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Abstract

Within the framework of warped convolutions we deform the massless free scalar field.

The deformation is performed by using the generators of the special conformal transforma-

tions. The investigation shows that the deformed field turns out to be wedge-local. Further-

more, it is shown that the spacetime induced by the deformation with the special conformal

operators is nonconstant noncommutative. The noncommutativity is obtained by calculating

the deformed commutator of the coordinates.
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1 Introduction

Noncommutative quantum field theories (NCQFT) enjoy wide popularity among theoret-

ical physicists. From a string theoretical point of view, NCQFT became popular due to

the observation that it can be obtained in a certain low energy limit from string theory

[24]. From a quantum field theoretical aspect, NCQFT gained interest due to many reasons.

Most importantly it was thought that by the introduction of a fundamental length renormal-

isation ambiguities would disappear and ultra-violet (UV) divergences would be canceled.

But already in first order of perturbation theory, the euclidean noncommutative φ4 model

exhibited a new type of divergences. The new divergences could not be cured by standard

renormalisation procedures. In a series of papers [14, 15, 16] the authors added a term to

the noncommutative φ4 model, based on duality considerations, and proved the renormalis-

ability to all orders in perturbation.

Quantum field theory on a noncommutative Minkowski spacetime was rigorously realised

in [8]. The quantum field therein was defined on a tensor product space V ⊗ H . Where

H is the Bosonic Fock space and V is the representation space of the noncommuting coor-

dinate operators x̂ν , satisfying the Moyal-Weyl plane commutator relations [x̂µ, x̂ν ] = iθµν .

The matrix θµν is a constant, nondegenerate and skew-symmetric matrix. Many authors

[3, 11, 12] succeeded representing the scalar field on H instead of V ⊗ H . Furthermore, in

[12] this representation was used to construct a map from the set of skew-symmetric matrices,

which describe the noncommutativity, to a set of wedges. In the next step the construction

was applied to map the noncommutative scalar field to a scalar field living on a wedge. The

respective model led to weakened locality and covariance properties of the field and to a
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nontrivial S-matrix. The result is astonishing because notions of covariance and locality are

usually lost on a noncommutative spacetime.

The method of deformation was further generalised in [6, 7, 17] and was made public under

the name of warped convolutions. It is interesting to note that the model formulated in

[12] can be obtained from warped convolutions by using the momentum operator Pµ for the

deformation. The method in [17] was also successfully used to define deformations of a scalar

massive Fermion, [2].

In fact any strongly continuous unitary representation of the group Rn can be used to

deform the free scalar field. In the following work we deform the QFT of a free scalar field

with the special conformal operators using the method of warped convolutions. We show

that the resulting noncommutative spacetime is nonconstant. Furthermore, we show that

the constructed model exhibits covariance and locality properties which are highly nontrivial

for a nonconstant noncommutative spacetime.

The organisation of the paper is as follows: In Sec. 2, we give a brief introduction of

the conformal group and the isomorphism to the pseudo-orthogonal group SO(2, d). The

proof of self-adjointness of the special conformal operators was given rigorously in [29] and

is sketched in Sec. 3. The proof therein relies on the fact that the momentum operator and

the special conformal operator are unitarily equivalent. Furthermore, we deform the free

scalar field with the special conformal operators and use the unitary equivalence to proof

convergence of the deformation in the Hilbert space norm. The Wightman properties, trans-

formation properties and wedge-locality of the deformed field are proven in Sec. 4. In Sec.

5, we show how the deformation with the special conformal operators leads to a nonconstant

noncommutative spacetime. This is done by calculating the commutator of the coordinates

using the deformed product given in [7].

2 The conformal group and SO(2,d)

2.1 Generators of the conformal group

A conformal transformation of the coordinates is defined to be an invertible mapping x′ → x,

which leaves the d-dimensional metric g invariant up to a scale factor, [9]:

g′µν(x
′) = F (x)gµν (x). (1)

The mappings satisfying the condition (1) are the Lorentz transformations, the translations,

the dilations and the special conformal transformations. These transformations are gener-

ated by the operators Lµν , Pρ, D, Kσ and the set of all conformal transformations forms the

conformal group.

The conformal algebra is defined by the commutation relations of the generators and is

given as follows:

[Lµν , Lρσ] = i (ηµσLνρ + ηνρLµσ − ηµρLνσ − ηνσLµρ, ) (2)

[Pρ, Lµν ] = i (ηρµPν − ηρνPµ) , [Kρ, Lµν ] = i (ηρµKν − ηρνKµ) , (3)
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[Pρ, D] = iPρ, [Kρ, D] = −iKρ, (4)

[Pρ,Kµ] = 2i (ηρµD − Lρµ) , (5)

with all other commutators being equal to 0.

2.2 Isomorphism between the conformal group and SO(2, d)

To see the isomorphism between the conformal group in d dimensions and the pseudo-

orthogonal group SO(2, d), one introduces the following definitions:

J4,µ :=
1

2
(Pµ −Kµ) , J5,µ :=

1

2
(Pµ +Kµ) , (6)

J±
µ := J5,µ ± J4,µ J−1,0 := D, Jµν := Lµν , (7)

Jab = −Jba, a, b = 0, 1, . . . , d, d+ 1. (8)

The defined generators Jab obey the algebra of SO(2, d) with the following commutator

relations:

[Jab, Jcd] = i (ηadJbc + ηbcJad − ηacJbd − ηbdJac) , (9)

where the diagonal metric has the following form

ηaa = (+1,−1, ..,−1
︸ ︷︷ ︸

d

,+1). (10)

This shows the isomorphism between the conformal group and SO(2, d). As one can easily

see, the full conformal group contains the Poincaré group as a subgroup.

3 Deforming the scalar quantum field

The method used for deformation in this work was introduced in [6, 7] and goes by the name

of warped convolutions. This device can be used to deform relativistic quantum field theories

and the hope is in near future to solve a nontrivial interacting QF model in 4 dimensions.

