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Abstract

Finite renormalization freedom in locally covariant quantum field theo-
ries on curved spacetime is known to be tightly constrained, under certain
standard hypotheses, to the same terms as in flat spacetime up to finitely
many curvature dependent terms. These hypotheses include, in particu-
lar, locality, covariance, scaling and continuous and analytic dependence
on the metric and coupling parameters. The analytic dependence hy-
pothesis is somewhat unnatural, because it requires that locally covariant
observables (which are simultaneously defined on all spacetimes) depend
continuously on an arbitrary metric, with the dependence strengthened to
analytic on analytic metrics. Moreover the fact that analytic metrics are
globally rigid makes the implementation of this requirement at the level of
local ∗-algebras of observables rather technically cumbersome. We show
that the conditions of locality, covariance and scaling, in conjunction with
the microlocal spectral condition, are actually sufficient to constrain the
allowed finite renormalizations equally strongly, making both the continu-
ity and the somewhat unnatural analyticity hypotheses unnecessary. The
key step in the proof uses the non-linear Peetre theorem on the charac-
terization of differential operators.

1 Introduction

Perturbative ultraviolet renormalization of locally covariant quantum field the-
ories in (globally hyperbolic) curved spacetime is a well established topic of
algebraic quantum field theory, especially for scalar fields [3, 4, 11, 12]. It essen-
tially deals with two classes of objects: Wick polynomials and time ordered Wick
polynomials. Exactly as in flat spacetime, these objects can be considered as
the building blocks of the whole renormalization procedure. Smeared versions
of Wick polynomials, of their time ordered products and of their derivatives
generate an algebra W(M,g), for a given spacetime (M,g), enlarged in a con-
trolled way from the algebra of products of smeared linear fields. This enlarged
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algebra then includes physically fundamental observables, such as the stress-
energy tensor, which is necessary, for instance, to evaluate the energy densities
and fluxes of physical processes in curved spacetimes like particle creation or
Hawking radiation. The stress-energy tensor is also needed to compute the back
reaction of the quantum matter on the background geometry.

This paper deals only with Wick polynomials, though the presented results
could in principle be adapted to deal also with their derivatives and their time or-
dered products. In curved spacetime, Wick polynomial have to satisfy stronger
locality and covariance requirements than in flat spacetime. These require-
ments are conveniently stated in the language of category theory introduced
in [5], which we also use here. We should stress, though, that the categorical
language primarily serves to compress somewhat long lists of hypotheses into
concise statements. Existence of locally covariant Wick polynomials and their
time ordered products was established in the seminal works of Hollands and
Wald, respectively in [11] and [12]. It is well known that, in flat spacetime,
time ordered Wick polynomials are not uniquely defined. This fact survives the
passage to curved spacetime. However, unlike in flat spacetime, the absence
of a preferred reference state means that Wick polynomials are themselves not
uniquely defined. The ambiguities involved with the definition of these two
classes of fields are physically interpreted as finite renormalizations or renormal-
ization counterterms, upon adopting the natural locally covariant generalization
of Epstein-Glaser approach to renormalization.

Exactly as in flat spacetime, each fixed type of (either Wick or time-ordered)
polynomial admits a finite-dimensional class of independent counterterms. In
curved spacetime, this class is much larger than in Minkowski space, because
of the possible dependence of counterterms on background curvature. While
this class may no longer be finite-dimensional, it is still finitely generated or
quasi-finite-dimensional in a precise sense, because the counterterms may de-
pend only polynomially on the curvature scalars up to a certain dimension. This
remarkable result, in the case of Wick polynomials, presented in [11, Thm.5.1]
and restated in our Proposition 3.1, is arrived at by imposing severe constraints
on Wick polynomials in addition to those of locality and covariance. These
requirements are of various kinds. Some arise form heuristic properties of quan-
tum free fields, e.g., Hermiticity and commutation relations. Other requirements
concern microlocal features which, loosely speaking, extend to curved spacetime
the structure of Fourier transforms of the relevant Green functions on Minkowski
space. Another requirement regards the behaviour of Wick polynomials under
a rescaling of the metric and the parameters m2 and ξ of the free theory, which
describe the field’s mass1 and its coupling to the curvature. Finally there are
the technically delicate requirements of continuous and analytic dependence on
the metric. The two latter requirements play a crucial role in [11] in their proof
of the strong restrictions on possible finite renormalization counterterms that
was mentioned above.

The main difficulty with defining a suitable notion of the continuous depen-
dence of an element of the algebra W(M,g) on the metric g (and the other pa-
rameters m2 and ξ) is that, continuously changing the metric g 7→ g′, the whole
algebra W(M,g) changes correspondingly and algebras W(M,g) and W(M,g′)

1As in [11], we will always treat m2 as a real number, which could be either positive, zero,
or even negative, as ultraviolet renormalization is not sensitive to the sign of m2.
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associated with different metrics are not canonically isomorphic. Therefore even
just stating the condition of continuous dependence on g turns out to be diffi-
cult. Locality can be turned into an advantage in this context [11]. One may
restrict attention to metric variations in a spacetime region O ⊂ M with com-
pact closure. If g agrees with g′ outside O, essentially exploiting a suitable
version of the time slice axiom, it is possible to naturally identify an element of
W(M,g) with a corresponding element in W(M,g′), when both are supported
in O. Hence, a local version of the continuity requirement can be imposed by
means of this canonical identification.

The requirement of analytic dependence is even trickier to state. It is argued
in [11] that analytic dependence is necessary because the remaining requirements
would not be able to rule out the undesirable infinite family of non-polynomial
in curvature counterterms that were considered in [20]. There is an important
subtle technical issue arises in stating this analytic dependence condition. The
way followed for stating the continuity dependence requirement in a local region
O faces here an insurmountable obstruction: analytic metric are rigid and if they
coincide outside O they must coincide also in O. The ingenious but cumbersome
strategy elaborated in [11] a special class of Hadamard states over the considered
algebras. Since no local analytic variations of the metric are possible, they
consider a joint analytic family g(s) of the metric on O and a corresponding
analytic family of quasifree Hadamard states ω(s) on W(M,g(s)). Then they
require that the distributions obtained by composing ω(s) with the local Wick
polynomials (or their time ordered products) varies analytically with s in a
suitable analytic and microlocal sense (see the discussion starting on p.311 in
[11]).

Continuous and analytic dependence on the parameters m2 and ξ is there
treated similarly, with both parameters taken to be functions onM , rather than
just constants, at intermediate stages of the arguments.

The main result of this work establishes that the technically cumbersome
and somewhat unnatural continuous and analytic dependence requirements are
in fact not necessary to achieve the classification theorem [11, Thm.5.1]. Our
classification result, Theorem 3.2, is essentially identical, though it is slightly
more general because it allows smooth (rather than just analytic) dependence on
the dimensionless curvature coupling ξ. In the proof, we note that, keeping the
same algebraic and microlocal requirements, the locality, scaling and covariance
requirements are completely sufficient to achieve the desired classification.

The key tool exploited in our proof is a theorem that characterizes (generally
non-linear) differential operators in terms of their locality properties. This the-
orem, known as the non-linear Peetre theorem, in its most elementary version
(Proposition 2.2; see also Appendix A for a more general statement) states the
following: any map D, that associates smooth sections ψ : M → E of a bundle
E →M to smooth sections D[ψ] : M → F of another bundle F →M in such a
way that D[ψ](x) depends only on the germ of ψ at x for any point x ∈ M , is
necessarily a differential operator of locally bounded order, smoothly depend-
ing on its arguments and their derivatives. The Ck coefficients that characterize
renormalization counterterms of Wick polynomials precisely map sections of the
bundle of metrics and parameters, m2 and ξ, to scalar valued distributions on
a spacetime M . The microlocal conditions ensure that these distributions are
actually smooth functions, while the locality requirement implies that the Ck
satisfy the hypotheses of Peetre’s theorem and hence must be differential opera-
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tors. A combination of the scaling and covariance requirements then shows that
the differential order of the Ck is globally bounded and that their dependence
on the metric, m2 and the derivatives of all the parameters is polynomial, with
coefficients smoothly depending on ξ. Further, covariance also dictates that the
derivatives of the metric necessarily group into curvature scalars.

Notably, continuous and analytic dependence requirements are not exploited
in establishing the above result. Within the context of our proof, counter terms
like mkF (R/m2), where R is the Ricci scalar and F is any smooth function with
strong decal near 0 and ±∞, as considered in [20], are excluded because they
violate the microlocal requirement: there exists a choice of a spacetime (M,g)
and of a scalar field m2 such that the counterterm is not smooth and hence has
non-empty wavefront set and the Wick polynomials modified by adding these
counterterms do not satisfy the microlocal requirement.

This paper is organized as follows. Our main theorem and its proof are pre-
sented in Section 3. The proof is somewhat lengthy, but straight forward. It
relies on some preliminary definitions and results discussed in Section 2. In par-
ticular our basic version of Peetre’s theorem is stated in Section 2.3 after a quick
summary of elementary facts about jet bundles in Section 2.2, where we also
introduce some useful coordinate systems. Section 2.4 is devoted to introducing
our notion of scaling which is more precise but substantially equivalent to the
one employed in [11]. Though, we are careful to identify two different kinds of
scalings (physical and coordinate), which were mixed in [11] by the introduction
of Riemann normal coordinates. The remainder of Section 2 deals with notions
and results, especially on GL(n) representation theory, which are useful for im-
posing the covariance requirement. After recalling the definition and properties
of Wick polynomials, and the more general notion of locally covariant quantum
field, with the appropriate categorical language, we state and prove out main
result in several steps in Section 3. Section 4 concludes the paper with a dis-
cussion of the results and directions for future work. Appendix A illustrates a
more general version of Peetre’s theorem, which applies to differential operators
with parameters.

2 Geometry of scaling and general covariance

In this section we discuss some aspects of the geometry of the higher derivatives
(jets) of metric and scalar fields under the action of scaling and diffeomorphism
transformations. These properties will be crucial in the characterization of finite
renormalizations in locally covariant quantum field theory in Section 3.

2.1 Coordinates on jets

In differential geometry, jets [15, 14] are a geometric way of collecting infor-
mation about higher derivatives of functions (or bundle sections) on manifolds,
similar to what the tangent and cotangent bundles do for first derivatives. Jets
have an invariant geometric meaning even on manifolds without a preferred
metric or connection. Further, a choice of a coordinate chart on a manifold
induces a choice of adapted coordinates on the corresponding jet bundle. One
advantage of working with jets is that certain calculations are very conveniently
performed in such an adapted local coordinate chart, yet also lead to global and
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geometrically invariant conclusions. Below, we briefly discuss some variations
on adapted local coordinate systems on the space of jets of bundle of metrics
with some scalar fields.

Consider a smooth map f : Rm → R
n, such that f(0) = 0. The germ of

f at 0 ∈ R
m is the equivalence class of smooth maps f ′ : Rm → R

n that agree
with f on some neighborhood of 0 ∈ R

m. The r-jet of f at 0 ∈ R
m is the

equivalence class of all smooth maps f ′ : Rm → R
n that have the same Taylor

expansion at 0 as f to order r, denoted jr0f . Obviously, the germ contains more
information than a jet of any order. These definitions are clearly local, both on
the domain and the target of a smooth map, and are invariant under C∞-changes
of coordinates. Thus, these definitions easily translate to maps between smooth
finite-dimensional (smooth) manifolds M , N replacing 0 ∈ R

m and 0 ∈ R
n,

respectively, by generic points x ∈ M , y ∈ N . In particular, with the said M
and N , we denote by Jr(M,N) the set of all distinct jets jrxf of all smooth
maps f : M → N for all x ∈ M . Also, if E → N is a smooth bundle over N ,
then we denote by JrE or, for emphasis, by Jr(E → N) ⊂ Jr(N,E) the subset
of jets of smooth sections f : N → E. Both Jr(M,N) and Jr(E → N) can be
given structures of smooth manifolds. A fiber (JrE)x at x ∈ N is diffeomorphic
to Ex × R

sr , where Ex is the fiber of E and sr counts the components of all
(symmetrized) partial derivatives up to order r. In fact, by projection onto the
target of each jet, JrE → E → N is an iterated smooth bundle. Given a section
ψ : N → E, we can collect the r-jets of ψ over each point of N into a section
jrψ : N → JrE called the r-jet extension of ψ.

