes the vacuum expectation
value. Using Wick’s Theorem for ordinary products, we have

ϕαi0 (i0) :
∏

i∈Iext

ϕαi(i):

= :ϕαi0 (i0)
∏

i∈Iext

ϕαi(i): +
∑

i∈Iext

〈
ϕαi0 (i0)ϕαi(i)

〉
:ϕαi0 (i0)

∏

j∈Iext\{i}

ϕαj (j): ,

where Iext denotes the set of vertices with external lines, { s(l) : l ∈ Eext }.
Now since i0 is the latest member of the string segments, we may replace the vacuum

expectation value by the time-ordered one, 〈Tϕαi0 (i0)ϕαi(i)〉. We arrive at

Tn+1 =
∑

α0,...,αn

∑

G′

∏

l∈E′
int

〈
Tϕαs(l)(s(l))ϕαr(l)(r(l))

〉
:
∏

l∈E′
ext

ϕαs(l)(s(l)):

where G′ runs through all graphs with vertices {0, . . . , n}, internal lines E′
int and external

lines E′
ext. Now the index i0 (which depends on the tuple α) is not discriminated any more,

and we can perform the sum over α’s:

Tn+1 =
∑

G′

∏

l∈E′
int

〈
T
∑

αs(l)

ϕαs(l)(s(l))
∑

αr(l)

ϕαr(l)(r(l))

〉
:
∏

l∈E′
ext

∑

αs(l)

ϕαs(l)(s(l)):

=
∑

G′

∏

l∈E′
int

〈
Tϕ(s(l))ϕ(r(l))

〉
:
∏

l∈E′
ext

ϕ(s(l)): .

This is just the claimed equation (3.9).

An extension of the time-ordered product across the large string-diagonal is not yet defined
up to this point. To fix it, one first extends the Feynman propagator across ∆2. A basic
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(re-)normalization condition is that the scaling degree may not be increased. One valid
extension consists in replacing δ(p2−m2)θ(p0) by i/[2π(p2−m2+iε)] in the Fourier transform
of the two-point function. The question of whether other extensions are permitted depends
on the scaling degrees of the Feynman propagator with respect to the various submanifolds
of ∆2 and their respective codimensions. We consider an example in Appendix A. In a second
step, one can define the time-ordered product of n > 2 strings by Wick’s expansion (3.9).
This would amount to requiring Wick’s expansion as a further normalization condition.

4 Final comments

We have constructed (outside ∆n) the time-ordered products of string-localized linear fields,
but not of Wick polynomials. The construction of the latter runs into the following problem.
For simplicity we consider a Wick monomial of the form

W (x, e)
.
= :χ(x)ϕ(x, e): , (4.1)

where χ is a point-localized field with non-vanishing two-point function with ϕ. (For example,
χ = ϕp from Eq. (1.6).) We wish to tell just from the requirements (P2), (P3) and (P4) what
TW (x, e)W (x′, e′) is, if the strings S

.
= Sx,e and S′ .

= Sx′,e′ do not intersect, yet are not
comparable. A typical case is when one string, say S, emanates from the causal future of S′

and ends up in its causal past. The best we can do is to cut S into two pieces S = S1 ∪S2 as
in Prop. 2.1 such that S1 is the finite segment (containing the point x) and S1 < S′, while S2

is the infinite tail and S2 4 S′. (S2 is of the form S2 = x + [s0,∞) e.) Then, as in Eq. (3.4),
W is a sum W = W 1 + W 2, where in particular

W 2(x, e) =

∫ ∞

s0

ds u(s) :χ(x)ϕp(x + se):.

Now the problem is that W 2 is, due to the factor χ(x), not localized on S2 – rather, it is
“bi-localized” on {x} ∪ S2! Note that S2 is earlier than S′ but x is not, since it is in V+(S′).
Therefore, TW 2(x, e)W (x′, e′) is not fixed by (P4), in particular it does not factorize as
W (x′, e′)W 2(x, e) even though S′ < S2. Similar considerations hold for more general Wick
monomials of the form :χ(x)l ϕk(x, e):.

We conclude that, in contrast to the linear case, the time-ordered products of Wick mono-
mials are fixed by the axioms (P2) through (P4) only outside an open set, namely the set of
pairs of strings which are incomparable. The extension into this set requires an infinity of
parameters: It cannot be fixed by a finite set of normalization conditions.