There were interesting results in [13] where the authors obtained a non trivial S-matrix dif-

fering from the free one by momentum dependent phases. The results introduced in [12, 13]

can be obtained by using the framework of warped convolutions to deform the underlying

QFT. This is done by using the momentum operator as the generator of a strongly continu-

ous unitary representation of the group Rn.

Our approach in this work will be to use the special conformal operators as the genera-

tors of such representations. This will lead to a new QFT model which on one hand can be

interpreted as a QF on a nonconstant noncommutative spacetime, and on the other hand as

a wedge-local QFT model.
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3.1 Self-adjointness of the special conformal operators

To proceed with deforming via warped convolutions, it is necessary to prove self-adjointness

of the special conformal operator Kµ. The proof was given in [29] relying on the fact that

the special conformal operator can be defined as

Kµ := URPµUR, (11)

where UR is the inversion operator. The reason for the definition is that any special conformal

transformation

U(b)xµ =
xµ − bµx

2

1− 2bµxµ + b2x2
, (12)

can be written as a product

U(b) = URT (b)UR, (13)

of a translation T (b)xµ = xµ + bµ and inversions URx
µ = −xµ/x2. By constructing a

self-adjoint unitary representation UR in H1 := L2(dnµ(p),Rn) = {f :
∫
dnµ(p)|f(p)|2 <

∞, dnµ(p) := dnp(2|p|)−1} for n ≥ 1, the essential self-adjointness of the operators Kµ on

the dense domain ∆(R) := UR∆(P ) follows. ∆(P ) is the dense domain of all functions from

H1 vanishing at infinity faster than any inverse polynomial in pk and is given as follows

∆(P ) = {f ∈ H1 : |
(
p2

)r
f(p)| ≤ cr(f) < ∞; r = 0, 1, 2, . . .}. (14)

Due to the unitary equivalence (11), Pµ and Kµ have the same spectrum contained in the

closed forward cone

V +
0 := {pµ : pµpµ ≥ 0, p0 ≥ 0}. (15)

The last step in [29] consists in showing that the special conformal operator defined in the

following way (11), is identical with the special conformal generator of the conformal group.

3.2 Special conformal transformation of the free scalar field

Since in the context of the present paper we need the transformation of the free scalar field

under the special conformal group, we shall also briefly summarise those results obtained in

[29].

For n = 1 the existence of a unitary representation for the whole conformal group was

proven. The special conformal operator transforms the free scalar field φ(x) in the following

manner

αb(φ(x)) := eibµK
µ

φ(x)e−ibµK
µ

= φ(xb)− φ(− b

bµbµ
), (16)

where

xµ
b :=

xµ − bµx
2

1− 2bµxµ + b2x2
. (17)

In the two dimensional spacetime test functions f ∈ S (R2) which are used to smear the

distribution valued operator φ(x) are chosen to satisfy
∫
d2xf(x) = 0. The reason for this

specific choice is to circumvent IR-divergences and it will be used through the entire work.

Now if n = 2l+ 1 for l ∈ N one obtains the following result

αb(φ(x)) = σb(x)
1−n

2 φ(xb), (18)
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where

σb(x) := 1− 2bµx
µ + b2x2. (19)

It was further proven that one only obtains a unitary representation for the whole conformal

group if n = 4l + 1 for l ∈ N. In the other cases for odd n one has to deal with representa-

tions of the covering of the conformal group. The reason for the non-existence of a unitary

representation for the whole conformal group lies in the non positivity of the scale factor

σb(x). For the present paper this will become important due to our intention to formulate

the model in four spacetime dimensions. In Sec. 4, we will prove that the scale factor σb(x)

is positive for a scalar field localised in the wedge. Therefore, we will not have a problem

obtaining a unitary representation for the whole conformal group.

3.3 Deforming the QF with special conformal operators

In this section we deform the massless scalar field with the special conformal operators using

the framework warped convolutions. To proceed with the deformation, we first define the

undeformed free scalar field φ with massm = 0 on the n+1-dimensional Minkowski spacetime

as an operator valued distribution acting on its domain in the Bosonic Fock space. Such a

particle with momentum p ∈ Rn has the energy defined by ωp = |p|.
Definition 3.1. The Bosonic Fock space H + is defined as in [10, 25]:

H
+ =

∞⊕

m=0

H
+
m

where the m particle subspaces are given as

H
+
m = {Ψm : ∂V+ × · · · × ∂V+ → C symmetric|

‖Ψm‖2 =

∫

dnµ(p1) . . .

∫

dnµ(pm)|Ψm(p1, . . . ,pm)|2 < ∞},

with

∂V+ := {p ∈ R
d|p2 = 0, p0 > 0}.

The particle annihilation and creation operators can be defined by their action on m-

particle wave functions

(a(f)Ψ)m(p1, . . . ,pm) =
√
m+ 1

∫

dnµ(p)f(p)Ψm+1(p,p1, . . . ,pm)

(a(f)∗Ψ)m(p,p1, . . . ,pm) =







0, m = 0

1√
m

m∑

k=1

f(pk)Ψm−1(p1, . . . ,pk−1,pk+1, . . . ,pm), m > 0

with f ∈ H1 and Ψm ∈ H +
m . The commutator relations of a(f), a(f)∗ follow immediately

and are given as follows

[a(f), a(g)∗] = (f, g) =

∫

dnµ(p)f(p)g(p), [a(f), a(g)] = 0 = [a∗(f), a∗(g)].

Particle annihilation and creation operators with sharp momentum are introduced as oper-

ator valued distributions and are given as follows

a(f) =

∫

dnµ(p)f(p)a(p), a(f)∗ =

∫

dnµ(p)f(p)a∗(p),
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where the particle annihilation and creation operators with sharp momentum satisfy the

following commutator relations

[a(p), a(q)∗] = 2ωpδ
n(p− q), [a(p), a(q)] = 0 = [a∗(p), a∗(q)].