Let (xa, vi) be a local adapted coordinate chart on a bundle F →M , where
(xa) serve as coordinates on a domain U ⊆M and (xa, vi) serve as trivializing
coordinates on the fibers of the domain V ⊆ F over U . For example, if T pqM →
M is the bundle of (p, q)-tensors we can choose coordinates (xa, t

a1···ap
b1···bq

) on the
projection pre-image V of U , such that a section τ : T pqM → M could locally
be written as

τ(x) = t
a1···ap
b1···bq

(τ(x)) dxb1 · · · dxbq ∂

∂xa1
· · · ∂

∂xap
. (1)

The local chart (xa, vi) then induces an adapted coordinate system (xa, viA) on
the domain V r ⊆ JrE that is the projection pre-image of V and is diffeomorphic
to V r ∼= V ×R

sr , with sr as discussed above. Each A = a1 · · · al, standing in for
an unordered (equivalently, fully symmetrized) collection of base manifold co-
ordinate indices, is a multi-index of size |A| = l, with the range l = 0, 1, . . . , r.
The defining property of these coordinates is the identity

viA(j
rψ(x)) = ∂Av

i(ψ(x)) =
∂

∂xa1
· · · ∂

∂xal
vi(ψ(x)), (2)

for any section ψ : M → F . Given such a coordinate system, for brevity, we use
the notation ∂a = ∂/∂xa and ∂Ai = ∂/∂viA for corresponding coordinate vector
fields.

2.2 Coordinates on jets of metric and scalar fields

If M is a n-dimensional smooth manifold, let us now fix the bundle BM → M
given by the bundle product of the bundle S̊2T∗M of (smooth) Lorentzian metric
(0, 2)-tensors over M and the trivial bundle R ×M → M of (smooth) scalar
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fields over M . Let us denote the sections of this bundle by (g, ξ) : M → BM .
There are several local coordinate systems on JrBM , of various merits, which
we discuss below.

Covariant coordinates. Given a local coordinate chart (xa) on U ⊆ M , we
define the corresponding adapted coordinates (xa, gab, z) on V ⊆ BM , which in
turn induce the covariant coordinates

(xa, gab,A, zA) on V r ⊆ JrBM . (3)

Notice that only n(n+1)/2 components of gab take part in the above coordinates,
in view of the symmetry of the metric.

Contravariant coordinates. Recall that a Lorentzian metric g : M → S̊2T ∗M
is invertible and hence defines a section g−1 : M → S̊2TM . The components
of the inverse metric can be extracted by functions gab defined on all of V ⊆
BM , such that gab(g−1(x)) = gab(g(x)), which induce the functions gabA on
V r that satisfy gabA (jrg(x)) = ∂Ag

ab(g(x)). Then, using the notation gAB =
ga1b1 · · · galbl , for |A| = |B| = l, we define the following functions

g = |det gab| , gab,A = gABgabB , zA = gABzA, (4)

where, by invertibility of Lorentzian metrics, the function g−1 is well defined
on all of V r, since g = |det gab| is never zero. These functions make up the
alternative set of local contravariant coordinates

(xa, gab,A, zA) on V r ⊆ JrBM , (5)

with the caveat that as the set of functions (g, gab) is only functionally indepen-
dent up to the identity g−1 =

∣

∣det gab
∣

∣, for instance, one of the contravariant
coordinates gab can be replaced by g. These coordinates have convenient scaling
properties that will be exploited in Section 2.4.

Rescaled contravariant coordinates. Another coordinate system that we in-
troduce on V r ⊆ JrBM , the rescaled contravariant coordinates, is a suit-
able rescaling of the previous one. Namely, we introduce various factors of gα

in the latter coordinates (n being the dimension of M):

(xa, g, g−
1

n gab, g
1

n
+ 1

n
|A|gab,A, g

s
2n

+ 1

n
|A|zA), (6)

where one of the n(n+1)/2 functions g−
1

n gab is omitted and replaced by g. This

is because the functions g−
1

n gab are not functionally independent because of the
relation | det g− 1

n gab| = 1.
Curvature coordinates. Recall also that, given a Lorentzian metric g, we

can always define the corresponding covariant derivative, or Levi-Civita connec-
tion, ∇ and the Riemann tensor R. Using well known formulas, we can define
functions Γabc and R̄abcd on V r ⊆ JrBM that correspond to the coordinate
components of the Christoffel symbols and the fully covariant Riemann tensor.
Define also the fully contravariant tensor S with components

S̄abcd = gaa
′

gbb
′

R̄a′
(c
b′
d) = gab,cd − gb(c,d)a − ga(d,c)b + gcd,ab + l.o.t, (7)

where l.o.t stands for terms that involve only coordinates of lower derivative
order. Finally, let Γabc,A denote the components of the coordinate ∂A deriva-

tives of Γabc, let S̄
abcd,A denote the components of the symmetrized contravari-

ant ∇A = ∇(a1 · · · ∇al) derivatives of S, and let z̄A the components of the
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symmetrized contravariant ∇A derivatives of the scalar field ξ. It is well-
known [13, 1] that

(xa, gab,Γ
a
(bc,A), S̄

ab(cd,A), z̄A) (8)

also defines a coordinate system on V r ⊆ JrBM , which we shall call curva-
ture coordinates. Note that the barred coordinate functions correspond to
components of fully contravariant tensors. These coordinate have convenient
transformation properties under diffeomorphisms that will be exploited in Sec-
tion 2.5.

Rescaled curvature coordinates. The final coordinate system that we intro-
duce on V r ⊆ JrBM , the rescaled curvature coordinates, merges some
of the properties of the systems (xa, g−

1

n gab, g
1

n
+ 1

n
|A|gab,A, g

s
2n

+ 1

n
|A|zA) and

(xa, gab,Γ
a
(bc,A), S̄

ab(cd,A), z̄A). Namely, we again introduce various factors of g
in the curvature coordinates:

(xa, g, g−
1

n gab,Γ
a
(bc,A), g

3

n
+ 1

n
|A|S̄ab(cd,A), g

s
2n

+ 1

n
|A|z̄A), (9)

where, again, one of the n(n + 1)/2 functions g−
1

n gab is omitted and replaced
by g.

2.3 Locality and the non-linear Peetre theorem

It is well known that linear differential operators have the property that they
are support non-increasing. The powerful, original result of Peetre [16, 17]
shows that this property is sufficient to characterize them in the context of
C∞ differential geometry. A similar characterization holds even for non-linear
differential operators [19, 14], a version of which we present below.

Before proceeding, we need a robust geometric notion of what a differential
operator is. Often, differential operators are defined by their expressions in
coordinate charts. Any such definition is necessarily coordinate dependent and
must be checked to agree on chart overlaps. On the other hand, we can give a
coordinate independent and global definition of differential operators using jets
and the r-jet extension map jr defined earlier in Section 2.2.

Given a smooth bundle E → N , recall that the r-jet extension acts as a map
jr : Γ(E → N) → Γ(JrE → N), where as usual Γ(G→ L) denotes the space of
smooth sections of the bundle G→ L. For our purposes, the map jr will serve
as a universal differential operator of order r in the following sense.

Definition 2.1. Let E → N and F → M be smooth bundles, and consider a
map D : Γ(E) → Γ(F ).

(a) D is a differential operator of globally bounded order if there exists
an integer r ≥ 0, the order, and a smooth function d : Jr(E → N) →
F , considered as a bundle map (i.e., fiber preserving), such that for any
section ψ ∈ Γ(E) we have an associated section of the form D[ψ] = d ◦
jrψ ∈ Γ(F ).

(b) D is a differential operator of locally bounded order if it satisfies
a similar condition locally. Namely, for any point of y ∈ N and section
φ ∈ Γ(E), there exists a neighborhood U ⊆ N of y with compact closure,
together with an integer r ≥ 0, an open neighborhood V r ⊆ Jr(E → N) of
jrφ(U) projecting onto U , and a smooth function d : V r → F that respects
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the projections V r → U and F →M , such that D[ψ](x) = d ◦ jrψ(x) for
any x ∈ U and any ψ ∈ Γ(E) with jrψ(U) ⊂ V r.

If E → M and F → M are vector bundles over the same base manifold
M and D : Γ(E) → Γ(F ) is a linear map such that φ(x) = D[ψ](x) depends
only on the germ of ψ at x ∈ M then it is clear that D will be support non-
increasing. Elementary reasoning shows that a linear, support non-increasing
map will also only depend on germs. So, another way to rephrase the Peetre
theorem for linear differential operators is as follows, where the dependence on
the germ replaces the support non-increasing property.

Proposition 2.1 (Linear Peetre’s Theorem [16, 17]). Let E →M and F →M
be vector bundles and D : Γ(E) → Γ(F ) a linear map such that φ(x) = D[ψ](x)
depends only on the germ of ψ at x ∈ M . Then D is a linear differential
operator of locally bounded order (with smooth coefficients in view of the above
definition).

In other words, despite the fact that germs potentially contain much more in-
formation that jets, such a linear map that depends only on germs in fact sees
only jets.

Phrased as above, in terms of germs, the hypotheses of Peetre’s theorem are
immediately adaptable to the case when the map D is non-linear and acts on
sections of (non-vector) smooth bundles.

Proposition 2.2 (Non-linear Peetre’s Theorem [14, §19]). Let E → M and
F →M be smooth bundles and D : Γ(E) → Γ(F ) map such that φ(x) = D[ψ](x)
depends only on the germ of ψ at x ∈M . Then D is a (non-linear) differential
operator of locally bounded order.

This proposition will be sufficient for our purposes. However, in the standard
literature [19, 14], this result is stated in much greater generality. In fact, that
level of generality can obscure the meaning and significance of the theorem. In
Appendix A, we briefly introduce the language needed to state a more general
version, Proposition A.1. The above simpler version becomes a special case of
Proposition A.1 once it is trivially checked that D is id-local, where id: M ∼=
M is the identity map. The more general result given in Appendix A serves
two purposes. The first is that its introduces the language in which the non-
linear Peetre theorem and its proof appear in the standard literature [14, §19].
Second, it allows the treatment of differential operators with parameters. For
instance, later in Section 3, we treat the mass m2 of a scalar field and its
coupling to curvature ξ as space-time dependent background fields. If they
were treated as necessarily spacetime-constant parameters, we would need to
substitute Proposition A.1 for the simpler Proposition 2.2 in the proof of our
main Theorem 3.2.

2.4 Physical scaling

Referring to the already introduced bundle BM →M , sections (g, ξ) ∈ Γ(BM)
consist of a smooth Lorentzian metric g and a smooth scalar field ξ on M . We
consider the following scaling transformation (g, ξ) 7→ (λ−2g, λsξ) on sections.
We call this transformation a physical scaling, in contrast to a different kind
of scaling to be introduced in Section 2.5. We will need the following rather
general recursive definition, where R

+ := (0,+∞),

8



Definition 2.2. Consider a linear representation of the multiplicative group
R

+ on a vector space W , written as W ∋ F 7→ Fλ ∈ W , for every λ ∈ R
+.

(a) An element F ∈ W is said to have homogeneous degree k ∈ R if

Fλ = λkF for all λ ∈ R
+ . (10)

(b) An element F ∈ W is said to have almost homogeneous degree k ∈ R

and order l ∈ N if l ≥ 0 is an integer such that (the sum over j is omitted
if l = 0)

Fλ = λkF + λk
l
∑

j=1

(logj λ)Gj , for all λ ∈ R
+, (11)

and for some Gj ∈ W depending on F , which have respectively almost
homogeneous degree k and order l − j.

The definition is recursive, with higher orders defined in terms of lower ones.
Clearly, an element that is almost homogeneous of order l = 0 is simply homo-
geneous.

Remark 2.1. Besides almost homogeneous, other common names found in the
literature include poly-homogeneous, associated homogeneous and even quasi
associated homogeneous. We are mostly interested in the case when W is some
function space and the action or R+ is induced from an action on the domain of
the functions. Reference [18] reviews several definitions leading to this class of
functions and lists relevant earlier works. In the context of distribution theory,
the terminology of associated homogeneous is prevalent and goes back to the
seminal references [8, §1.4] and [9, Ch.I §4].