We conjecture that this problem can be solved as follows. Recall from Section 1 that in the
construction of interacting models one has to start from an interaction Lagrangian that differs
from some point-localized Lagrangian by a divergence. For the point-localized Lagrangian Lp

there holds the strong form of Wick’s expansion outside the large (point-) diagonal, which fixes
the products TLp · · ·Lp through the Feynman propagators. We conjecture that the required
string-independence condition (equivalence of the string- and point-localized Lagrangians)
implies that the same expansion holds for the string-localized Lagrangian outside ∆n (where
it is well defined). From here, one would have to extend the product of Feynman propagators
in various steps across ∆n. In models like massive QED, where the interaction Lagrangian
jµ(x)Aµ(x, e) is linear in the string-localized field Aµ, we conjecture that the SI condition
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fixes the extension outside the large point diagonal. The question of renormalizability then
amounts to the question of whether the complete extension is fixed by a finite number of
parameters, which does not increase with the order n. This is work in progress.

A Extension of a string-localized Feynman propagator across

the string-diagonal

In Prop. 3.1, we have seen that the time-ordered product Tϕϕ is fixed outside the string
diagonal ∆2. We illustrate here the extension across ∆2 with a concrete example, which
motivates that one should take the string-localized fields as basic building blocks even though
they have been introduced as integrals (1.6) over point-localized fields.

x = x′

S

S′

∆0
2

x

S

x′

S′

∆1a
2

x

S

x′

S′

∆1b
2

x

S

x′

S′

∆2
2

Figure 4: Configurations in submanifolds of the string diagonal ∆2

The string diagonal ∆2 decomposes into the following disjoint submanifolds:

∆0
2 = { (x, e, x′, e′) : x = x′ } ,

∆1a
2 = { (x, e, x′, e′) : ∃r > 0 with x′ = x + re },

∆1b
2 = { (x, e, x′, e′) : ∃r′ > 0 with x = x′ + r′e′ },

∆2
2 = { (x, e, x′, e′) : e, e′ lin. indep. ∧ ∃r, r′ > 0 with x + re = x′ + r′e′ }.

Here ∆0
2 consists of the pairs of strings with the same initial point (the point-diagonal);

∆1a
2 is the set of configurations where x′ lies in the relative interior of the string Sx,e, i.e.,

x′ ∈ Sx,e \ {x}; and ∆2
2 is the set of pairs of strings whose interiors cross: see Fig. 4. Thus

∆0
2 is the boundary of either ∆1a

2 or ∆1b
2 , and ∆1

2
.
= ∆1a

2 ∪ ∆1b
2 is the boundary of ∆2

2. So one
must extend the Feynman propagator successively across ∆2

2; then ∆1a
2 and ∆1b

2 ; and finally
across ∆0

2.
As an example we consider massive particles of spin one and take a line integral over the

Proca field Ap
µ, the so-called escort field [6, 14]:

φ(x, e)
.
=

∫ ∞

0
dsAp

µ(x + se) eµ. (A.1)

Its two-point function 〈φ(x, e)φ(x′, e′)〉 in momentum space [6] is

1

m2
−

e · e′

(p · e− iε)(p · e′ + iε)
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times the on-shell delta distribution δ(p2 −m2)θ(p0). It has scaling degree 0 with respect to
∆2

2 and ∆1
2, and scaling degree 2 with respect to ∆2

2 due to the first term.7 The same holds for
the Feynman propagator (outside ∆2), and its extension across ∆2 may not exceed this (that
is the basic renormalization condition). For all three submanifolds, the codimension is larger
than the respective scaling degree, namely 2, 3 and 4, respectively. Therefore the respective
extensions are unique [15], and the Feynman propagator is fixed without any freedom: it is
defined by replacing δ(p2 −m2)θ(p0) by i/[2π(p2 −m2 + iε)−1].

On the other hand, the two-point function of the Proca field in momentum space is(
−gµν + pµpν/m

2
)

times the on-shell delta distribution. Its scaling degree with respect to the
origin is 4; hence the Feynman propagator admits a renormalization of the form

c gµν δ(x− x′) (A.2)

as is well known. So, if one defines the Feynman propagator as the integral

∫ ∞

0
ds

∫ ∞

0
ds′ 〈TAp

µ(x + se)Ap
ν(x′ + s′e′)〉 eµe′ν , (A.3)

as one might be tempted to do from Eq. (A.1), then by (A.2) one has the freedom of adding
the distribution

c e · e′
∫ ∞

0
ds

∫ ∞

0
ds′ δ(x + se− x′ − s′e),

supported on ∆2
2: one has an undetermined constant and therefore has gained nothing, in

contrast to the first approach where one takes φ(x, e) as basic building block.