In the next step we define the warped convolutions of the free scalar field. This is done using

the essential self-adjointness of the generators Kµ which in turn define a unitary operator

U(b) := eibµK
µ

. The definition of the operator valued function U(b) leads to a strongly

continuous unitary representation of Rd, for each bµ ∈ Rd. This can be proven by making

use of Stone’s theorem, [22]. To define the deformation, we need the the unitary operator

of translations defined by T (y) := eiyµP
µ

, for each yµ ∈ R
d, and the extended dense domain

∆m(P ) :=
⊗m

k=1 ∆(P ). Furthermore, we define Γ(UR) :=
⊗m

k=1 UR to be the unitary

operator of the inversions on H +
m , [22]. From the former definitions the extended domain

∆m(R) = Γ(UR)∆m(P ) follows.

Definition 3.2. Let θ be a real skew-symmetric matrix w.r.t. the Minkowski scalar-product

on Rd and let φ(f) be the free scalar field smeared out with functions f ∈ S (Rd). Then the

operator valued distribution φ(f) deformed with the special conformal operators, denoted as

φθ,K(f), is defined on vectors of the dense domain ∆m(R) as follows

φθ,K(f)Ψm : = (2π)−d

∫∫

ddyddke−iyµk
µ

αθy(φ(f))U(k)Ψm (20)

= (2π)−d

∫∫

ddyddke−iyµk
µ

αθy

(

a(f−) + a∗(f+)
)

U(k)Ψm (21)

=:
(

aθ,K(f−) + a∗θ,K(f+)
)

Ψm. (22)

The test functions f±(p) in momentum space are defined as follows

f±(p) :=

∫

ddxf(x)e±ipx, p = (ωp,p) ∈ ∂V+.

By arguing with the essential self-adjointness of the special conformal operator, it can

be shown that the integral (20) converges in the strong operator topology if the undeformed

operator is bounded, [7]. Due to the fact that we are dealing with an unbounded operator

it is not clear in what sense the deformation with the special conformal operator converges.

To show that the warped convolutions (20) exist in Hilbert space norm, we use the unitary

equivalence (11) between the momentum operator and the special conformal operator.

Lemma 3.3. For f ∈ S (Rd) and Ψm ∈ ∆m(R), a transformation exists that maps the

field deformed with the momentum operator φθ,P (f) to the field deformed with the special

conformal operator φθ,K(f). This transformation is given as follows

φθ,K(f)Ψm = Γ(UR) (Γ(UR)φ(f)Γ(UR))θ,P Γ(UR)Ψm.

Proof. By using the unitary equivalence (11) the lemma is easily proven

φθ,K(f)Ψm = (2π)−d

∫∫

ddyddke−iyµk
µ

U(θy)φ(f)U(−θy + k)Ψm

= (2π)−d

∫∫

ddyddke−iyµk
µ

Γ(UR)T (θy)Γ(UR)φ(f)Γ(UR)T (−θy + k)Γ(UR)Ψm

= Γ(UR) (Γ(UR)φ(f)Γ(UR))θ,P Γ(UR)Ψm.
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Lemma 3.4. For Φm ∈ ∆m(R) ⊂ H +
m the familiar bounds of the free field hold for the

deformed field φθ,K(f) and therefore the deformation with the special conformal operators

exists in the Hilbert space norm.

Proof. By using lemma 3.3 one obtains the familiar bounds for a free scalar field. For

Φm ∈ ∆m(R) there exists a Ψm ∈ ∆m(P ) such that the following holds

‖φθ,K(f)Φm‖ = ‖φθ,K(f)Γ(UR)Ψm‖ = ‖(Γ(UR)φ(f)Γ(UR))θ,PΨm‖ = ‖(φ(URf))θ,PΨm‖

≤
∥
∥
∥(a(URf−))θ,PΨm

∥
∥
∥+

∥
∥(a∗(URf

+))θ,PΨm

∥
∥ ≤

∥
∥URf

+
∥
∥
2
∥
∥
∥(N + 1)1/2Ψm

∥
∥
∥

2

+

∥
∥URf

−∥∥2
∥
∥
∥(N + 1)1/2Ψm

∥
∥
∥

2

=
∥
∥f+

∥
∥
2
∥
∥
∥(N + 1)1/2Ψm

∥
∥
∥

2

+
∥
∥f−∥∥2

∥
∥
∥(N + 1)1/2Ψm

∥
∥
∥

2

,

where in the last lines we used the Cauchy-Schwarz inequality, the bounds given in [12] and

the unitarity of UR.

4 Properties of the deformed quantum field

In the following section we prove the Wightman properties of the deformed field. The

Wightman axioms of covariance and locality are not satisfied, but are replaced by wedge

covariance and wedge-locality. The relation between the fields defined on a deformed space-

time and fields defined on the wedge is given by the the constructed map in [7, 12]. To

use this map we give the transformation property of the deformed quantum field φθ under

Lorentz transformations and thus relate the skew-symmetric matrices to wedges. Further-

more, we prove that the field obtained by the construction is a wedge Lorentz-covariant and

wedge-local quantum field.

4.1 Wightman properties of the deformed QF

In this section we prove that the deformed field φθ,K satisfies the Wightman properties with

the exception of covariance and locality.