The physical scaling transformation on the sections Γ(BM) can be im-
plemented by post-composing a section with a bundle map BM → BM :

BM ∋ (p,g(p), z(p)) 7→ (p, λ−2g(p), λsz(p)) ∈ BM , (12)

where the real λ ∈ R
+ defines the scaling transformation. This representation

of the multiplicative group R
+ is globally defined, however this global action can

be written in adapted local coordinates, as discussed in Section 2.2, and looks
like

xa 7→ xa, gab 7→ λ−2gab, z 7→ λsz. (13)

This global transformation lifts to a global transformation of the jet bundle
JrBM . In the corresponding induced local coordinates, the lifted action reads

gab,A 7→ λ−2gab,A, zA 7→ λszA. (14)

We are interested in applying Definition 2.2 to W = C∞(JrBM) and the R
+

action induced by the lift of physical scalings to JrBM . Moreover, we will
need to consider also smaller domains V r ⊆ JrBM for these functions, with V r

themselves not invariant under physical scalings. Thus, it is more convenient to
refer to the infinitesimal version of these transformations, which are effected by
the following vector field

e = −2gab,A∂
ab,A + szA∂

A
z , (15)
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in the sense that the induced action on scalar functions on JrBM satisfies

d

dλ

∣

∣

∣

∣

λ=0

Fλ = LeF. (16)

(In the rest of the paper ifX is a vector field on JrBM , LX denotes the standard
Lie derivative so that, in particular LX(F ) := X(F ) if F : V r ⊆ JrBM → R

is a smooth function.) Notice that, as the physical scaling transformation is
globally defined, e turns out to be globally defined on JrBM and (15) is just
its expression in local coordinates. We have a first elementary result stated
within the following lemma. We will essentially show later that the converse
implication holds as well.

Lemma 2.3. A smooth function F : JrBM → R that has almost homogeneous
degree k, according to Definition 2.2, when the action F → Fλ is the one induced
by physical scaling transformations, satisfies the following local infinitesimal ver-
sion

(Le − k)l+1F = 0 . (17)

Proof. It is sufficient to make use of equation (16) and recall the obvious identity
(d/dλ− k)l+1λk logl λ = 0.

This lemma permits us to state the following

Definition 2.3. A smooth function F : V r ⊆ JrBM → R, where V r is an
open subset which may coincide with all of JrBM , is said to have almost
homogeneous degree k ∈ R and order l ∈ N (with l ≥ 0) under physical
scalings if it satisfies the identity

(Le − k)l+1F = 0. (18)

If l = 0, F is said to have homogeneous degree k ∈ R.

To investigate the local structure of F above we initially use an open subset
V r equipped with the contravariant coordinates (xa, gab,A, zA) introduced in
Section 2.2. In these coordinates, finite and infinitesimal physical scalings take
the form

xa 7→ xa, g 7→ λ−2ng, gab,A 7→ λ2+2|A|gab,A, zA 7→ λs+2|A|zA, (19)

e = (2 + 2|A|)gab,A∂ab,A + (s+ 2|A|)zA∂zA , (20)

where we have also described the action of rescaling on g which, as already
remarked, can be used as an alternative coordinate in place of one of the gab.
As e does not vanish anywhere, JrBM and hence the domain V r are foliated
by integral curves of the vector field e. Moreover, the identity Leg−

1

2n = g−
1

2n

means that g restricts to a global coordinate on each orbit of e. Thus, the level
sets of g constitute another foliation of JrBM and V r, transverse to the inte-
gral curves of e. These observations suggest to study the structure of (almost)
homogeneous functions of degree k in the rescaled contravariant coordinates

(xa, g, g−
1

n gab, g
1

n
+ 1

n
|A|gab,A, g

s
2n

+ 1

n
|A|zA), (21)

that were introduced in Section 2.2. Note that each of these functions but g is
invariant under physical scalings. We have the following result.
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Lemma 2.4. Suppose that V r ⊆ JrBM is an open set equipped with either
coordinates (xa, gab,A, zA) or some other coordinate system introduced in Sec-
tion 2.2, and F : V r → R is a smooth function that has almost homogeneous of
degree k and order l with respect to physical scalings, as in Definition 2.3. Then
there exist homogeneous of degree k functions Hj : V

r → R, for j = 0, 1, . . . , l,
such that

F = g−
k
2n

l
∑

j=0

logj(g−
1

2n )Hj . (22)

In particular, using rescaled contravariant coordinates, each Hj can be taken
independent of g and written in the form

Hj = Hj(x
a, g−

1

n gab, g
1

n
+ 1

n
|A|gab,A, g

s
2n

+ 1

n
|A|zA). (23)

Proof. In the simplest l = 0 case, we can define H = g
k
2nF and show that

LeH = 0 because Leg−
1

2n = g−
1

2n . This means that, in rescaled contravariant
coordinates, H is independent of g and hence (23) holds, with H in place of Hj .

Next, the general l ≥ 1 case can be treated as follows. Let G := g
k
2nF , which

implies that LleG = 0. Now, note the identity Lje logj(g−
1

2n ) = j!. So, if Hl :=
1
l!LleG and Gl−1 := G− logl(g−

1

2n )Hl, then LeHl = 0 and LleGl−1 = 0. In other

words, starting with Gl = G, we can recursively define Hj :=
1
j! log

j(g−
1

2n )LjeGj
and Gj−1 := Gj− logj(g−

1

2n )Hj , finding LeHj = 0 at each step. The procedure
stops for j = 0 when it gives G0 = H0, so that Gj<0 = Hj<0 = 0, proving
(22).

We will also need the following basic result regarding products of vectors
with almost homogeneous degree as in Definition 2.2. Due to the generality of
Definition 2.2 we must clarify the meaning of product. If W and W ′ are two
vector spaces, by a product between them, we mean any fixed bilinear map
W ×W ′ → V , where V is another vector space. If F ∈ W and F ′ ∈ W ′ the
corresponding element in V , their product, will be simply denoted by FF ′ ∈ V .

Lemma 2.5. Referring to Definition 2.2, consider a pair of vector spaces W,W ′

endowed with corresponding representations of R+. Concerning (b) below, as-
sume also that there is a product W ×W ′ → V such that (i) V admits a repre-
sentation of R+ and (ii) the map W ×W ′ → V is equivariant: FλF

′
λ = (FF ′)λ

for F ∈W , F ′ ∈ W ′ and λ ∈ R
+.

(a) A linear combination of two elements F, F ′ ∈ W of almost homogeneous
degree k and order l is of almost homogeneous degree k and order l.

(b) A product of an element F ∈ W , of almost homogeneous degree k and
order l, and an element F ′ ∈ W ′, of almost homogeneous degree k′ and
order l′, has almost homogeneous degree k + k′ and order l + l′.

Proof. Part (a) is trivial, because the defining identity 11 is linear.
We will prove part (b) by double induction on the pair of orders (l, l′).

11



Consider the identity

(FF ′)λ = FλF
′
λ = λk+k

′

FF ′

+ λk+k
′

l
∑

j=1

(logj λ)GjF
′ + λk+k

′

l′
∑

j′=1

(logj
′

λ)FG′
j′

+ λk+k
′

l
∑

j=1

l′
∑

j′=1

(logj+j
′

λ)GjG
′
j′ . (24)

From this formula, it is clear that, to show that FF ′ has almost homogeneous
degree k + k′ and order l + l′, it is sufficient to establish that the coefficients
of the logarithmic terms, GjF

′, FG′
j′ and GjG

′
j′ , either do not appear or are

themselves almost homogeneous of the right degree and order. Thus, to establish
the case (l, l′), it is sufficient to have all of the (j, l′), (l, j′) and (j, j′) cases, with
j < l and j′ < l′, already established. We shall refer to this last remark as the
primary inductive step.

The case (l, l′) = (0, 0) follows immediately from Equation (24), since no
logarithmic terms appear. Next, we establish the following secondary inductive
step. Assuming that, given some m ≥ 0, all cases (l, l′) with l, l′ ≤ m hold,
then actually all cases (l, l′) with l, l′ ≤ m + 1 hold as well. To see that, note
that the case (m+ 1, 0) holds, because in (24) we need only consider the terms
GjF

′, which correspond to the inductively covered cases (m + 1 − j, 0) with
j ≥ 1. Then, using the primary inductive step, all the cases (m + 1, l′) with
1 ≤ l′ ≤ m follow as well. The cases (l,m+ 1) with 0 ≤ l ≤ m, are completely
analogous. Finally, one more appeal to the primary inductive step establishes
the case (m+ 1,m+ 1).

Iterating the secondary inductive step completes the proof of part (b).

2.5 Diffeomorphisms and coordinate scalings

Because the sections (g, ξ) ∈ Γ(BM) are tensor fields, there is a well defined
action of the group Diff(M) of diffeomorphisms χ : M → M on them by pull-
back (g, ξ) 7→ (χ∗g, χ∗ξ). This action of course can be implemented at the
level of the bundle itself, χ∗ : BM → BM and of course lifted to the jet
bundle jrχ∗ : JrBM → JrBM . We are interested in the structure of func-
tions F : JrBM → R that are invariant under the action of Diff(M). We
could also consider invariance only under the subgroup Diff+(M) of orienta-
tion preserving diffeomorphisms in an essentially analogous way. For this pur-
pose, it is convenient to make use of the local adapted curvature coordinates
(xa, gab,Γ

a
(bc,A), S̄

ab(cd,A), z̄A) on a domain V r ⊆ JrBM defined in Section 2.2.

The domain V r itself may not be invariant under Diff(M), because our
coordinates are adapted to a single coordinate chart (xa) on U ⊆ M . On the
other hand, having already chosen our coordinate system, we can phrase the
requirement that F : V r → R is the restriction of a Diff(M)-invariant function
(necessarily defined on a possibly larger Diff(M)-invariant domain) to V r in the
following way: (a) ∂

∂xaF = 0, where the vector fields ∂
∂xa are the infinitesimal

generators of diffeomorphisms that restrict to coordinate translations on U , and
(b) the restriction Fx : V

r
x ⊆ JrxBM → R of F to the fiber of JrBM over any

one point x ∈ M is invariant under the action of the subgroup Diff(M,x) ⊂

12



Diff(M) that fixes x. Clearly we can take V rx to be invariant under Diff(M,x).
An immediate simplification based on requirement (a) is that our function is
expressible as F = Fx(gab,Γ

a
(bc,A), S̄

ab(cd,A), z̄A), that is, it is independent of the

base coordinates (xa). Next, we examine the consequences of requirement (b).
The action of Diff(M,x) on r-jets is not faithful. In fact, it has a large

kernel, so that the action on JrxBM factors through the homomorphic projection
Diff(M,x) → Grn, where G

r
n is a finite-dimensional Lie group known as the r-jet

group [14, §13]. Thus, we need only consider the invariance of Fx under Grn.
The r-jet groups come with natural projections Grn → Gr−1

n , corresponding to
the equivariant projection JrxBM → Jr−1

x BM , and it is easily seen that G1
n
∼=

GL(n). Analogously, for orientation preserving diffeomorphisms, we denote the
corresponding projections as Diff+(M) → G+r

n → GL+(n).
The curvature coordinates (gab,Γ

a
(bc,A), S̄

ab(cd,A), z̄A) specifically for their
transformation properties under Grn. Note that, without loss of generality but
after a possible small restriction of V rx , we can factor V rx

∼= R
γ ×W r, where

the projection onto the R
γ factor is effected by the (Γa(bc,A)) coordinates and

the projection onto the W r factor is effected by the remaining coordinates.
This factorization respects the action of Grn in the sense that the projection
V rx → W r induces a well-defined action of Grn and W r. The action on the
action on W r actually factors through the projection Grn → G1

n
∼= GL(n), since

it is coordinatized by components of tensors. Moreover, for any w ∈ W r, the
isotropy subgroup of w in Grn acts transitively on the fiber R

γ over w. In the
orientation preserving case, the same is true of the corresponding actions of G+r

n

and GL+(n). The fact that Grn (and also G+r
n ) acts transitively on the Rγ fibers

that are coordinatized by the derivatives of the Christoffel symbols (Γa(bc,A))
means that an invariant function Fx cannot depend on these coordinates, which
is a well-known result that is sometimes known as the Thomas replacement
theorem [13, 1]. Let us rephrase it slightly below.