B Basic geometric notions

Definition B.1. The forward lightcone V+ is the set of all timelike and future-pointing
vectors, namely V+

.
= {x ∈ R

4 : x0 > |x| }, and for z ∈ R
4 we denote V+(z)

.
= V+ + z =

{x + z ∈ R
4 : x0 > |x| }, where x0 is the time coordinate of x and x its spatial coordinates,

i.e., x
.
= (x0,x).

Similarly, the backward lightcone V− is the set of all timelike and past-pointing vectors
and V−(z)

.
= {x + z ∈ R

4 : x0 < −|x| }.

Remark B.1. The boundaries of the backward and forward lightcones are given by ∂V−(z)
.
=

{x + z ∈ R
4 : x0 = −|x| } and ∂V+(z)

.
= {x + z ∈ R

4 : x0 = |x| }, respectively. Furthermore,
the closure of the forward lightcone V+(z) is denoted V+(z), and similarly for the backward
lightcone.

Definition B.2. For any set R ⊂ R
4 the causal past and future of R are defined by V−(R)

.
=⋃

z∈R V−(z) and V+(R)
.
=

⋃
z∈R V+(z), respectively.

We use the following well-known fact that the forward light cone is self-dual [13].

Lemma B.1. A vector ξ ∈ R
4 is contained in V+ if and only if it satisfies u · ξ ≥ 0 for all

u ∈ V+.

7These scaling degrees are calculated in [8].
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Proof. According to [13], the open forward light cone coincides with the interior of the set of
all ξ ∈ R

4 that satisfy u · ξ > 0 for all u ∈ V+, that is, with the interior of the intersection

⋂

u∈V+

{ ξ : ξ · u > 0 }.

But the closure of this set is just { ξ : ξ · u ≥ 0 for all u ∈ V+ }, and this proves the claim.

Definition B.3. Given a set A ⊂ R
4, we define its causal complement Ac to be

Ac .
= {x ∈ R

4 : (x− y)2 < 0 for all y ∈ A }.

Definition B.4. Let x, y ∈ R
4 be such that y ∈ V+(x). Then, we define the open double cone

D(y, x) with x and y as apices by

D(y, x)
.
= V+(x) ∩ V−(y).

The 2-planes in Minkowski space have a classification similar to that of the 3-planes
(see [17], for instance). A 2-plane is spacelike if all its nonzero vectors are spacelike; it is
timelike if it contains a nonzero timelike vector; it is lightlike if it contains a line of lightlike
vectors but no timelike vectors.

Let e, e′ be spacelike unit vectors, that is, e · e = −1 = e′ · e′.

Lemma B.2. (i) The linear span of e, e′ is timelike, lightlike or spacelike, respectively, if
and only if (e · e′)2 − 1 is positive, zero or negative, respectively.

(ii) This linear span is timelike if and only if one of the vectors e ± e′ is timelike and the
other is spacelike; it is lightlike if and only if one of the vectors e ± e′ is lightlike; it is
spacelike if and only if the vectors e± e′ are either both timelike or both spacelike.

Proof. The first statement is readily verified from the equation

(se + te′)2 = −(s2 − 2st e · e′ + t2).

Now note that (e∓ e′)2 = −2(1 ± e · e′), hence (i) implies (ii), on account of

(e · e′)2 − 1 ≡ (e · e′ + 1)(e · e′ − 1) = −
1

4
(e− e′)2 (e + e′)2.
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rectoŕıa de Investigación of the Universidad de Costa Rica.



String chopping and time ordering 22

References

[1] R. Brunetti and K. Fredenhagen, Microlocal analysis and interacting quantum field theo-
ries: Renormalization on physical backgrounds, Commun. Math. Phys. 208 (2000), 623–
661.

[2] D. Buchholz and K. Fredenhagen, Locality and the structure of particle states, Commun.
Math. Phys. 84 (1982), 1–54.

[3] L. T. Cardoso, Proof of renormalizability of scalar field theories using the Epstein–Glaser
scheme and techniques of microlocal analysis, J. Adv. Phys. 13 (2017), 5004–5014.

[4] H. Epstein and V. Glaser, The role of locality in perturbation theory, Ann. Inst. Henri
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