Proposition 4.1. Let θ be a real skew-symmetric matrix w.r.t. the Minkowski scalar-product

on Rd and f ∈ S (Rd).

a) The dense subspace D of vectors of finite particle number is contained in the domain

Dθ,K = {Ψ ∈ H | ‖φθ,K(f)Ψ‖2 < ∞} of any φθ,K(f). Moreover, φθ,K(f)D ⊂ D and

φθ,K(f)Ω = φ(f)Ω.

b) For scalar fields deformed via warped convolutions and Ψ ∈ D,

f 7−→ φθ(f)Ψ (23)

is a vector valued tempered distribution.

c) For Ψ ∈ D and φθ,K(f) the following holds

φθ,K(f)∗Ψ = φθ,K(f)Ψ. (24)

For real f ∈ S (Rd), the deformed field φθ(f) is essentially self-adjoint on D.

d) The Reeh-Schlieder property holds: Given an open set of spacetime O ⊂ Rd then

Dθ(O) := span{φθ(f1) . . . φθ(fm)Ω : m ∈ N, f1 . . . fm ∈ S (O)} (25)

is dense in H .
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Proof. a) The fact that D ⊂ Dθ, follows directly from lemma 3.4 because the deformed

scalar field satisfies the well known bounds of the free field. The fact that the deformed field

acting on the vacuum is the same as the free field acting on Ω, can be easily shown due to

the property of the unitary operators U(b)Ω = Ω.

b) By using lemma 3.4 one can see that the right hand side depends continuously on the

function f , hence the temperateness of f 7−→ φθ,K(f)Ψ, Ψ ∈ D follows.

c) The hermiticity of the deformed field φθ,K(f)∗ is proven in the following

φθ,K(f)∗Ψ = (2π)−d

(∫∫

ddyddke−iyµk
µ

αθy(φ(f))U(k)

)∗
Ψ

= (2π)−d

∫∫

ddyddkeiyµk
µ

U(−k)αθy(φ(f))
∗Ψ

= (2π)−d

∫∫

ddyddkeiyµk
µ

αθy(φ(f))U(−k)Ψ = φθ,K(f)Ψ, Ψ ∈ D.

In the last lines we performed a variable substitution (y → y + θ−1k) and (k → −k). The

essential self-adjointness of the deformed field for real f can be shown along the same lines

as in [5].

d) For the proof of the Reeh-Schlieder property we will make use of the unitary equivalence

(11). First note that the spectral properties of the representation of the special conformal

transformations U(y) are the same as for the representation of translations. This leads to

the application of the standard Reeh-Schlieder argument [28] which states that that Dθ(O) is

dense in H if and only if Dθ(R
d) is dense in H . We choose the functions f1, . . . , fm ∈ S (Rd)

such that the Fourier transforms of the functions do not intersect the past light cone and

therefore the domain Dθ(R
d) consists of the following vectors

Γ(UR)φθ,K(f1) . . . φθ,K(fm)Ω = Γ(UR)a
∗
θ,K(f+

1 ) . . . a∗θ,K(f+
m)Ω

= Γ(UR)Γ(UR)(Γ(UR)a
∗(f+

1 )Γ(UR))θ,P . . . (Γ(UR)a
∗(f+

m)Γ(UR))θ,PΓ(UR)Ω

= a∗θ,P (URf
+
1 ) . . . a∗θ,P (URf

+
m)Ω =

√
m!Pm(Sm(URf

+
1 ⊗ · · · ⊗ URf

+
m)),

where Pm denotes the orthogonal projection from H
⊗m
1 onto its totally symmetric subspace

H +
m , and Sm ∈ B(H ⊗m

1 ) is the multiplication operator given as

Sm(p1, . . . , pm) =
∏

1≤l<k≤m

eiplθpk .

Since the operator Γ(UR) is a unitary operator the functions URf
+
k for f+

k ∈ S (Rd) will give

rise to dense sets of functions in H1. Following the same arguments as in [12] the density of

Dθ(R
d) in H follows. Note that we proved the density for vectors Γ(UR)φθ,K(f1) . . . φθ,K(fm)Ω

and not for the vectors without Γ(UR) as stated in the proposition. We use the unitarity

of Γ(UR) to argue that vectors dense in H stay dense after the application of a unitary

operator.

4.2 Wedge-covariant fields

The authors in [12] constructed a map Q : W 7→ Q(W ) from a set W0 := L
↑
+W1 of wedges,

where W1 := {x ∈ Rd : x1 > |x0|} to a set Q0 ⊂ R
−
d×d of skew-symmetric matrices. In the
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next step they considered the corresponding fields φW (x) := φ(Q(W ), x). The meaning of

the correspondence is that the field φ(Q(W ), x) is a scalar field living on a NC spacetime

which can be equivalently realised as a field defined on the wedge.

To show the covariance properties of the deformed quantum fields we use the homomor-

phism Q(W ) to map the deformed scalar fields to quantum fields defined on a wedge. Let

us first define the following map.

Definition 4.2. Let θ be a real skew-symmetric matrix on Rd then the map γΛ(θ) is defined

as follows

γΛ(θ) :=

{
ΛθΛT , Λ ∈ L↑,

−ΛθΛT , Λ ∈ L↓.
(26)

Definition 4.3. θ is called an admissible matrix if the realisation of the homomorphism

Q(ΛW ) defined by the map γΛ(θ) is a well defined mapping. This is the case iff θ has in n

dimensions the following form











0 λ 0 · · · 0

λ 0 0 · · · 0

0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0











, λ ≥ 0. (27)

For the physical most interesting case of 4 dimensions the skew-symmetric matrix θ has the

more general form







0 λ 0 0

λ 0 0 0

0 0 0 η

0 0 −η 0







, λ ≥ 0, η ∈ R. (28)

Before we use the map from the set of skew-symmetric matrices to the wedges we state

the following lemma about the transformation properties of the deformed field.