The above factorization V r ∼= R
γ ×W r is also compatible with the rescaled

curvature coordinates

(xa, g, g−
1

n gab,Γ
a
(bc,A), g

3

n
+ 1

n
|A|S̄ab(cd,A), g

s
2n

+ 1

n
|A|z̄A), (25)

that were introduced in Section 2.2. Recall that in our notation the functions
(g−

1

n gab) are functionally independent only up to the identity | det(g− 1

n gab)| =
1. The main distinction is that these coordinates, other than (xa,Γa(bc,A)), are
no longer components of tensors, but rather of tensor densities, which also
transform under GL(n) (cf. Section 2.6). Using these coordinates, together
with the preceding discussion, we can simplify a Diff(M)-invariant F as follows:

Proposition 2.6 (Thomas replacement theorem). Let F : V ′r
x ⊆ JrBM → R

be a Diff(M)-invariant function defined on a Diff(M)-invariant domain. In the
coordinate system (25) defined on the domain V r ⊆ V ′r, the restriction of F to
V r must be expressible as

F = G(g, g−
1

n gab, g
3

n
+ 1

n
|A|S̄ab(cd,A), g

s
2n

+ 1

n
|A|z̄A), (26)

where the function G is invariant under the action of GL(n) on its arguments.

At this point, we have reduced the invariance of F under Diff(M) to the
invariance of the function G, from Proposition 2.6, underGL(n) (obtained as the
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projection Diff(M,x) → GL(n)), which follows from the preceding discussion.
Analogous statements hold for Diff+(M), Diff+(M,x) and GL+(n). We now
single out a specific subgroup of GL+(n) (and hence also of GL(n)) that we shall
call the group of coordinate scalings. It consists of matrices of the form µIn ∈
GL(n), where µ is a positive real number and In is the n×n identity matrix. The
name refers to the fact that µIn is the image of a diffeomorphism that restricts to
a uniform scaling of the coordinates (xa) centered at x ∈ U ⊆M , with of course
many other possible pre-images, under the projection Diff+(M) → GL+(n).
These transformations should be contrasted with the distinct group of physical
scalings introduced in Section 2.4.

Coordinate scalings act on the components of tensor densities appearing in
the coordinate system (25) as follows:

g 7→ µ2ng, g
3

2
+ 1

n
|A|S̄ab(cd,A) 7→ µ2+|A|g

3

2
+ 1

n
|A|S̄ab(cd,A), (27)

g−
1

n gab 7→ g−
1

n gab, g
s
2n

+ 1

n
|A|z̄A 7→ µs+|A|g

s
2n

+ 1

n
|A|z̄A. (28)

We stress a fundamental difference between coordinate scalings and the pre-
viously introduced physical scalings : coordinate scalings are induced from the
action of the diffeomorphism group, while the physical ones are not.

2.6 Equivariant and Isotropic tensors

In this section, we present some basic facts about equivariant maps between
spaces that carry certain representations of GL(n).

In particular, consider the space Bn of bilinear forms on R
n, and the natural

linear action of GL(n) thereon. The subset Ln ⊂ Bn of non-degenerate bilinear
forms of Lorentzian signature (−+· · ·+) is invariant and hence inherits an action
of GL(n) itself. If η ∈ Ln is the canonical Lorentzian form, defined by the
matrix diag(−1, 1, . . . , 1) referring to the canonical basis of Rn, the subgroup
O(1, n−1) ⊂ GL(n) is defined as the isotropy group of η. We could also restrict
the action on Ln to the subgroup GL+(n) ⊂ GL(n) of orientation preserving
transformations. With this choice, the isotropy group of η turns out to be
SO(1, n− 1) = O(1, n− 1) ∩GL+(n).

Remark 2.2. Ln consists of a single orbit and is in fact isomorphic to the ho-
mogeneous space GL(n)/O(1, n − 1). Similarly, Ln is also isomorphic to the
homogeneous space GL+(n)/SO(1, n − 1). The fact that the action of GL(n)
(resp. GL+(n)) is transitive on Ln implies, as a general well-known fact, that
the isotropy group of any g ∈ Ln is isomorphic to O(1, n−1) (resp. SO(1, n−1)).

Definition 2.4. LetMp
n be the space of p-multilinear forms on R

n and consider
the natural linear action of GL(n) thereon. Let T be a finite-dimensional real
vector space carrying a representation of GL(n).

(a) T is a (covariant) tensor representation if it is the restriction of the
action of GL(n) on Mp

n with respect to some linear embedding T →֒ Mp
n

as an invariant subspace. We call p the tensor rank of T .

(b) T a (covariant) tensor density representation if T is as in (a) but
the action of GL(n) ∋ u 7→ ρ(u) on T is given by a tensor representation
up to a multiplication by |detu|s, where s is the tensor weight of T .
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Of course, we obtain similar definitions by substituting GL+(n) for GL(n),
and also O(1, n− 1) or SO(1, n− 1), when a particular Lorentzian bilinear form
g is fixed. Of course, in the case of O(1, n − 1) and SO(1, n − 1), there is no
distinction between tensor and tensor density representations.

Finally, it is useful to consider the one point space ∗ ∼= R
0 with the trivial

action of GL(n) or any of its subgroups thereon.

Definition 2.5. Let X and Y be spaces carrying respective actions ρ(X) and
ρ(Y ) of the group G. A map f : X → Y is said to be equivariant if commutes
with the action of G:

f ◦ ρ(X)
u = ρ(Y )

u ◦ f for every u ∈ G . (29)

Consider the special case where X := ∗, Y := T as in (a) in definition 2.4,
and G := O(1, n − 1). The image of an equivariant map ∗ → T is called an
O(1, n − 1)-isotropic tensor. The space of O(1, n − 1)-isotropic tensors in T
will be denoted by IT .

An SO(1, n− 1)-isotropic tensor is defined similarly, replacing O(1, n− 1)
by SO(1, n − 1) everywhere. The space of SO(1, n − 1)-isotropic tensors in T
will be denoted by ĨT .

Remark 2.3.

(1) The embedding T →֒ Mp
n is an evident example of equivariant map for

GL(n) (and every subgroup) by definition.

(2) As f : ∗ → T is completely defined by its image f(∗) = t ∈ T the definition
states that a tensor t ∈ T is isotropic if it is invariant under the relevant
action of O(1, n− 1) (or SO(1, n− 1)) on T .

(3) The space of isotropic tensors for different Lorentzian bilinear forms are
clearly isomorphic.

It is well known that the subspaces of isotropic tensors IT ⊂ T and ĨT ⊂ T
can be fully characterized as in the proposition below. In the following, ǫ ∈Mn

n

denotes the canonical Levi-Civita tensor, that is, the fully anti-symmetric
form uniquely fixed by the value of its component ǫ1···n = 1, with respect to the
canonical basis of Rn. Also, Ipn ⊂ Mp

n will denote the subspace spanned by all
possible tensor products of the canonical Lorentzian form η ∈ Ln that create a
p-multilinear form. More precisely, Ipn is spanned by elements of the form

(ησ)i1i2···ip−1ip = ησ(i1)σ(i2) · · · ησ(ip−1)σ(ip), (30)

where σ ∈ Sp is any permutation. Similarly, Ĩpn ⊂ Mp
n denotes the subspace

spanned by all possible tensor products of η and ǫ that create a p-multilinear
form.

Proposition 2.7. Given a real vector space T carrying a tensor representation
of GL(n) and identifying T with its image with respect to the embedding α :
T →֒Mp

n, the following facts hold.
(a) The subspace IT ⊂ T is given by IT ∼= α(T ) ∩ Ipn.
(b) The subspace ĨT ⊂ T is given by ĨT ∼= α(T ) ∩ Ĩpn.
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An elementary proof of such a characterization of O(n)- and SO(n)-isotropic
tensors can be found in [2], which generalizes straightforwardly to O(1, n − 1)
and SO(1, n−1). More generally, this kind of result is sometimes known as first
fundamental theorem of invariant theory [21, 10] for the corresponding group.

Definition 2.6. Given a real vector space T with a tensor density representa-
tion of GL(n) (resp. GL+(n)) and the natural representation on Ln, we will refer
to an equivariant map t : Ln → T as a GL(n)-equivariant tensor density,
and similarly for GL+(n)-equivariant tensor densities.

The space of GL(n)-equivariant tensor densities will be denoted by ET and
the space of GL+(n)-equivariant tensor densities will be denoted by ẼT .
Remark 2.4. Even if the functions belonging to ET and ẼT are not required to
be linear, these spaces enjoy a natural structure of real vector space, just in view
of the fact that the equivariant tensor densities are maps with values in the real
vector space T .

The following lemma characterizes the space of equivariant tensor densities
(in the sense of equivariant maps) in terms of isotropic tensors (in the sense of
the subspaces IT ⊆ T (resp. ĨT ⊆ T ) defined earlier).

Lemma 2.8. Let T be a finite-dimensional real vector space carrying a tensor
density representation of GL(n), resp. GL+(n), and assume that Ln is equipped
with the natural representation.

(a) The space of GL(n)-equivariant, resp. GL+(n)-equivariant, tensor den-
sities is isomorphic the subspace of O(1, n−1)-isotropic tensors, resp. SO(1, n−
1)-isotropic tensors, in T . More precisely, the isomorphism is defined by

ET ∋ t 7→ t(η) ∈ IT (resp. ẼT ∋ t 7→ t(η) ∈ ĨT ). (31)

(b) For a given t ∈ ET , we have

t(g) = |det g|s P (g) for all g ∈ Ln , (32)

where P (g) is a homogeneous T valued polynomial in the components of g (with
respect to the canonical basis of Rn), and s is some real number fixed by weight
of the tensor density representation of GL(n).

(c) For a given t ∈ ẼT , we have

t(g) = |det g|s P (g, ε(g)) for all g ∈ Ln , (33)

where P (g, ε(g)) is a homogeneous T valued polynomial in the components of g
and the components2 of ε(g) :=

√
det g ǫ (with respect to the canonical basis of

R
n in both cases), and s is some real number fixed by the weight of the tensor

density representation of GL+(n).

Remark 2.5. Since, in view of this Lemma, an equivariant tensor density t(g) is
a homogeneous function, say of degree k, of g up to a power of |deg g|, it could
always be rewritten as

t(g) = |det g|
k
n t(|det g|−

1

n g). (34)

This observation will be later useful in the proof of Theorem 3.2.

2The homogeneous degree of P (g, ε(g)) counts the components of g with degree 2 and the
components of ε(g) with degree n.
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Proof. We deal with the GL(n)-equivariant case, the GL+(n)-equivariant case
being completely analogous. The action of GL(n) on both Ln and T is linear,
so we denote it as u · x, for u ∈ GL(n) and x in either Ln or T .

The first crucial observation, as Ln consists of a single orbit of GL(n), is
that equivariance allows us to fully fix t : Ln → T provided that we know its
value on η ∈ Ln, by the formula

t(g) = t(ug · η) = ug · t(η), (35)

for any g ∈ Ln and ug ∈ GL(n) such that g = ug · η. The second crucial
observation is that, to make sure that the values of t are assigned consistently,
t(η) must be invariant under the isotropy subgroup of η, namely O(1, n− 1). In
other words, t(η) must belong to IT , with respect to the induced representation
of O(1, n − 1) on T . The formula (35) clearly defines mutually inverse maps
ET → IT and IT → ET , thus establishing the isomorphism ET ∼= IT claimed in
part (a).

Let us now prove part (b). Fix an (equivariant) embedding α : T → Mp
n.