Lemma 4.4. The transformation of the deformed particle annihilation and creation operator

aθ,K(p), a∗θ,K(p), for p ∈ ∂V+ and θ being admissible, under the adjoint action V (0,Λ) of

the Lorentz group, Λ ∈ L, is the following

V (0,Λ)aθ,K(p)V (0,Λ)−1 = aγΛ(θ),K(±Λp), (29)

V (0,Λ)a∗θ,K(p)V (0,Λ)−1 = a∗γΛ(θ),K
(±Λp), (30)

where the first sign is for Λ ∈ L↑ and the second sign is for Λ ∈ L↓. Hence the deformed

field φθ,K(x) transforms

V (0,Λ)φθ,K(x)V (0,Λ)−1 = φγΛ(θ),K(Λx). (31)

Proof. The proof is done along the lines of [7]. V (0,Λ) is a unitary operator for Λ ∈ L↑ and

an antiunitary operator for Λ ∈ L↓. Due to the commutator relation of the special conformal

operator and the generator of the Lorentz transformations one obtains

V (0,Λ)U(x)V (0,Λ)−1 = U(Λx), x ∈ R
d. (32)
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Therefore, the deformed scalar field φθ,K transforms under the adjoint action of the Lorentz

group in the following way

V (0,Λ)φθ,K(x)V (0,Λ)−1 = (2π)−dV (0,Λ)

∫∫

ddyddke−iyµk
µ

αθy(φ(x))U(k)V (0,Λ)−1

= (2π)−d

∫∫

ddyddke−iσyµk
µ

αΛθy(V (0,Λ)φ(x)V (0,Λ)−1)U(Λk)

= (2π)−d

∫∫

ddyddke−iyµk
µ

αγΛ(θ)y(φ(Λx))U(k)

= φγΛ(θ),K(Λx),

where σ is +1 if V is unitary and −1 if V is antiunitary. Moreover in the last lines we

performed the integration variable substitutions (y, k) → (σΛT y,Λ−1k).

In the next step we use the homomorphism (26) to map the deformed field to a field

defined on a wedge. Furthermore we show that the field deformed with the special conformal

operator is a wedge-covariant quantum field which transforms covariantly under the adjoint

action of the Lorentz group V (0,Λ). For this purpose let us first introduce the notion of a

wedge-covariant quantum field, [12].

Definition 4.5. Let φ = {φW : W ∈ W0} denote the family of fields satisfying the domain

and continuity assumptions of the Wightman axioms. Then the field φ is defined to be a

wedge Lorentz-covariant quantum field if the following condition is satisfied:

• For any W ∈ W0 and f ∈ S (Rd) the following holds

V (Λ)φW (f)V (Λ)−1 = φΛW (f ◦ (Λ)−1), Λ ∈ L↑
+,

V (j)φW (f)V (j)−1 = φjW (f ◦ j)−1.

We use the homomorphism Q : W 7→ Q(W ) to define the deformed fields as quantum

fields defined on the wedge, this is done in the following way

φW (f) := φ(Q(W ), f) = φθ,K(f). (33)

Proposition 4.6. The family of fields φ = {φW : W ∈ W0} defined by the deformation

with the special conformal operators are wedge-covariant quantum fields on the Bosonic Fock

space, w.r.t. the unitary representation V of the Lorentz group.

Proof. Following lemma (4.4), the deformed field φθ,K(x) transforms under the adjoint action

V of the Lorentz group in the following way

V (0,Λ)φW (x)V (0,Λ)−1 = V (0,Λ)φθ,K(x)V (0,Λ)−1 = φγΛ(θ),K(Λx) = φΛW,K(Λx), (34)

where in the last lines we applied the map Q(ΛW ) = γΛ(Q(W )) = γΛ(θ). Therefore, one

obtains the wedge-covariance property of the scalar field under the Lorentz group.

A few comments are in order. The covariance property is given in the 4 dimensional case

as well. As explained in Sec. 3, a unitary representation for the whole conformal group does

not exist due to the absolute value of the scale factor. We will show in the next section that

the scale factor is positive for a field localised in the wedge and therefore one has a unitary

representation of the whole conformal group.
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4.3 Wedge-local fields

In this section we will show that the wedge-covariant quantum field defined in the last section,

is a wedge-local field. We first define the notion of the wedge-local field.

Definition 4.7. The fields φ = {φW : W ∈ W0} are said to be wedge-local if the following

commutator relation is satisfied

[φW1
(f), φ−W1

(g)]Ψ = 0, Ψ ∈ D, (35)

for all f, g ∈ C∞
0 (Rd) with supp f ⊂ W1 and supp g ⊂ −W1.

To show that the fields defined in the last section are wedge-local, we use the following

proposition (2.10, [7]) and lemma 4.9.

Proposition 4.8. Let the scalar fields φ(f), φ(g) be such that [αθv(φ(f)), α−θu(φ(g))] = 0

for all v, u ∈ spU and for f, g ∈ C∞
0 (Rd). Then

[φθ,K(f), φ−θ,K(g)]Ψ = 0, Ψ ∈ D. (36)

Lemma 4.9. The special conformal transformations Uθv, with v ∈ spU and θ being admis-

sible, map the right wedge into the right wedge Uθv(W1) ⊂ W1. Furthermore, the special

conformal transformations U−θu, with u ∈ spU and θ being admissible, map the left wedge

into the left wedge U−θv(−W1) ⊂ −W1.

Proof. We first prove for xµ ∈ W1, v ∈ spU, θ being admissible and κ > 0, that the vector

x′µ := xµ + κ(θv)µ ∈ W1.

x′1 > |x′0|
x1 + κλv0 > |x0 + κλv1|.

The right hand side is obviously greater than zero and therefore we square both sides and

obtain

κ2λ2(v20 − v21)− (x2
0 − x2

1)− 2κλ(v1x0 − v0x1) > 0.

Due to the fact that the sum of the first two terms is greater than zero, we are only left with

proving that the following inequality

λv1x0 − λv0x1 ≤ 0

is satisfied. Equality only holds if v0 = 0 or λ is zero. So if v0, λ 6= 0 we have to show the

following

x1 >
v1

v0
x0. (37)

(37) is satisfied, because the stronger inequality

x1 > |v1
v0

|
︸︷︷︸

0<···<1

|x0|

holds. By using the vector x′µ we now can easily prove that xµ
θv ∈ W1. To show that

xµ
θv ∈ W1 the following inequality must be satisfied.

x1
θv > |x0

θv| (38)
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(x1 − (θv)1x2)/(1− 2(θv) · x+ (θv)2x2) > |(x0 − (θv)0x2)/(1− 2(θv) · x+ (θv)2x2)|. (39)

Positivity of the denominator can be seen by taking the vector x′µ as defined above and

setting κ = −x2 > 0. From x′2 < 0 we obtain

x′2 = (xµ − x2(θv)µ)(xµ − x2(θv)µ) = x2
︸︷︷︸

<0

(
1− 2xµ(θv)

µ + x2(θv)µ
)
< 0.

From the inequality it follows that the the denominator in (39) is positive and therefore one

is left with proving

(x1 − (θv)
1
x2) > |(x0 − (θv)

0
x2)|. (40)

By choosing κ = −x2 this is exactly the inequality for the vector x′µ ∈ W1. Therefore,

the special conformal transformed coordinate is still in the right wedge. The proof that the

special conformal transformations map the left wedge into the left wedge is analogous.

Proposition 4.10. For n = 4l + 1, where l ∈ N0 the family of fields φ = {φW : W ∈ W0}
are wedge-local fields on the Bosonic Fockspace H +.

Proof. We first prove that the expression [αθv(φ(f)), α−θu(φ(g))] vanishes for all v, u ∈ spU

and for f ∈ C∞
0 (W1), g ∈ C∞

0 (−W1). By using proposition 4.8 it then follows, that the

commutator [φW1
(f), φ−W1

(g)] vanishes.

[αθv(φ(f)), α−θu(φ(g))] = (2π)−2(n+1)

∫∫

dn+1xdn+1yf(x)g(y)[αθv(φ(x)), α−θu(φ(y))]

= (2π)−2(n+1)

∫∫

dn+1xdn+1yf(x)g(y)σθv(x)
1−n
2 σ−θu(y)

1−n
2 [φ(xθv), φ(y−θu)] = 0.

In the last line we applied lemma 4.9 to prove that after the special conformal transformation,

the support of the field φW1
stays in the right wedge and the support of the field φ−W1

stays

in the left wedge. Therefore, the supports of the fields are space-like separated, hence they

commute.

Lemma 4.11. In four dimensions a unitary representation for the whole conformal group,

which gives the correct transformation law (18), exists for the fields φθ,K(f) with f ∈
C∞

0 (W1). The same holds for the field φ−θ,K(g) with g ∈ C∞
0 (−W1).

Proof. The problem with the absence of a unitary representation for the whole conformal

group that gives the correct transformation law (18) is due to the absolute value of the scale

factor σb(x). Nevertheless, we showed in lemma 4.9 that the scale factor for a field localised

in the right wedge is positive. The positivity of the scale factor in turn means that a unitary

representation for the whole conformal group in four dimensions exists, [29].

φW1
(f)Ψ = φθ,K(f)Ψ = (2π)−4

∫

d4xf(x)

∫∫

d4vd4ue−iuvαθv(φ(f))U(u)Ψ

= (2π)−4

∫

d4xf(x)

∫∫

d4vd4ue−iuvσθv(x)
−1φ(xθv)U(u)Ψ, Ψ ∈ D.

For a quantum field defined on the left wedge the proof is done analogously.

Proposition 4.12. For n = 3, the fields φ = {φW : W ∈ W0} are wedge-local fields on the

Bosonic Fockspace H +.
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Proof. Due to the existence of a unitary representation shown in lemma 4.11 the deformed

field can be defined for n = 3. Furthermore, by applying 4.8 one shows that the expression

[αθv(φ(f)), α−θu(φ(g))] vanishes for all v, u ∈ spU and for f ∈ C∞
0 (W1), g ∈ C∞

0 (−W1).

[αθv(φ(f)), α−θu(φ(g))] = (2π)−8

∫∫

d4xd4yf(x)g(y)[αθv(φ(x)), α−θu(φ(y))]

= (2π)−8

∫∫

d4xd4yf(x)g(y)σθv(x)
−1

σ−θu(y)
−1

[φ(xθv), φ(y−θu)] = 0,

Analogous to the proof of proposition (4.10) we use lemma 4.9 in the last line.

This is a very interesting result. The deformed case improves the representations such

that one does not have to deal with representations of the covering of the conformal group.

5 NC Spacetime from special conformal operators

5.1 Moyal-Weyl

Within the framework of warped convolutions [7], the authors defined a deformed associative

product in the following way.

Definition 5.1. The associative deformed product ×θ of A,B is defined as

A×θ B = (2π)−d

∫∫

ddvddue−ivuαθv(A)αu(B). (41)

Furthermore, the deformed commutator [A ×θ, B] of A, B is defined in the following way

[A ×θ, B] := A×θ B −B ×θ A. (42)

The deformed product can be used to calculate the commutator of the coordinates. In

the case of deformation with the momentum operator Pµ one obtains the following lemma.

Lemma 5.2. Let the deformed product 5.1 be defined by the generator of translations Pµ.

Then the deformed commutator 42 of the coordinates gives the Moyal-Weyl plane

[xµ
×θ, xν ] := xµ ×θ xν − xν ×θ xµ = −2iθµν. (43)

Proof. We first calculate the deformed product of the coordinates using definition 5.1.

xµ ×θ xν = (2π)−d

∫∫

ddvddue−ivuαθv(xµ)αu(xν)

= (2π)−d

∫∫

ddvddue−ivu(xµ + (θv)µ)(xν + uν) = xµxν − iθµν

In the last lines, we applied the adjoint action of the momentum operator Pµ on the co-

ordinates, which induces a translation. The next step consists in calculating the deformed

commutator of the coordinates. Due to the skew-symmetry of the deformation matrix θ, one

obtains for the deformed commutator the Moyal-Weyl plane.