Since t(η) is an element of IT , from the characterization of isotropic tensors in
Proposition 2.7, it must be of the form

t(η) = α−1





∑

σ∈Sp

cσησ



 , (36)

where cσ are some scalar coefficients. Then for any g ∈ Ln and a corresponding
ug ∈ GL(n) such that g = ug · η,

t(g) = ug · t(η) = α−1



|detug|r
∑

σ∈Sp

cσ(ug · ησ)





= |det g|r/2 α−1





∑

σ∈Sp

cσgσ



 , (37)

where r is the density weight of the representation T and where we have used
the notation

gσ = gσ(i1)σ(i2) · · · gσ(ip−1)σ(ip) (38)

for the corresponding monomial on Ln in terms of the components of g with
respect to the canonical basis on R

n. Clearly, the above formula can be rewritten
as t(g) = |det g|s P (g), with s := r/2. We observe that, from (37), that P is
an homogeneous polynomial (of degree p/2) in the components of the metric,
completing the proof of part (b).

The proof of (c) is strictly analogous, taking into account the identity ug ·ǫ =
ε(g), for any ug ∈ GL+(n) such that, ug · η = g.

3 Characterization of finite renormalizations of

Wick polynomials

We generalize the discussion of local covariant fields from [11], where only metric
dependence was allowed, to a more general context where other background
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fields are allowed in addition to the metric g on a spacetime M . In order to
simplify the presentation, we will restrict the extra background fields to two
scalar functions m2 and ξ, which appear in the description of a scalar quantum
field.

Generally speaking, background fields are described by sections h of suitable
bundles HM → M over the manifolds M we consider. Covariance requires to
deal with all such bundles simultaneously and coherently. In other words we deal
with an assignment of a bundle HM → M to every manifold M and require
that any embedding χ : M →M ′ must give rise to a corresponding well-defined
pullback map χ∗ : Γ(HM ′) → Γ(HM). This picture can be phrased properly
with the language of category theory by means of the notion of natural bundle.

A natural bundle is a functor H : Man → Bndl from the category of
smooth manifolds (where objects are connected, have fixed dimension n and
morphisms are embeddings, which are necessarily local diffeomorphism) to the
category of smooth bundles, such that a morphism χ : M →M ′ induces a mor-
phism Hχ : HM → HM ′ that is necessarily a bundle map (i.e., fiber preserv-
ing) and itself a local diffeomorphism. The required pullback χ∗ : Γ(HM ′) →
Γ(HM) is then implicitly defined by h′ ◦ χ = Hχ ◦ (χ∗h′), when h′ ∈ Γ(HM ′).

One elementary example of a natural bundle is the functor M 7→ R ×M ,
the trivial scalar bundle, whose sections we call scalar fields. Another relevant
example is M 7→ S̊2T ∗M , the bundle of Lorentzian metrics; we will denote
a section of S̊2T ∗M → M by g. Other examples are are M 7→ T ∗M and
M 7→ Λ2M , the cotangent bundle and the bundle of 2-forms, whose sections
could be interpreted as background electromagnetic fields, in the vector potential
or field strength forms.

Remark 3.1. In the rest of the paper, focussing on the theory of a real quantum
scalar field, ϕ, we make a more precise choice of the natural functor H . We
suppose that the manifolds of the category Man are connected, n-dimensional
(for a fixed n ≥ 2), and the functor H assigns M 7→ HM = S̊2T ∗M × R × R,
with a morphism χ : M →M ′ inducing the standard tensor push-forwardHχ =
χ∗ : HM → HM ′. Then, the sections M → HM are triples h = (g,m2, ξ)
always consisting of:

(a) a Lorentzian metric, g, making (M,g) a (smooth) Lorentzian spacetime
of fixed dimension n ≥ 2,

(b) the pair of real scalar fieldsm2 and ξ overM , with the respective physical
meaning of the squared mass of the scalar field and a factor describing the
coupling with the scalar curvature.

We stress that, exactly as in [11], we assume that the parameters m2 and ξ
are actually functions on M . Quantum field theory in curved spacetime is well-
defined for both constant or variable m2 and ξ. There is of course no obstacle
in restricting them to constant functions, as we note in Remark 3.5. Moreover,
as in [11], m2 and ξ are allowed to have any real value.

Definition 3.1. Let us fix the natural bundle H : Man → Bndl as in Re-
mark 3.1. A background field is a section h : M → HM and we call the pair
(M,h) a background geometry, provided h = (g,m2, ξ) is such that (M,g)
is a time-orientable globally hyperbolic spacetime. Furthermore we define the
following categories.

(a) BkgG is the category of background geometries, having time-
oriented background geometries as objects and morphisms given by smooth
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embeddings χ : M → M ′ that preserve the background fields, χ∗h = h′ on M ′,
the time orientation, and causality, meaning that every causal curve between
χ(p) and χ(q) in M ′ is the χ-image of a causal curve between p and q in M .

(b) BkgG+ is the category of oriented background geometries having
oriented and time-oriented background geometries as objects and morphisms as
in BkgG, but also required to preserve the spacetime orientation.

To describe (off-shell) algebras of observables on background geometries, we
need the notion of a net of algebras (or pre-cosheaf of algebras).

Definition 3.2. A net of algebras is an assignment of a unital ∗-algebra
W(M,h) for every background geometry (M,h) in BkgG together with an
assignment of an injective unital ∗-algebra homomorphism ιχ : W(M,h) →
W(M ′,h′) for every morphism in BkgG. In other words W : BkgG → Alg is a
functor from background geometries category into the category of (complex) uni-
tal ∗-algebras whose morphisms are injective unital ∗-algebra homomorphism.
We refer to a functor W : BkgG+ → Alg as a net of algebras as well.

For a fixed background geometry (M,h), a scalar quantum field Φ is a
W(M,h)-valued distribution3 Φ: D(M) → W(M,h), where D(M) is the space
of (complex valued, smooth, compactly supported) test functions4 on M . For
convenience of notation, we sometimes write Φ(f) for the smearing

Φ(f) =

∫

M

ϕ(x)f(x) dg(x) (39)

where dg(x) is the volume form induced by the metric g.
We are in a position to state our definition of a locally covariant field which

extends and generalizes [11, Def.3.2].

Definition 3.3. A locally covariant scalar quantum field Φ is an assign-
ment of a scalar quantum field Φ(M,h) to each background geometry (M,h) that
satisfies the following identity for each morphism χ : (M ′,h′ = χ∗h) → (M,h):

ιχ(Φ(M,χ∗h)(f)) = Φ(M,h)(χ∗f) , for any f ∈ D(M ′). (40)

In other words, Φ is a natural transformation Φ: D → W between the functors
of test functions and algebras of observables.

In view of the penultimate remark in the definition, a locally covariant scalar
quantum field could alternatively be called natural scalar quantum field.

Remark 3.2.

(1) In [11], h is nothing but the Lorentzian metric of the spacetime and the
parameters m2 and ξ appearing in the definition of the quantum fields
generated by KG fields are considered external parameters. Here instead

3For every Hadamard quasifree state ω over W (M,g) the map D(M) ∋ f 7→ ω(Φ(f))
is a distribution in the proper sense. A weaker requirement allowing to smear fields with
distributions of a suitable wavefront set can be given exploiting the so called Hörmander
pseudotopology [11], but it is irrelevant for this work.

4Note that D : Man → LCV is itself a (covariant) functor from manifolds to locally convex
topological vector spaces. It maps a morphism χ : M → M ′ to the induced extension by zero

map χ∗ : D(M) → D(M ′).
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we explicitly include them in h. It is very easy to prove that the concrete
locally covariant quantum fields appearing in [11] (scalar KG field and
associated Wick polynomials, time-ordered Wick polynomials and their
derivatives) satisfy our more general definition locally covariant quantum
fields.

(2) Definition 3.2 includes two distinct though related notions: locality and
covariance, both illustrated by the condition (40). Locality corresponds
to the case where χ describes the inclusion χ : M ⊂ M ′, while covariance
corresponds to an arbitrary allowed χ.

A Klein-Gordon scalar field ϕ, with mass m2 and coupled with the scalar
curvature through the constant ξ, is the most elementary, but non trivial, ex-
ample of a locally covariant quantum field. Wick polynomials ϕk, k = 2, 3, . . .,
are special kinds of locally covariant scalar fields, not uniquely associated to
a Klein-Gordon scalar field ϕ =: ϕ1, whose detailed properties are described
in [11, Sec.4]. Existence of such families of objects was established in [11]. The
lack of uniqueness is physically interpreted as the existence of some remaining
degrees of freedom in the renormalization procedure of Wick polynomials. The
key result on finite renormalizations of Wick polynomials is

Proposition 3.1 ([11, Thm.5.1]). If {ϕ̃k} and {ϕk} are two families of Wick
polynomial fields (k ∈ N) of the same Klein-Gordon field ϕ = ϕ1 = ϕ̃1, then,
for every fixed spacetime (M,g), their difference can be parametrized as follows:

ϕ̃k(M,g)(x) = ϕk(M,g)(x) +

k−2
∑

i=0

(

k

i

)

Ck−i(x)ϕ
i
(M,g)(x), (41)

where the

Ck(x) = Ck[g
ab(x), Rabcd(x), . . . ,∇(e1 · · ·∇ek−2)Rabcd(x), ξ,m

2] (42)

are some polynomials scalars tensorially formed from all of their arguments
(except ξ) with coefficients that depend analytically on ξ, which scale as Ck 7→
λkCk when their arguments are rescaled as ξ 7→ ξ, m2 7→ λ2m2, gab 7→ λ2gab

and Rabcd 7→ λ−2Rabcd, with the same scaling weight for its derivatives.

Remark 3.3 (Wick powers). We shall not enter into the details of the defining
properties of Wick polynomials. We just list them with some comments, details
can be found in Sec.4 of [11].

(i) Locality and Covariance. Each Wick power is a locally covariant quan-
tum field, that is, Definition 3.3 is satisfied with Φ = ϕk for every k.

(ii) Specific (algebraic and microlocal). Wick powers have properties
heuristically known to hold: Hermiticity and a specific expressions for
their commutator with a free field. Moreover ω(ϕk(x)) is a distribution
with empty wavefront set for every Hadamard quasifree state ω.

(iii) Scaling. There is a linear action of physical scalings on the vector space of
locally covariant quantum fields (Equation (48) of [11]). The k-the Wick
power ϕk(M,h) has almost homogeneously degree k under this action, as in
Definition 2.2 or Section 2.4.
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(iv) Continuity and Analyticity. Wick polynomials vary continuously un-
der smooth variations of the background fields, with this dependence
strengthened to analytic (both in a suitable technical sense explained
in [11]) on analytic metrics and analytic background fields.

Remark 3.4 (Scaling). Our scaling condition, which uses Definition 2.2, is slightly
weaker than Definition 4.2 of [11], but it will be sufficient for our purposes. The
difference is in the notion of order of the logarithmic terms. The ‘order’ in Defi-
nition 2.2 refers only to the scaling properties. On the other hand, the ‘order’ of
a quantum field used in [11, Def.4.2] refers the number of iterated commutations
with ϕ needed to annihilate that field. An inductive argument (in k) shows that
if a Wick power ϕk satisfied Definition 4.2 of [11], then the same Wick power
satisfies also our Definition 2.2(b).

Implementation of Continuity and Analyticity requirements was a quite tech-
nically difficult task in [11] as stressed in the introduction. We would like to
demonstrate that, to prove the statement of Proposition 3.1, the Continuity
and Analyticity properties are unnecessary (possibly even follow from the other
properties) and are subsumed by the already required Local and Covariance
properties. Dropping Continuity and Analyticity, we can achieve essentially the
same result written below into a more precise form:

Theorem 3.2. Let {ϕ̃k} and {ϕk} be two families of locally covariant quantum
fields (k ∈ N) in the sense of Definition 3.3 (referring either to the category
BkgG of non-oriented background geometries or BkgG+ of oriented background
geometries) that satisfy the additional Specific (microlocal and algebraic) and
Scaling properties5 with respect to the Klein-Gordon field ϕ = ϕ1 = ϕ̃1.

(a) If ϕ is defined with respect to the category BkgG, for every (M,h), we
have:

ϕ̃k(M,h)(x) = ϕk(M,h)(x) +
k−2
∑

i=0

(

k

i

)

Ck−i[h](x)ϕ
i
(M,h)(x), (43)

where the

Ck[h](x) = Ck
[

gab(x), Rabcd(x), . . . ,∇e1 · · · ∇ehRabcd(x),

ξ(x), . . . ,∇e1 · · ·∇er ξ(x),m(x)2, . . . ,∇e1 · · · ∇esm(x)2
]

(44)

are some scalar polynomials, tensorially formed from all of their arguments,
except ξ(x), and where Rabcd(x) denotes the Riemann tensor and ∇a the Levi-
Civita connection of gab at x ∈M .

(b) If ϕ is defined with respect to the category BkgG+, for every (M,h), we
have a variant of (43) with

Ck[h](x) = Ck
[

gab(x), εa1···an(x), Rabcd(x), . . . ,∇e1 · · · ∇ehRabcd(x),

ξ(x), . . . ,∇e1 · · ·∇er ξ(x),m(x)2, . . . ,∇e1 · · · ∇esm(x)2
]

(45)

scalar polynomials, tensorially formed from all of their arguments, except ξ(x),
and now including the Levi-Civita tensor εa1···an(x) of gab at x ∈M .

5That is, they are Wick polynomials of ϕ in the sense of [11], up to the Continuity and
Analyticity properties.
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In both cases (a) and (b), the coefficients of the polynomials are smooth
(instead of analytic) functions of ξ(x) whose functional form does not depend
on M .

Further, the Ck scale as Ck 7→ λkCk when their arguments are rescaled as
follows: ξ 7→ ξ, m2 7→ λ2m2, gab 7→ λ2gab, εa1···an 7→ λnεa1···an , Rabcd(x) 7→
λ−2Rabcd(x) and the covariant derivatives do not change this rescaling behaviour
as the coordinates are dimensionless. These rescaling properties fix the order of
the polynomial Ck.

Obviously all terms ∇e1 · · · ∇esξ(x) and ∇e1 · · ·∇esm(x)2 with s > 0 vanish
if, at the end of computation, m2 and ξ are taken constant.

The proof of our main Theorem 3.2 will be mainly geometric. However, we
will need an intermediate analytical result, which we encapsulate in the Lemma
below, which is a more detailed version of the first two paragraphs of the proof
of [11, Thm.5.1]. Logically, this analytical result follows from the Microlocal
Spectrum property, form the Locality requirement (cf. (2) in Remark 3.2) and
the from Scaling requirement. It does not rely on either the Continuity or
Analyticity properties nor the Covariance requirement.

Lemma 3.3. For {ϕ̃k} and {ϕk} as in Theorem 3.2 and every fixed M , the
identity (43) holds with some smooth functions Ck[h], where the value Ck[h](x)
depends only on the germ of h at x ∈ M . Moreover, these functions are
locally covariant, so that χ∗Ck[h] = Ck[χ

∗h] for any morphism χ in BkgG

(resp. BkgG+), and Ck[h] scales almost homogeneously of degree k under the
physical scaling transformation h = (g,m2, ξ) 7→ (λ−2g, λ2m2, ξ).

Proof of Lemma 3.3. The proof is inductive in k. The thesis holds for k = 1
and C1 = 0, since ϕ1 = ϕ̃1. Next suppose that (43) holds for some functions
Ci : Γ(HM) → C∞(M), i = 1, 2, . . . , k − 1, that satisfy the desired properties.
Then Ci[h]1 defines a locally covariant c-number field, where 1 ∈ W (M,h) is
the identity of the given algebra. Define

Φk,(M,h)(x) := ϕ̃k(M,h)(x)−
(

ϕk(M,h)(x) +
k−2
∑

i=0

(

k

i

)

Ck−i[h](x)ϕ
i
(M,h)(x)

)

. (46)

By construction, Φk is a locally covariant quantum field as in Definition 3.3.
It satisfies the requirements in Remark 3.3: Specific (microlocal and algebraic)
and Scaling properties, as outlined in Remark 3.4. The algebraic properties
in particular require that Φk is Hermitian and, on any given spacetime M , it
satisfies [Φk,(M,h)(x), ϕ(y)] = 0 for all x, y ∈ M , which means that it is a c-
number from [11, Prop.2.1]. In other words, Φk,(M,h) = Ck[h]1 where Ck[h] :
C∞

0 (M) → R is a distribution. Sticking to Specific properties, the microlocal
spectrum condition then implies that the distribution Ck[h] is a smooth function
of x. The locality requirement of Definition 3.3 (see (2) in Remark 3.2) entails
that χ∗Ck[h] = Ck[χ

∗h] for any inclusion χ : U ⊂ M . In other words, fixing
x ∈ M and taking the limit over decreasing neighborhoods U of x, the value
Ck[h](x) depends only on the germ of h at x.

The validity of the Scaling property for both ϕk and ϕ̃k imply that, by
the formula (46), Φk is a linear combination of products of terms with almost
homogeneous degrees that add up to k. Thus, by Lemma 2.5, Φk itself has
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almost homogeneous degree k and thus

SλΦk = λkΦk + λk
∑

i

(logi λ)Ψi, (47)

where Sλ is the action of physical scalings mentioned in Remark 3.4 and Ψi are
some other locally covariant quantum fields of almost homogeneous degree k.
Recall that, for a fixed spacetime M , we can think of a locally covariant field as
a section of a certain bundle over Γ(HM), where the fiber over h ∈ Γ(HM) is
the space of W(M,h)-valued distributions on M . Note also that, as discussed
in Section 4.3 of [11], all the W(M,h) algebras are naturally isomorphic and the
action Sλ consists of the composition of action induced from Γ(HM) and the
rescaled natural isomorphism. Thus, as Φk is a c-number, so are all of the Ψi.
Hence, from the definition of Sλ, the action of physical scalings on Φk = Ck1
restricts to the induced action of physical scalings on C∞(M) valued functions
on Γ(HM). Therefore, Ck[h] has almost homogeneous degree k as a function
on Γ(HM).

In the proof of the main Theorem below, we systematically make use of
the geometric results summarized in Section 2. In particular, the non-linear
Peetre theorem discussed in Section 2.3 brings in the key simplification in our
proof in comparison with the arguments of [11]. This theorem is well known in
differential geometry but has not before been applied in this context. It states
that, under the conditions given by Lemma 3.3 and the Locality property, the
Ck must be some (possibly non-linear) differential operators of locally bounded
order applied to the background fields g, m2 and ξ. It then remains only to call
upon the Scaling and Covariance properties to check that the Ck may only be
of the form stipulated in Equation (44) or (45).

Proof of Theorem 3.2. In this proof, we carefully separate the hypotheses of lo-
cality, scaling and covariance. Locality allows us to conclude that the functions
Ck are differential operators. Scaling restricts their form and then covariance
restricts their form even further, to the desired result. Note that, unlike in [11]
we do not make use of Riemann normal coordinates. As a result, we invoke the
transformations properties of Ck under two different kinds of scaling transfor-
mations, which are mixed when normal coordinates are employed.

1. Locality and the Peetre theorem. The first step is to combine the
locality of the coefficients Ck of Equation (43) with the non-linear Peetre theo-
rem (Proposition 2.2) to conclude that in fact these coefficients are differential
operators of locally bounded order (see Section 2.3 for details). To verify the
hypotheses of Proposition 2.2, take the bundle F ∼= R ×M → M , so that its
sections are just real valued functions Γ(F → M) = C∞(M). Finally, take the
bundle E ∼= HM → M . Lemma 3.3 shows that Ck : Γ(HM) → C∞(M) such
that Ck[h](x) depends only on the germ of h at x ∈ M . Consequently, the
non-linear Peetre theorem gives us the desired result: for every fixed M ∈ Man,
Ck : Γ(HM) → C∞(M) is a differential operator of locally bounded order, as
defined in Section 2.3.

Although we treatm2 and ξ as spacetime-dependent fields, this is not crucial.
They could be treated as constant parameters from the start and the slight
modification of the proof, needed only at this point, is discussed in Remark 3.5.
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2. Almost homogeneity under physical scaling. Consider a Lorentzian
metric g0 on M , as well as a point y ∈ M and an open neighborhood U of
y with compact closure, with a coordinate system (xa) centered at y. Since
Ck is a differential operator of locally bounded order, for any such g0, y and
U there exists an integer r ≥ 0 such that Ck is a differential operator on U
of local order r when acting on sections of HM close to (g0,m

2 = 0, ξ = 0),
in a precise sense that we discuss next. Naturally, the coordinates xa induce
(scaling) adapted local coordinates on the jet bundle JrHM , which we write as
(xa, g, gab, g

ab,A, wA, zA), recalling that the coordinates (g, gab) are functionally
independent up to the identity |det gab| = g. The notation and the meaning of
these coordinates are discussed in Section 2.2. The only difference is that we now
use two sets of coordinates, wA and zA, for the jets of the scalar fields,m2(x) and
ξ(x) respectively, instead of just one. Then, by the bound r on the local order
of Ck at y, there exists a neighborhood V r1 ⊆ JrHM of jry(g0,m

2 = 0, ξ = 0),

projecting onto U , and a function Fk(x
a, g, gab,A, wA, zA) defined on V r1 such

that
Ck[h](x) = Fk(j

rh(x)), (48)

for any section h ∈ Γ(HM |U → U) such that jrh(U) ⊆ V r1 . Note that V r1
may be strictly smaller than JrH |U . Without loss of generality, but possibly
shrinking the domain of Fk, we can choose it such that V r1

∼= U ×W r
1 , where

the projection on the U factor is effected by the base coordinates (xa) and the
projection onto W r

1 is effected by the remaining fiber coordinates. The main
obstacle to increasing V r1 to all of JrHM is the possible need to increase the
order r on larger domains. At the moment, from the Peetre theorem, we know
only that the order r of Ck is locally bounded, but may not have a finite global
bound. The subscript 1 on V r1 will increase in the subsequent discussion as
we use the properties of Ck to gradually enlarge the domain of definition of
the function Fk, while maintaining the identity (48), and thus the bound r
on the order of Ck. In the final step of the proof we will in fact show that
differential order of Ck is actually globally bounded. With that in mind, it is
then consistent, on a first reading of the proof, to assume that r is globally fixed
and V r1 = JrHM , so that the parts dealing with enlarging V r could be skipped.

Similar to Equation (20), the vector field implementing infinitesimal physical
scaling transformations on V r1 ⊆ JrHM is

e1 = (2 + 2|A|)gab,A∂ab,A + (2 + 2|A|)wA∂wA + 2|A|zA∂zA. (49)

According to the last statement in Lemma 3.3, the coefficient Ck and hence
the function Fk scale almost homogeneously with degree k with respect to the
vector field e1 (Lemma 3.3). Therefore, according to Lemma 2.4, there exists
an integer l > 0 and function Hj on V r1 , for j = 0, . . . , l − 1, such that

Fk = g−
k
2n

∑

j=0

logj(g−
1

2n )Hj , (50)

where each Hj is invariant under the action of e1 and hence can be written as

H = H(xa, g−
1

n gab, g
1

2n
+ 1

n
|A|gab,A, g

1

n
+ 1

n
|A|wA, g

1

n
|A|zA). (51)

At this point, we may extend the domain V r1 to V r2 ⊆ JrHM , which is in-
variant under physical scaling. That is, we can write V r2

∼= R
+ ×W r

2 , where

24



the coordinate g effects the projection onto the R
+ factor and the coordinates

(xa, g−
1

n gab, g
1

2n
+ 1

n
|A|gab,A, g

1

n
+ 1

n
|A|wA, g

1

n
|A|zA) effect the projection onto the

W r
2 factor, which includes at least the point (g−

1

n gab ◦ g0(y), 0, 0, 0). The func-
tion Fk extends from V r1 to V r2 in a unique way as an almost homogeneous
function of degree k.

Let us go into some of the details of the mentioned unique extension proce-
dure. So far, we could only presume that the identity (48) that expresses the
function Ck[h](x) in terms of the differential operator defined by the function
Fk holds only when the germ of h at x ∈M projects onto one of the jets in the
domain V r1 ⊆ JrHM of Fk. We have defined the extended domain V r2 to be
the smallest domain invariant under physical scaling and containing V r1 . The
function Fk, by using formula (50), has a unique almost homogeneous extension
to V r2 that scales almost homogeneously and agrees with the known values of Fk
on V r1 . Since any element of V r2 can be brought back to V r1 by a physical scaling
transformation and Ck[h] itself scales almost homogeneously, the identity (48)
must remain valid also for germs of h at x that project to jets in the extended
domain V r2 . Below, we use similar logic each time the domain of the function Fk
is expanded, eventually to all of JrHM , though possibly with a larger value of
r, thus showing that Ck[h] is actually a differential operator of globally bounded
order.