This result is not surprising. As already mentioned, in [12] a quantum field was defined

on the Moyal-Weyl plane, which also can obtained by using the momentum operator for

deformation via warped convolutions. Therefore, it is only natural that the Moyal-Weyl

plane appears for the deformed commutator of the coordinates. In the next section we will

calculate the commutator of the coordinates by using the deformed product induced by the

special conformal operators.
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5.2 Nonconstant noncommutative spacetime

The main idea in this work is to use the special conformal operator to deform the free quan-

tum field. We further proved that the deformed field satisfies some weakened covariance and

locality properties. Now a natural question arises. What is the noncommutative spacetime

that we obtain from the deformation with the special conformal operator? This question can

be answered by calculating the deformed commutator of the coordinates.

[xµ
×θ, xν ] = (2π)−d

∫∫

ddvddue−ivu (αθv(xµ)αu(xν)− αθv(xν)αu(xµ)) . (44)

To calculate the term αθv(xµ) we insert the generator Kµ as a differential operator defined

in ([9]).

αθv(xµ) = exp

(

(θv)σ
(

2xσx
λ ∂

∂xλ
− x2 ∂

∂xσ

))

xµ =: exp ((θv)σKσ(x)) xµ (45)

We could use the transformation of the coordinates under the special conformal generators,

but in that case we would not be able to solve the integral. The ansatz we follow in this work

is to solve the integral, order by order. This will be done by preforming a Taylor expansion

of the exponentials.

Lemma 5.3. Let the deformed product 5.1 be defined by the generator of special conformal

transformations Kµ. Then the deformed commutator (44), up to third order in θ is given as

follows

[xµ
×θ, xν ] = −2iθµνx

4 − 4i ((θx)µxν − (θx)νxµ)x
2.

Proof. The deformed commutator gives the following

[xµ
×θ, xν ] = (2π)−d

∫∫

ddvddue−ivu (αθv(xµ)αu(xν)− µ ↔ ν)

= (2π)−d

∫∫

ddvddue−ivu






∞∑

k=0

1

k!
(θv)σKσ(x) · · · (θv)ρKρ(x)
︸ ︷︷ ︸

k

xµ






×





∞∑

l=0

1

l!
(u)λKλ(x) · · · (u)τKτ (x)
︸ ︷︷ ︸

l

xν − µ ↔ ν



 .

There are two properties for the series that can be easily seen. First, the different orders

between θv and u do not mix. The only terms which are not equal to zero are the terms of

equal order. The vanishing of unequal orders between θv and u will be shown in the following

calculation.

∫∫

ddvddue−ivu
∞∑

k=0

∞∑

l=0

1

k!l!
(θv)σ · · · (θv)ρ
︸ ︷︷ ︸

k

uλ · · ·uτ
︸ ︷︷ ︸

l




Kσ(x) · · ·Kρ(x)
︸ ︷︷ ︸

k

xµ






×



Kλ(x) · · ·Kτ (x)
︸ ︷︷ ︸

l

xν




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=

∫∫

ddvddu

∞∑

k=0

∞∑

l=0

(−i)k

k!l!
θσκ · · · θργ
︸ ︷︷ ︸

k








∂

∂uκ
· · · ∂

∂uγ
︸ ︷︷ ︸

k

e−ivu








uλ · · ·uτ
︸ ︷︷ ︸

l

×




Kσ(x) · · ·Kρ(x)
︸ ︷︷ ︸

k

xµ








Kλ(x) · · ·Kτ (x)
︸ ︷︷ ︸

l

xν





=

∫∫

ddvddue−ivu
∞∑

k=0

∞∑

l=0

ik

k!l!
θσκ · · · θργ
︸ ︷︷ ︸

k















∂

∂uκ
· · · ∂

∂uγ
︸ ︷︷ ︸

k








uλ · · ·uτ
︸ ︷︷ ︸

l








×




Kσ(x) · · ·Kρ(x)
︸ ︷︷ ︸

k

xµ








Kλ(x) · · ·Kτ (x)
︸ ︷︷ ︸

l

xν





=

∞∑

k=0

(−i)k

k!
θσλ · · · θρτ
︸ ︷︷ ︸

k




Kσ(x) · · ·Kρ(x)
︸ ︷︷ ︸

k

xµ








Kλ(x) · · ·Kτ (x)
︸ ︷︷ ︸

k

xν





In the third line we performed a partial integration. The expression vanishes in the case

k > l, because the differentials annihilate the polynomial in u. It also vanishes if k < l

because nonvanishing polynomials in u stay and the integral sets the polynomials zero. Fur-

thermore, by using the symmetry of the x-dependent differential operators K, one solves

the integral. It is important to note that the result of the deformed product between the

coordinates, is exactly the same result one would encounter by using twist-deformation with

the special conformal operators, [1].

The second observation is that polynomials in u, v that are even vanish due to the anti-

symmetry of the commutator. This is shown in the following.

∫∫

ddvddue−ivu



(θv)σKσ(x) · · · (θv)ρKρ(x)
︸ ︷︷ ︸

2m

xµ (u)
λKλ(x) · · · (u)τKτ (x)

︸ ︷︷ ︸

2m

xν





−
∫∫

ddvddue−ivu



(θv)σKσ(x) · · · (θv)ρKρ(x)
︸ ︷︷ ︸

2m

xν (u)
λKλ(x) · · · (u)τKτ (x)

︸ ︷︷ ︸

2m

xµ





Where m is a natural number. In the second integral we preform the integration variable

substitution (v, u) → (θ−1u, θv) and obtain

∫∫

ddvddue−ivu



(θv)σKσ(x) · · · (θv)ρKρ(x)
︸ ︷︷ ︸

2m

xµ (u)
λKλ(x) · · · (u)τKτ (x)

︸ ︷︷ ︸

2m

xν





−
∫∫

ddvddueivu



(θv)σKσ(x) · · · (θv)ρKρ(x)
︸ ︷︷ ︸

2m

xµ (u)
λKλ(x) · · · (u)τKτ (x)

︸ ︷︷ ︸

2m

xν



 .