3. Diffeomorphism covariance and the Thomas replacement theorem. Now
we move on to the covariance property of the Ck under diffeomorphisms, which
will be used in several stages. First, part of the almost homogeneous scaling
property implies that the functions Hj from Equation 51 are each separately in-
variant under diffeomorphisms, in the sense described in Section 2.5. Therefore,
applying Proposition 2.6 we can conclude that

g−
k
2nHj(x

a, g−
1

n gab, g
1

n
+ 1

n
|A|gab,A, g

1

n
+ 1

n
|A|wA, g

1

n
|A|zA)

= g−
k
2nGj(g

− 1

n gab, g
3

n
+ 1

n
|A|S̄ab(cd,A), g

1

n
+ 1

n
|A|w̄A, g

1

n
|A|z̄A), (52)

where the notation use for the coordinates is explained in Section 2.5 and each
g−

k
2nGj , for j = 0, . . . , l − 1, is invariant under the natural action of either

GL(n) (or GL+(n), depending on which of the cases (a) or (b) we are dealing
with) on its arguments. Notably, Gj depends neither on the base (xa) nor on
the Christoffel coordinates (Γa(bc,A)). Since the overall defined function Ck is

invariant under diffeomorphisms, the domain V r2 where the identity (48) holds
can now be extended to V r3 ⊂ JrHM that is invariant under the action of dif-
feomorphisms. More precisely, we have V r3

∼= U × Ln × R
γ ×W r

3 , where the
coordinates (xa) effect the projection onto the U factor, the coordinates (gab)

or (g, g−
1

n gab) effect the projection onto the Ln factor (the whole space of non-
degenerate bilinear forms on R

n with Lorentzian signature), the coordinates
Γa(bc,A) effect the projection on the R

γ argument and the remaining coordinates

(g3̄n+
1

n
|A|S̄ab(cd,A), g

1

n
+ 1

n
|A|w̄A, g

1

n
+ 1

n
|A|z̄A) effect the projection on the W r

3 ar-
gument, which contains at least the point (0, 0, 0) and is invariant under the
corresponding action of GL(n) (resp. GL+(n)).

4. Invariance under coordinate scaling. Next, recall the action of the sub-
group of GL(n) (resp. GL+(n)) that we called coordinate scalings in Section 2.5.
Notice that all the coordinates that the functions Gj depend on have positive

weight with respect to coordinate scalings, with the exception of (g−
1

n gab, z).
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For brevity, let us rewrite our coordinates as (g, g−
1

n gab, z, q
i), with the weight

of the coordinate qi under coordinate scalings denoted by di > 0. Then the in-
variance of the functions Fk on V

r
3 under diffeomorphisms, and hence coordinate

scalings, implies the identity

µkFk(g, g
− 1

n gab, z, q
i) = µkFk(µ

2ng, g−
1

n gab, z, µ
diqi)

= g−
k
2n

l−1
∑

j=0

logj(µg−
1

2n )Gj(g
− 1

n gab, z, µ
diqi) (53)

for any point of V r3 on its left hand side and any value of µ > 0. As described

above, the limit (g−
1

n gab, z, 0) of the arguments of the functions Gj as µ → 0
falls within the domain of the functions Gj . Therefore, while the limit of the
left-hand side of (53) converges to 0 as µ → 0, the right-hand side diverges

unless all Gj = 0 for j > 0, so that Fk = g−
k
2nG0. The new identity implied by

invariance under coordinate scalings is then

g−
k
2nG0(g

− 1

n gab, z, q
i) = µ−kg−

k
2nG0(g

− 1

n gab, z, µ
diqi). (54)

Fix some values for the coordinates (g, g−
1

n gab, z) and recall that the point

(g−
1

n gab, z, 0) is part of the domain of definition of G0. Since G0 is smooth,
Taylor’s theorem allows us to write it as

G0(g
− 1

n gab, z, q
i) =

∑

|I|<N

AI(g
− 1

n gab, z)q
I +O(qN ), (55)

where I = i1 · · · im is a multi-index with respect to the coordinates (qi) and
N > 0 is an integer large enough so that 〈d, I〉 =

∑m
j=1 dij > k for any m =

|I| > N . Note that the error term O(qN ), for fixed (qi) mapped to (µdiqi) and
µ→ 0, is mapped to O(µk+1) by our choice of sufficiently large N . Thus, using
Taylor’s theorem, we can rewrite (54) as

g−
k
2nG0(g

− 1

n gab, z, q
i) =

∑

|I|<N

g−
k
2nAI(g

− 1

n gab, z)q
Iµ〈d,I〉−k + µ−kO(µk+1).

(56)
While the left-hand side of (56) is bounded as µ → 0, the right-hand side
diverges unless all AI = 0 for I such that 〈d, I〉 < k. If this vanishing condition
is satisfied, the µ→ 0 limits of both sides of (56) exist and give the identity

Fk = g−
k
2nG0(g

− 1

n gab, z, q
i) =

∑

〈d,I〉=k

g−
k
2nAI(g

− 1

n gab, z)q
I . (57)

At this point, we can once more enlarge the domain of definition of the function
Fk, where the identity (48) holds, from V r3 to V r4 ⊂ JrHM . The new domain
is isomorphic to V r4

∼= U × Ln × R × W4 × R
γ × R

δ, where the coordinates

(xa) effect the projection onto the U factor, the coordinates (gab) or (g, g
− 1

n gab)

effect the projection onto the Ln factor, the coordinate (g
1

nw, z) effects the pro-
jection onto the R ×W4 factor (which at least contains the point (0, 0)), the
coordinates (Γa(bc,A)) effect the projection onto the R

γ factor, and the remain-

ing coordinates (g
3

n
+ 1

n
|A|S̄ab(cd,A), g

1

n
+ 1

n
|A|w̄A, g

1

n
+ 1

n
|A|z̄a) effect the projection
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onto the R
δ factor. Note that U × Ln × R×W4 ⊆ HM and that V r4 is simply

its preimage with respect to the bundle projection JrHM → HM . The func-
tion Fk extends uniquely from V r3 to a function on V r4 that is invariant under
coordinate scalings. The reason we could extend the domain so much is because
almost all coordinates had positive degrees with respect to coordinate scalings.
The range of the (z) coordinate is limited to W4 because it is invariant under
coordinate scalings and even under the larger group GL(n) (resp. GL+(n)) that
acts on the other bundle coordinates.

5. GL(n)-equivariance and polynomial dependence on the metric. From
the preceding discussion, the function Fk, satisfying the identity (48), depends
only on the coordinates corresponding to the factors V4 = Ln×W4×R

δ. More-
over, the dependence on the coordinates on the R

δ factor is polynomial, while
the coefficients g−

k
2nAI(g

− 1

n gab, z) of these polynomials depend only on the
Ln ×W4 factor. It is also clear from the preceding discussion that each of the
factors in V4 carries a tensor density representation of GL(n) (resp. GL+(n))
(cf. Section 2.6), which happens to be trivial on W4. The space of functions on
V4 then itself carries a representation of GL(n) (resp. GL+(n)), induced by the
pullback of the action on V4, and the function Fk is invariant under this action.
In the same way, the space PNδ of polynomials of degree no greater than N on
R
δ carries a representation of GL(n) (resp. GL+(n)),

(uP )(ρ) = P (u−1ρ), for any u ∈ GL(n), P ∈ PNδ and ρ ∈ R
δ, (58)

which by elementary reasoning, within the representation theory of GL(n) [7],
is a direct sum of tensor density representations. Let us group these subrepre-
sentations by tensor rank and density weight. Therefore, PNδ =

⊕

j Tj, where
each Tj is a tensor density representation.

The form that we have reduced Fk to can be described as follows. Given a
point (g, ξ, ρ) ∈ V4, the A-coefficients g−

k
2nAI(g

− 1

n gab, z) evaluated at (g, ξ) ∈
Ln ×W4 give a polynomial in PNδ , which is then evaluated at ρ ∈ R

δ. Thus we
can think of the A-coefficients as a collection of functions Aj : Ln ×W4 → Tj,
with components given by

(Aj(gab, z))I = g−
k
2nAI(g

− 1

n gab, z). (59)

The only way for Fk constructed in this way to be invariant under the action of
GL(n) is for the maps Aj to be equivariant (cf. Section 2.6), so that

Fk(ug, uξ, uρ) =
∑

j

Aj(ug, uξ)(uρ) =
∑

j

(uAj(g, ξ))(uρ)

=
∑

j

Aj(g, ξ)(u
−1uρ) =

∑

j

Aj(g, ξ)(ρ) = Fk(g, ξ, ρ), (60)

for any u ∈ GL(n) (resp. GL+(n)) and (g, ξ, ρ) ∈ V4.
We are finally in a position to conclude that, for a fixed ξ ∈ W4, the map

Aj(−, ξ) : Ln → Tj is an equivariant tensor density, in the sense of Definition 2.6,
and hence must be of the form dictated by Lemma 2.8, which characterizes all
such maps in a way, in view of Remark 2.5, compatible with our formula (59).
In other words, the coefficients of the polynomials Aj(g, ξ) depend themselves
polynomially on the components gab and εa1···an of the covariant metric and
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Levi-Civita tensors, up to an overall multiple of g = |det gab|. If Fk is invariant
under GL(n), then the dependence on εa1···an must be trivial, while it could in
general be non-trivial if Fk is invariant only under GL+(n). Expanding all the
polynomials in gab, εa1···an and qi, all the factors of powers of g must collectively
cancel to preserve invariance of Fk under GL(n) (resp.GL

+(n)). In other words,
we can conclude that

Fk =
∑

j

aj(z)Pj(gab, εa1···an , S̄
ab(cd,A), w̄A, z̄A), (61)

where the sum is over a (necessarily finite) basis of polynomials Pj , which con-
sist of linear combinations of tensor contractions of products of their arguments,
with coefficients arbitrarily depending on the z coordinate. In this form, the
function Fk is manifestly invariant under GL(n) (resp. GL+(n)) transforma-
tions.

6. Global boundedness of differential order. To conclude the proof, it re-
mains only to extend the domain V r4 once more, this time to all of JrHM , for
an appropriate choice of r. It is well known that for a fixed weight k under
coordinate scaling, there is only a finite number of linearly independent poly-
nomials Pj constructed, as described above, from the metric and the covariant
derivatives of the scalar fields m2, ξ and the Riemann curvature tensor in the
form Sabcd, even if the number of the derivatives r is allowed to be arbitrary [6].
Let rk be the maximum number of derivatives that appear in a basis for these
polynomials Pj . Then, no matter the original choice of domain U ⊆ M , the
differential operator Ck restricted to it must be of order ≤ rk. Thus, we are
justified in setting r = rk in all of the preceding discussion. The only obstacle
that may have prevented us from extending the domain V r4 ⊆ JrkHM of the
function Fk to all of the pre-image of U under the projection JrkHM → M is
the possibility that Ck would change order on jets whose projections fall out-
side V rk4 . However, with the maximal possible order of Ck bounded by rk, this
obstacle is now absent. In other words, we can safely presume that V rk4 is equal
to the preimage of U ⊆ M with respect to the projection JrkHM → M , with
Fk retaining the form (61) on all of its domain. Finally, covariance of Ck with
respect to diffeomorphisms requires that the form (61) is also independent of
the domain U ⊆M . Thus, we can conclude that there exists a globally defined
smooth bundle map Fk : J

rkHM → R ×M over M of the form (61) such that
Ck[h](x) = Fk ◦ jrkh(x) for any x ∈ M and h ∈ Γ(HM), which concludes the
proof.

Remark 3.5. We observe, by looking at the Locality and the Peetre theorem
step of the above proof and also at the proof of Lemma 3.3, that one might
wonder at the need to take m2 and ξ as spacetime-dependent fields rather than
constants, as is usually the case. Our arguments still go through, with only two
changes. First, the microlocal hypothesis mentioned in 3.3 must be strengthened
to require an empty wavefront set for ω(ϕk(x)) as a distribution onM×R

2 (with
the R

2 factor standing for the parameter space of m2 and ξ) rather than as a
distribution on M for any fixed m2 and ξ. Note that the weaker microlocal
requirement does not exclude the infinite family of counterterms of [20] that
were discussed in the Introduction, while the stronger one does. Second, we
must make use of the more general version of the Peetre theorem for differential
operators with parameters, as in Proposition A.1 in Appendix A. To apply that

28



result, we would need to let N = M and replace the spacetime manifold M
by P = M × R

2, adding the (m2, ξ) parameter space. It would then follow
from known information about Ck that it is local with respect to the natural
projection P ∼= R

2×M →M , hence satisfying the more general Peetre theorem.

We end this section with a couple of straight forward but noteworthy ob-
servations. First, it is a direct result of the proof of Lemma 3.3 that the set
of coefficients {Ck[h]} from Equation (43) is determined jointly by the entire
families {ϕk} and {ϕ̃k} of Wick powers, rather than depending on each pair
ϕk and ϕ̃k individually. Second, the converse of Theorem 3.2 holds as well.
That is, given a family {ϕk} of locally covariant Wick powers and a set {Ck[h]}
of satisfying the conclusions of Theorem 3.2, the formula (43) defines another
family {ϕk} of locally covariant Wick powers.

4 Discussion

In this work, we have characterized admissible finite renormalizations of Wick
polynomials of a locally covariant quantum scalar field ϕ on curved spacetimes,
with possibly spacetime-dependent mass m2 and curvature coupling ξ. By local
covariance, we mean the axioms of Brunetti, Fredenhagen and Verch [5]. Our
work is a significant technical improvement on the original work of Hollands and
Wald [11] on this subject. The main result (Theorem 3.2) is a slight generaliza-
tion of that of Hollands and Wald, yet our hypotheses are significantly weaker
and the proof is greatly simplified and streamlined.

Under standard hypotheses, on Minkowski space, where the curvature cou-
pling ξ is absent, it is well known that the finite renormalizations of the Wick
polynomial ϕk are restricted to linear combinations of Wick polynomials of
lower order, with dimensionful coefficients that are polynomials in m2, with the
total dimension matching that of ϕk. This is a strong constraint, because the
resulting space of possibilities is finite-dimensional. On curved spacetimes, as
first proven by Hollands and Wald in [11], adding local covariance and some
further more technical hypotheses gives a result of comparable strength. The
only modification is that the coefficients of lower order Wick polynomials can
also depend polynomially on curvature scalars and analytically on ξ, with the
same restriction on their dimensions. The resulting possibilities no longer form
a finite-dimensional space, but a quasi-finite-dimensional one, in the sense that
it is finitely generated under linear combinations with coefficients analytic in
ξ. It is worth noting that the dependence of finite renormalization terms on
the background metric is entirely contained in the curvature scalars, while their
ξ-dependent coefficients must be assigned uniformly across all spacetimes to
preserve local covariance.

The hypotheses of Hollands and Wald, briefly recalled in Remark 3.3, include
the requirements of locality and of continuous and analytic dependence on the
background spacetime metric and coupling parameters. Unfortunately, while
playing a crucial role in the existing proof, the analytic dependence hypothesis
has been long considered somewhat unnatural and technically very cumbersome.
We have found that, by using a standard result of differential geometry (the non-
linear Peetre theorem, cf. Proposition 2.2 and Appendix A), in the presence of
the remaining assumptions, the role of both the continuity and analyticity hy-
potheses is complete subsumed by that of locality. Thus, despite weakening our
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hypotheses by removing the continuity and analyticity requirements, our final
result on the characterization of finite renormalizations of Wick polynomials,
as stated in Theorem 3.2, is essentially identical to that of Hollands and Wald.
The main difference is that arbitrary smooth dependence on the coupling ξ is
now allowed, instead of just analytic dependence. Another difference is that
we have also explicitly considered weakening covariance to only under orienta-
tion preserving diffeomorphisms, which increases the renormalization freedom to
curvature scalars constructed also with the Levi-Civita tensor and not just the
metric. Finally, we explicitly treat m2 and ξ as possibly spacetime-dependent
parameters, rather than simple constants. The original proof of Hollands and
Wald also treated them as spacetime-dependent, while restricting to the case
of constants in the statement of their final result. We noted in Remark 3.5
how our arguments could be adapted to treating the parameters as constants
throughout.

As was already mentioned, our characterization of finite renormalizations
extends to theories that need only be covariant with respect to orientation
preserving diffeomorphisms. In particular, in even dimensions, chiral theories
(those not invariant under spatial parity transformations) could be admissi-
ble. While our result does not contain any surprises, it is important to have
a rigorous statement on the complete range of possibilities. In particular, sup-
pose that a classical parity invariant theory is perturbatively quantized using
a chiral renormalization scheme. The knowledge of a complete classification of
finite renormalizations is then required to decide whether there exists a different
renormalization scheme that gives a parity invariant quantization.

Another advantage of our proof is the clear separation between the applica-
tions of the locality, covariance and scaling hypotheses. We make a particular
distinction between physical scalings (those resulting from a rescaling of the
metric) and coordinate scalings (those resulting from the local action of some
diffeomorphisms). We believe that structuring the proof in this way makes it
significantly easier to generalize the result to other types of tensor or spinor
fields, a task that is yet to be seriously taken up in the literature on locally
covariant quantum field theory. In particular, it is likely that the crucial step in
limiting the finite renormalization freedom to a quasi-finite-dimensional space is
to carefully balance the covariance and scaling properties, such that there exists
a coordinate system on the jets of background fields, like the rescaled curvature
coordinates that we identified in Section 2.2, where all coordinates correspond-
ing higher derivatives have positive weight under a combination of the physical
and coordinate scalings.

Another direction in which our main result could be generalized is to consider
Wick polynomials that included derivatives of fields. Our proof should extend
without problems. The main difference would be that the finite renormaliza-
tion coefficients Ck could then be tensor- instead of scalar-valued, since Wick
polynomials with derivatives could themselves be tensor fields. This difference
would affect the part of our proof where we make use of GL(n)-equivariance
to fix the form of the Aj coefficients, which could be mixed densitized tensors.
Fortunately, the main technical result on the classification of equivariant tensor
densities, as stated in Lemma 2.8, is sufficiently general to apply to that case
as well, since introducing densitization erases the distinction between covariant
and contravariant indices.

Finally, let us say something about time-ordered products. Hollands and
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Wald also gave a sketch of the proof of the characterization of finite renormal-
izations of time-ordered products [11, Thm.5.2], under the same hypothesis as
their result about Wick polynomials. As they point out, the main difference
with the case of Wick powers is in the structure of coefficients that are analo-
gous to the Ck, which become distributions on multiple copies of the spacetime
manifold. The arguments, which we encapsulated in Lemma 3.3, applying mi-
crolocal arguments to restrict the wavefront set of these distributions would have
to be generalized accordingly. After that point, the proof of Theorem 3.2, would
apply without essential modifications. Thus, our methods should generalize to
time-ordered products as well.

The investigation of more general types of fields, of Wick polynomials with
derivatives and of time-ordered products could be explored in future work.
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A Peetre’s theorem with parameters

The non-linear Peetre theorem stated in Proposition 2.2 may be made signifi-
cantly stronger. Let us now introduce the language needed to state the stronger
version in a precise form. In the following, σ : E → N and ρ : F → M , are two
smooth bundles, where we have explicitly written the canonical projections, and
we consider a map D : Γ(E → N) → Γ(F → M) between smooth sections of
these bundles. We intend here to give a precise mathematical meaning to the
statement that D is local. Before defining the most general version of locality
(cf. [14, §18.16]), we consider several motivating cases of increasing complexity.

Case N = M . We say that D is local when the value φ(x), for φ = D[ψ] ∈
Γ(F → M), depends only on the germ of ψ ∈ Γ(E → M) at x ∈ M . This
version of locality is already sufficient for Propositions 2.1 and 2.2. We can
loosen this notion of locality in several ways.

Case N 6= M . We may agree that φ(x), for φ = D[ψ] ∈ Γ(F → M) and
x ∈ M , may depend only on the germ of ψ ∈ Γ(E → N) at y ∈ N , with some
fixed relationship y = χ(x), where χ : M → N is some diffeomorphism. We then
say that D is χ-local.

Case N 6= M and D depends on external parameters. We can introduce a
bundle π : P →M , where the manifold P is interpreted as “M with parameters.”
Then, allowing D to depend on parameters means that D really maps sections
of E → N to sections of the pullback bundle π∗F → P , interpreted as “F with
parameters.” Pre-composing a section of π∗F → P with a section of P → M
then yields a section of F → M given by a particular choice of parameters.
Denoting η = χ ◦ π, we call the map D : Γ(E → N) → Γ(π∗F → P ) η-local
when φ(x, p) = D[ψ](x, p), with (x, p) ∈ P and π(x, p) = x ∈ M , depends
only on the germ of ψ at y = η(x, p) = χ(x) ∈ N . Note that the total space
of the bundle “F with parameters” can be expressed as the fibered product
π∗F ∼= F ρ×πP over M (where we have explicitly named the ρ : F →M bundle
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projection), which completes the pullback diagram

F ρ×πP P

F M

π

ρ

. (62)

We can illustrate all of the above maps in the diagram

E F ρ×πP F

N P M

ρ
ψ

πη

φ = D[ψ]

χ

τ φ ◦ τ
, (63)

where all the solid arrows commute, the dotted arrows denote bundle sections,
with τ : M → P denoting a particular “choice of parameters,” and φ ◦ τ was
silently composed with the projection F ρ×πP → F .

General case. Finally, it is possible to relax the requirement that the map
η : P → N factors as illustrated in diagram (63). The dimension of P could
exceed that of N and η need not be a surjection, not even a submersion. Omit-
ting the structure of the right square of diagram (63), we also replace F ρ×πP
by a simple bundle F → P , without requiring it to have the structure of a
fibered product. So, given bundles E → N and F → P , together with a
smooth map η : P → N , a map D : Γ(E → N) → Γ(F → P ) is called η-local if
φ(x) = D[ψ](x), x ∈ P , depends only on the germ of ψ at y = η(x) ∈ N . We
can illustrate this situation by the diagram

E F

N P
ψ

η

φ = D[ψ]
, (64)

which should be thought of as exactly analogous to diagram (63), but with the
right square missing. This the rather weak notion of η-locality, with a small
additional hypothesis (η non-locally constant), is actually sufficient for a non-
linear version of Peetre’s theorem.

Proposition A.1 (Non-linear Peetre’s Theorem [14, §19.10]). Let F → P ,
E → N be smooth bundles and η : P → N a non-locally constant6 smooth
map, with the interpretation as in diagram (64). For every compact K ⊆ P and
ψ ∈ Γ(E → N), there exists an integer r, an open neighborhood U ⊆ Jr(E → N)
of jrψ(N) ⊂ U , with UK ⊆ U the subset projecting onto η(K), and a function
d : UK → F that commutes with all the projections, as illustrated by the diagram

Jr(E → N) ⊇ UK F |K

N ⊇ η(K) K ⊆ P

d

η

, (65)

6By non-locally constant we mean that for every open U ⊆ P the image η(U) contains at
least two points.
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such that D[ξ](x) = d◦jrξ(x) for any ξ ∈ Γ(E → N) with jrξ(N) ⊂ U . In other
words, D is a differential operator of locally finite order, where locality is with
respect to compact subsets of P and compact open neighborhoods in Γ(E → N).

Sketch of proof. With the definitions as discussed above, the proposition is es-
sentially a restatement of Theorem 19.10 of [14], which follows directly from
Theorem 19.7 and Corollary 19.8 that precede it. We refer the reader to the
book [14] for full details. Let us simply mention that, in general outline, the
proof proceeds by contradiction. If D depended non-trivially on an infinite
number of derivatives of its argument, then it would be possible to engineer a
smooth section ψ such that D[ψ] could not itself be smooth.
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