5.3 Generalisation of the deformation 17

After preforming the integration variable substitution u → −u we obtain

∫∫

ddvddue−ivu



(θv)σKσ(x) · · · (θv)ρKρ(x)
︸ ︷︷ ︸

2m

xµ (u)
λKλ(x) · · · (u)τKτ (x)

︸ ︷︷ ︸

2m

xν





−(−1)2m
∫∫

ddvddue−ivu



(θv)σKσ(x) · · · (θv)ρKρ(x)
︸ ︷︷ ︸

2m

xµ (u)
λKλ(x) · · · (u)τKτ (x)

︸ ︷︷ ︸

2m

xν





= 0.

Therefore, the only terms that do not vanish are those of equal odd order in v and u. In the

following we calculate the noncommutativity of the coordinates up to the second order and

obtain

[xµ
×θ, xν ] = (2π)−d

∫∫

ddvddue−ivu
(
(θv)σ(2xσxµ − x2ησµ)(u)

τ
(
2xτxν − x2ητν

)
− µ ↔ ν

)

= −2iθµνx
4 − 4i ((θx)µxν − (θx)νxµ)x

2 +O(θ3).

The deformed commutator of the coordinates shows that the deformation induced by the

special conformal operators spans a nonconstant noncommutative spacetime. This is very

interesting because the spacetime that we obtain is a curved noncommutative spacetime and

the curvature of the noncommutative spacetime is induced by the special conformal operators.

In the case of using the momentum operator, i.e. the generator of translations in Minkowski,

for the deformation one obtains a flat noncommutative spacetime. The special conformal

operators induce a conformal flat spacetime on Minkowski and therefore, one obtains a

conformally flat noncommutative spacetime when deforming with Kµ. Some examples of

a nonconstant noncommutative spacetime exist in literature, where the highest order of

noncommutativity known is the so called quantum space structure, [20, 30, 31]. The quantum

space structure has an x-polynomial dependence up to second order.

5.3 Generalisation of the deformation

The deformation of an operator by either using the momentum operator Pµ or the special

conformal operator Kµ can be written in a general form. The generalisation can be accom-

plished by using a linear combination of generators of the pseudo-orthogonal group SO(2, d).

First, we redefine the operators Pµ and Kν in the following way

P̃µ :=







λ′P 0

λ′P 1

η′P 2

η′P 3







, K̃µ :=







λK0

λK1

ηK2

ηK3







, (46)

where λ′, λ ∈ R+ and η′, η ∈ R. In the next step we redefine the Lorentz generators J4,µ,

J5,µ, J±,µ and the skew-symmetric matrix θ as follows

J̃4,µ :=
1

2

(

P̃µ − K̃µ
)

, J̃5,µ :=
1

2

(

P̃µ + K̃µ
)

(47)

J̃±,µ := J̃5,µ ± J̃4,µ, (48)
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θ̃ =







0 1 0 0

1 0 0 0

0 0 0 1

0 0 −1 0







. (49)

Definition 5.4. Let θ̃ be a real skew-symmetric matrix given in (49) and let A ∈ C∞. Then

the generalized warped convolutions, i.e. the deformation of A denoted as A±
θ is defined as

follows

A±
θ Ψ := (2π)−d

∫∫

d4yd4ke−iyµk
µ

U±(θy)AU±(θy)U±(k)Ψ, Ψ ∈ D, (50)

where the unitary operator U±(k) is defined as U±(k) := exp
(

ikµJ̃±
µ

)

.

The generalisation of the deformation is interesting because it is obtained as a linear

combination of generators of SO(2, 4). By choosing the plus sign, one obtains the Moyal-

Weyl case and by choosing the minus sign one gets the special conformal model introduced

in this work.

6 Conclusion and outlook

In this work we deformed a quantum field theory with the special conformal operator Kµ,

using the warped convolutions. To proceed with the deformation, self-adjointness of the gen-

erator Kµ is proven in order to obtain a strongly continuous automorphism of the group Rn.

The proof of self-adjointness was done rigorously in [29] and is sketched in Sec. 3. Therefore,

we were able to define the deformation of the scalar field with the special conformal oper-

ators. We further proved that the deformed quantum field satisfies the Wightman axioms,

except for the covariance and locality.

The homomorphism Q(ΛW ), defined in [12] was used in this work to define the map from

the deformed field φθ to a field defined on the wedge φW . Furthermore, it was proven that

the field φW transforms as a wedge-covariant field under the adjoint action of the Lorentz

group. Wedge-locality for the field φW was shown in d = 4l + 2, l ∈ N0 dimensions. In

4 dimensions one usually has a problem with the existence of a unitary representation for

the whole conformal group. The absence of a unitary representation is due to the absolute

value of the scale factor induced by the special conformal transformations. We circumvented

the problem by proving positivity of the scale factor. Positivity was proven by using the

properties of the wedge and the spectrum condition of the special conformal operator.

The deformed product defined in [7] is used to understand the noncommutative spacetime

being induced by using the special conformal operators. The deformed product is used to

calculate the commutator of the coordinates. We first proved that the formula obtained by

solving the integral is known in literature as twist deformation. Furthermore, we discovered

that the noncommutative spacetime obtained in this manner is a nonconstant noncommuta-

tive spacetime which seems to be a new result.

To calculate the S-matrix in the current framework we have to use the concept of the temper-

ate polarization-free generators defined in [4]. The concept can be used for fields deformed

with the momentum operator, but for the special conformal operator we still have to work

out some technical subtleties. This will be done in a further work.
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